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Benchmark calculations of the tunneling splitting in malonaldehyde using the full dimensional
potential proposed by Yagiet al. @J. Chem. Phys.115, 10647 ~2001!# are reported. Two exact
quantum dynamics methods are used: the multiconfigurational time-dependent Hartree~MCTDH!
approach and the diffusion Monte Carlo based projection operator imaginary time spectral evolution
~POITSE! method. A ground state tunneling splitting of 25.760.3 cm21 is calculated using
POITSE. The MCTDH computation yields 25 cm21 converged to about 10% accuracy. These
rigorous results are used to evaluate the accuracy of approximate dynamical approaches, e.g., the
instanton theory. ©2004 American Institute of Physics.@DOI: 10.1063/1.1814356#

I. INTRODUCTION

Due to its strong intramolecular hydrogen bond and
amenable size malonaldehyde~MA ! has been a very popular
benchmark system for the study of intramolecular proton
transfer. Early experimental investigations on the tunneling
splitting1–4 on MA sparked a series of theoretical studies
aiming to understand the nature of its ground vibrational
state. The early theoretical works of Carrington and Miller5,6

have shown that a one-dimensional effective treatment of the
proton tunneling on MA is fundamentally flawed. Since then
the determination of the ground state tunneling splitting of
MA has been the focus of several studies ranging from re-
duced dimensionality quantum calculations7,8 to elaborate
full-dimensional semiclassical treatments.9–17 Most of these
studies employed MA as a test case for method development
measuring the accuracy of the calculation by comparing the
computed value of the ground state splitting with the experi-
mental one.

While most work on MA relied on semiempirical poten-
tial energy surfaces~PESs!, recently Yagiet al.15 succeeded
in constructing a full 21-dimensionalab initio PES. This
progress has been facilitated by the use of the modified
Shepard interpolation scheme introduced by Collins and
co-workers.18–24 However, due to the numerical effort for
constructing a full-dimensional PES, theab initio level has
been restricted to the second-order Møller–Plesset perturba-
tion theory. Thus the potential barrier height for hydrogen

transfer of 3.2 kcal/mol is slightly low compared to higher
level electronic structure methods~3.8 kcal/mol for
CCSD~T!/~aug-!cc-PVTZ17 and 4.3 kcal/mol for the compos-
ite G2 calculation from Barone and Adamo25!.

Up to now, tunneling splittings based on this PES have
been obtained within semiclassical approximations. Yagi
et al.15 used the semiclassical approach of Makri and
Miller26 and found a tunneling splitting value of 13.9 cm21.
Using a more elaborate approach based on instanton theory,
Mil’nikov et al.17 obtained a value of 30.7 cm21. Moreover,
since these instanton theory calculations can be performed
on the fly ~without requiring a predefined global PES!,
Mil’nikov et al.16,17 calculated the tunneling splitting of MA
based on a higherab initio level. In these calculations they
obtained values of 21.2 and 22.2 cm21 depending on the
computational details. These tunneling splittings are in re-
markably good agreement with the experimental value of
21.6 cm21.

When using approximate dynamical methods, judging
the accuracy of the dynamics calculation only by comparison
with experiment carries the risk of fortunate compensation of
errors resulting from the dynamics and from theab initio
potential. Since, to our knowledge, no accurate full-
dimensional quantum mechanical calculation has been per-
formed for the ground state splitting of MA to date, the
present work attempts to provide such benchmark data. To
this end, we employ two distinct quantum methodologies for
the computation of the ground state tunneling splitting (D0)
of MA: namely, the POITSE and the MCTDH methodolo-
gies. The POITSE27 method is based on the stochastic diffu-a!Electronic mail: uwe.manthe@uni-bielefeld.de
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sion Monte Carlo algorithm28–31 and allows the determina-
tion of excited states of high-dimensionality system.32 The
MCTDH33,34 method has successfully been applied to study
wave-packet dynamics in systems with a large number of
degrees of freedom~see for example Refs. 35–38!.

Both exact quantum dynamics methods require a pre-
defined global PES because on the fly calculations are com-
putationally prohibitive. Thus the present study employs the
PES of Yagiet al.15 Due to the limited accuracy of this PES,
we can not expect to find perfect agreement between the
computed and experimental values. However, since the PES
should be qualitatively or even semiquantitatively correct,
the comparison of accurate and approximate dynamical re-
sults should be representative. Confirming the accuracy of
the instanton approach for this particular PES may validate
the applicability of this method also for a more quantitative
~on the fly! PESs.

