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ABSTRACT
We present a formalism for performance analyses of adaptive optics systems that use a poly-
chromatic laser guide star to measure the tilt of atmospherically distorted wavefronts. This
formalism can be applied to feasibility and design studies of polychromatic laser guide star
tip-tilt systems that are used to make the adaptive optics system of a telescope independent of
natural guide stars. Using a few simplifying assumptions, the results are presented in analytical
form such that a range of system parameters can be studied easily. Directions for the use of
more detailed models necessitating numerical calculations are also presented in case more
in-depth studies of certain system aspects are desired. Along with the theoretical development,
we also present examples of possible solutions of the planned ELP-OA system as well as of
an implementation of polychromatic laser guide star systems at large astronomical telescopes.

Key words: atmospheric effects – instrumentation: adaptive optics – instrumentation: high
angular resolution.

1 I N T RO D U C T I O N

Over the last decade, many of the large astronomical telescope fa-
cilities have begun to implement natural guide star (NGS) adaptive
optics (AO) systems and several such systems are now working
routinely (see, for example, Bonaccini et al. 1997; Rigaut et al.
1998; Glindemann et al. 2000; Troy et al. 2000; Wizinowich et al.
2000). In theory, the use of AO at large, ground-based telescopes per-
mits diffraction-limited imaging at near-infrared and visible wave-
lengths. The down side of NGS AO, however, is the generally low
sky coverage owing to the need for a bright reference star (Le Louarn
et al. 1998).

The solution most commonly proposed for the sky-coverage prob-
lem is the use of a laser guide star (LGS) as a reference source (Foy
& Labeyrie 1985). While a lot of progress has been made in LGS AO
over the last few years, the implementation of LGSs at astronomical
sites is still in its initial stages, with only two astronomical sites,
Calar Alto (Davies et al. 2000) and Lick (Olivier et al. 1999), ever
having had a permanently working system (the Calar Alto LGS has
recently been decommissioned). The installation of LGS facilities
at some of the large telescopes is progressing (for example at the
Keck observatory, where the LGS AO system was recently tested
on the sky for the first time) but are still far from being ready for
routine use. Besides being complicated from a technical point of
view, there are several fundamental problems with LGSs. Here, we
only mention the two most severe of these problems: the indeter-
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mination problem of the tilt (hereafter simply referred to as the ‘tilt
problem’) and the cone effect.

The tilt problem is caused by the inverse return property of light,
which makes it impossible to measure the overall wavefront tilt with
a single on-axis monochromatic LGS (Pilkington 1987; Séchaud
et al. 1988). A number of different solutions to the tilt problem have
been proposed and some of them have been pursued experimentally
(Esposito et al. 2000; Foy et al. 2000b; Belenkii et al. 1999; Belenkii
2000). In this paper, we examine in detail the use of a polychromatic
laser guide star (PLGS) as a possibility to solve the tilt problem (Foy
et al. 1995). A PLGS system consists of a laser emission system that
excites the mesospheric sodium in such a way that light at different
wavelengths is returned. The wavefront tilt is determined from the
measurable difference of the tilts at two of the returned wavelengths.

The second fundamental restriction of LGS AO, the cone effect,
is produced by the finite height of the LGS, causing the light from
the LGS to traverse a different portion of turbulence than the light
coming from an astronomical object. The result is an imperfect
wavefront correction (Foy & Labeyrie 1985; Tallon & Foy 1990;
Tallon, Foy & Vernin 1992; Ellerbroek 1994). The solution proposed
for the cone effect is multiconjugate adaptive optics (MCAO) in
combination with turbulence tomography (Beckers 1988; Tallon &
Foy 1990). The project presented in this paper is a study of the
applicability of the PLGS concept to large telescopes for which
MCAO is generally considered indispensable. When we are talking
about PLGS systems at large telescopes, we therefore assume that
the PLGS will be part of an MCAO system. There will then be no
significant cone effect.
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Performance analysis of laser guide stars 911

The work presented here is done within the framework of the
ELP-OA (Étoile Laser Polychromatique et Optique Adaptative)
project. The overall goal of ELP-OA is the experimental verification
that the measurement of the wavefront tilt using a PLGS without any
NGSs is possible at an astronomical telescope facility. ELP-OA con-
sists of two phases, a feasibility phase (Phase 1) and an implementa-
tion phase (Phase 2). Phase 1 was officially concluded in December
of 1999 and included theoretical treatments of the problem (general
theoretical models as well as sodium excitation codes) and several
feasibility experiments: two photon return flux experiments from
PLGSs in the mesosphere (PASS-1 and PASS-2), an experiment
measuring the polychromatic tilt difference along horizontal paths
with a laser (MaTilD), a telescope vibration experiment using a pen-
dular seismometer, a number of laser experiments and a laboratory
sodium excitation experiment. Detailed descriptions of ELP-OA and
its feasibility experiments are given in Foy et al. (2000a), Schöck
et al. (1999), Vaillant, Thiébaut & Tallon (2000), and Tokovinin
(2000). Sodium excitation codes are described by Bellanger
(2002).

In Phase 2 of ELP-OA, we plan to build a prototype astronom-
ical AO system that measures the wavefront tilt without using an
NGS. This second phase has two main objectives. First, we want
to show that tilt measurements with a PLGS are generally possi-
ble. Secondly, ELP-OA should provide sufficient results to serve
as a feasibility study for the implementation of a PLGS system at
large astronomical telescopes. A third goal, the production of tilt-
corrected long-exposure astronomical images without the use of an
NGS, is subject to funding at this time.