II. SYSTEM

MA is described using the 21 normal modes,Q
5$Q1 ,...,Q21%, calculated at the transition state of the pro-
ton transfer reaction (C2v symmetry!. Q21 corresponds to the
hydrogen transfer mode and shows an imaginary frequency
in the normal mode analysis. The choice of transition state
normal modes allows for an equivalent description of both
local minima of the potential energy surface and an efficient
use of symmetry in the calculations. Considering mixed de-
rivatives in the kinetic energy operator resulting from vibra-
tional angular momenta irrelevant, the Hamiltonian for van-
ishing total angular momentum (J50) reads

Ĥ52
\2

2 (
i 51

21
]2

]Qi
2 1V~Q!, ~1!

where V(Q) is the PES of Yagiet al.15 This form of the
Hamiltonian is employed in the POITSE calculations. To en-
hance the convergence of the MCTDH calculations, there a
transformed set of coordinatesQ̃ is used:

Q̃i5Qi2Fi~Q21!, i 51,...,20,
~2!

Q̃215Q21,

where theFi are functions of the hydrogen transfer mode
Q21. The functions Fi are chosen to result inQ̃i ,i
51,...,20 coordinate values which approximately vanish
along the reaction path. The resulting new coordinatesQ̃
decrease the correlation between the hydrogen transfer mode
and the remaining coordinates. The transformed kinetic en-
ergy operator reads
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III. POITSE

Due to their polynomial scaling with respect to dimen-
sionality, stochastic methods like diffusion Monte Carlo
~DMC!28–31are methods of choice for the quantum determi-
nation of bosonic ground state of large systems. The compu-
tation of excitation energies is however more complex but
can be done using the POITSE27 methodology. DMC and
POITSE algorithms have been extensively described in lit-
erature and will only be briefly reviewed focusing instead on
the specific details for their application to MA.

The working equation in DMC with importance sam-
pling for the 21-dimensional MA system is given by

] f ~Q!

]t
5(

j 51

21
\2

2 H ]2

]Qj
2 f ~Q!2

]

]Qj
@ f ~Q!F j~Q!#J

2@El~Q!2Ere f# f ~Q!, ~4!

where the product functionf (Q)5C(Q)CT(Q) contains a
guiding function CT(Q) which approximates the solution
C(Q) of the Schro¨dinger equation. In the above equation,
the local energyEl(Q)5CT(Q)21ĤCT(Q) and the quan-
tum forceF j (Q)5¹j lnuCT(Q)u2 notations have been used. A
random walk technique is used to determine the steady state
of Eq. ~4!. An ensemble of walkers is propagated from some
arbitrary initial distribution using the short time approxima-
tion of the Green’s function appropriate to Eq.~4!.

In the POITSE scheme, excited state energies are ex-
tracted from the two-sided inverse Laplace transform of an
imaginary time correlation functionk̃(t). The time depen-
dent decay of this correlation function is computed using a
multidimensional Monte Carlo integration combined with
zero temperature DMC sidewalks.27 The decay of the corre-
lation function k̃(t) contains information about energy dif-
ferencesEf2E0 between ground (E0) and excited (Ef)
state. The renormalized POITSE correlation function can be
written27 in a convenient form for Monte Carlo evaluation

k̃~t!5

^CTuA exp@2~Ĥ2E0!t#A†uCT&

^CTuCT&

^CTuexp@2~Ĥ2E0!t#uCT&

^CTuCT&

. ~5!

In this equationA is a local operator chosen to project from
the trial function uCT& onto some excited stateuC f&. An
inverse Laplace transform ofk̃(t) yields the desired spectral
informationk~v!. Since the tunneling splitting is the energy
difference between the~symmetric! ground state and the
lowest antisymmetric state~with respect toQ21), a suitable
projectorA for the computation of the tunneling splitting is
the hydrogen transfer modeQ21.27

As trial function, a simple product of one-dimensional
functions of the 21 normal modes

CT
(21d)~Q!5)

i 51

21

F i~Qi ! ~6!

with
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F1~Q21!5@e2b21(Q212a21)
2
1e2b21(Q211a21)

2
#e2c21Q21

4
,
~7!

F i~Qi !5e2bi (Qi2ai )
2
, i 51,...,20,

has been used. The parameters of Eqs.~7! have been
determined39 by a fit to the projections of the wave function
along the 21 coordinates obtained via an unbiased DMC cal-
culation (CT(Q)51). The evaluation of Eq.~5! is done by
first creating an initial ensemble of walkers distributed as
(CT

(21d)(Q))2 using a variational Monte Carlo walk. Subse-
quently, DMC side walks are performed during whichk̃(t)
is sampled. For each imaginary time step tested~from 20
down to 1 au! approximately 6 500 decays have been created
and then inverted using the maximum entropy method~see
details in Ref. 40!. An ensemble of 2 000 walkers is used to
create decays up totfinal.15 000 a.u. In order to be able to
compute long correlation decays needed for the extraction of
small energy differences, two implementations of the DMC
walk have been used: pure branching or combination of
weights and branching.32,41 Both lead to the same value for
the tunneling splitting. At the limit of small time step, the
value of the tunneling splitting is found to be 25.7
60.3 cm21. The error bars have been estimated from the
statistical noise of the decays as explained in Ref. 40. Addi-
tionally, the one reported here, includes the two results com-
ing from the two different implementations of the DMC walk
in POITSE employed here.

IV. MCTDH

The tunneling splitting is computed by iteratively diago-

nalizing the Boltzmann operatore2bĤ. The multiconfigura-
tional time-dependent Hartree~MCTDH! approach33,34 is
employed to evaluate the action of the Boltzmann operator
by the imaginary time propagation. For the iterative diago-
nalization, a Lanczos type scheme adapted for the MCTDH
methodology is used.42 In order to utilize the inversion sym-
metry of the double well potential of malonaldehyde, the
original scheme has been modified: the approach of Ref. 42
is used to create a Krylov-type basis localized dominantly in
only one well. Then the inversion operator is applied to these
basis states to generate an equivalent basis set localized in

the other well and thee2bĤ operator is diagonalized in the
combined basis. This modified iterative diagonalization
scheme allows to converge the calculation with less itera-
tions and a smaller number of single-particle functions. A
more extended description of the scheme will be given later
in a full paper.

In the present computations, the correlation~CDVR!
scheme43 has been used for the evaluation of the potential
energy matrix elements in the MCTDH representation and a
scheme utilizing the ideas of Beck and Meyer44 has been
employed for integrating the MCTDH equations of motion in
time. In the Boltzmann operator employed in the iterative
diagonalization, ab value of 1000 a.u. has been used. The
construction of local wavefunctions required in the modified
iterative diagonalization approach has been achieved by
choosing an initial wavefunction localized in one side of the
double well potential and multiplying the wavefunction by a

Heaviside function in the H transfer coordinateQ̃21 before
each iteration step. For the representation of the single-
particle functions, FFT schemes have been employed in co-
ordinates Q̃20 and Q̃21 ~grid ranges @2100,100# and
@295,95#, respectively! while Hermite DVRs have been
used in all other coordinates. Grid sizes are given in Table I.

Extensive convergence tests have been carried out to de-
termine the number of single-particle functionsn required in
the MCTDH representation. Due to the extent of the mate-
rial, a complete description of these tests can not be given in
this communication. Details will be presented in a subse-
quent article. The most accurate MCTDH calculation em-
ployed the single-particle function basis given in Table I and
obtained a tunneling splitting of 25 cm21. Based on the con-
vergence tests performed, this number is estimated to be con-
verged to about 10% accuracy, i.e., within an uncertainty of 2
to 3 cm21.

V. DISCUSSION

The first exact full quantum determinations in full di-
mensionality~21D! of the ground state tunneling splitting of
malonaldehyde have been reported here. Two completely in-
dependent exact quantum methods, POITSE and MCTDH,
have been used. Employing MCTDH, a tunneling splitting of
25 cm21 has been computed. This number is estimated to be
converged within approximately 2 to 3 cm21 accuracy. The
POITSE method results in an even more precise value of
25.760.3 cm21. Thus, the POITSE method seems to be su-
perior for obtaining ground state tunneling splittings. How-
ever, MCTDH offers also the possibility to study excited
vibrational states which are more difficult to describe within
the POITSE scheme. Such results will be presented in future
work.

Comparing the theoretical tunneling splitting obtained
for the Yagi et al.15 PES with the experimental value of
21.6 cm21,45 the theoretical splitting is found to be about
20% too high. Given that the potential barrier of this PES is
known to be too small, this difference is hardly surprising.
Still given an error in the barrier height of about 0.6 kcal/
mol, this difference seems rather small.

TABLE I. Representation of the MCTDH wavefunction.n is the number of
single particle function, andN is the size of the underlying time-independent
basis set.

coord. n N coord. n N

Q̃1
1 12 Q̃11

1 12

Q̃2
1 12 Q̃12

1 12

Q̃3
1 12 Q̃13

2 13

Q̃4
3 16 Q̃14

2 13

Q̃5
3 16 Q̃15

1 18

Q̃6
1 12 Q̃16

2 13

Q̃7
1 12 Q̃17

3 24

Q̃8
1 12 Q̃18

1 16

Q̃9
1 12 Q̃19

3 27

Q̃10
4 21 Q̃20

3 32

Q̃21
6 48
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The present calculation provides an important bench-
mark to be used for comparison with results from approxi-
mate dynamical methods. Such approximate methods might
have a wider range of applicability by, e.g., allowing the use
of on the fly techniques. As an example of such a compari-
son, the accurate tunneling splitting of 25.760.3 cm21 ob-
tained in the present work can be compared to the value of
30.7 cm21 computed by Mil8nikov et al.17 using the instan-
ton approach. The instanton approach overestimates the tun-
neling splitting by about 20%. Given the simplicity of the
instanton approach compared to rigorous quantum dynamics
calculations, this should be considered as a rather good
agreement. Thus, for the first time, the present work enables
an unbiased evaluation of the accuracy of the instanton ap-
proach for a complex and realistic PES.
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