In this paper we present a formalism that can be used to predict the
performance of a PLGS AO system. This formalism was developed
as part of the design studies of the ELP-OA system. In Section 2,
we set up the emission system and derive the intensity of the laser
light in the mesosphere. We describe how we use the results from
the feasibility phase of ELP-OA to deduct the return flux at the
reception telescope in Section 3. This flux, assumed to be coming
from the diffraction-limited core of the laser spot in the mesosphere,
is used in Section 4 to derive the optimal integration time and Strehl
ratio of the tilt correction system. In subsections of Sections 2–4 we
apply the theory to possible Phase-2 ELP-OA setups. The formalism
is then also applied to examples of the implementation of a PLGS
tilt sensing system at large telescopes at good astronomical sites
(Section 5). The paper is concluded in Section 6.

2 T H E E M I S S I O N S Y S T E M

We restrict ourselves to the case of the two-colour excitation of
mesospheric sodium with lasers of 569 and 589 nm wavelength,
thus exciting the sodium atoms into the 4D5/2 state. This excita-
tion was determined by Foy et al. (1995) to be the most promising
scenario for tilt correction with a PLGS. The radiative cascade re-
sulting from the return of the atom into its ground state produces
photons with wavelengths between 330 and 2338 nm. In spite of
our restriction to this particular case, the equations presented in this
paper can nevertheless also be used for different two-colour exci-
tation processes (Foy et al. 1995; Biegert, Diels & Milonni 2000;
Froc et al. 2000).

The laser wavelengths used here, 569 and 589 nm, are sufficiently
close to each other that we can work with the average wavelength
λe = 579 nm. The error introduced by this approximation is negligi-
ble with respect to the uncertainties in other parts of the calculations.

Throughout both phases of ELP-OA we work with pulsed lasers
with pulse lengths, τp, of the order of tens of nanoseconds and

pulse repetition rates, frep, of the order of tens of kilohertz. We
assume that each laser produces light of average power P at the
laser output. The instantaneous laser power in the mesosphere is
then r579η579 P/δ per laser colour, where r579 is the reflectivity
of the emission optics system at 579 nm and η579 is the atmospheric
transmission coefficient at 579 nm. δ = τp frep is the duty cycle of
the laser.

We assume that a telescope of diameter De is used to project
the two laser beams into the mesosphere. No assumption is made
a priori as to whether this telescope is the same as the telescope
used for the tilt measurements and astronomical observations. The
only assumption made concerning the relation of the emission and
reception telescopes is that they are separated by a sufficiently small
distance that projection effects can be ignored.

We will see in Section 4 that it is advantageous to produce the
smallest possible laser spot in the mesosphere. For the cases con-
sidered in this paper, we assume emission telescopes of 25–50 cm
diameter. These diameters are generally a few times larger than
Fried’s parameter, r0, at the sites of interest. In the examples treated
in this paper we therefore assume that we use of a low-order AO sys-
tem for emission in order to reduce the mesospheric spot size. In the
following, we nevertheless also introduce the equations necessary
for the case of emitting without an AO system.

We assume that the spot in the mesosphere consists of a
diffraction-limited core and a seeing-limited halo. A fraction
Ser579η579 P/δ of the laser power, where Se is the Strehl ratio
achieved by the emission system, is in the core, whereas the rest,
(1 − Se)r579η579 P/δ, is in the halo. Using the equivalent widths of
the spot as the diameters of the core and the halo, dc and dh, in the
mesosphere we can write

dc/h = 4

π

λe

x cos(θ )
h, (1)

where h ≈ 90 km is the altitude of the mesospheric sodium layer and
θ is the zenith angle. x equals the aperture diameter of the emission
telescope, De, in the case of the diffraction-limited core, whereas it
equals r0 for the seeing-limited halo.

The intensity in the mesosphere can thus be approximated as
consisting of two parts, a coherent core with average intensity

Ic = π

4

r579η579 cos2(θ )D2
e

λ2
eh2

Se P

δ
(2)

and a halo of intensity

Ih = π

4

r579η579 cos2(θ )r 2
0

λ2
eh2

(1 − Se)P

δ
. (3)

In reality, the intensities in the core and halo of the laser spot
are, of course, not spatially constant, but are different at every point
in the mesosphere. In the case of perfect wavefront correction by
the emission system, the intensity distribution is an Airy disc. In
the case of no or partial AO correction, the intensity distribution is
irregular and, additionally, not constant in time. We will come back
to this point in Section 3.

We also point out that the above application of the Strehl ratio
to the calculation of the intensities is not strictly correct and the
coherent energy, C E , should be used instead. However, because
we are dealing with cases of large Strehl ratios, C E ≈ Se is a valid
approximation.

2.1 Laser intensity expected for ELP-OA

Phase 2 of ELP-OA will take place at the Observatoire de Haute
Provence (OHP) in southern France using the 1.52-m telescope and
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912 M. Schöck et al.

Table 1. Parameters of the systems investigated in this paper. All atmospheric parameters are given
for a wavelength of 0.5 µm.

ELP-OA I ELP-OA II ELP-OA III 8-m I 8-m II

P (W) 25 25 25 25 25
Polarization Linear Left circular Modeless Left circular Modeless
frep (kHz) 15 30 30 30 30
τp (ns) 50 80 80 80 80
λe (nm) 579 579 579 579 579
De (m) 0.25 0.25 0.25 0.5 0.5
r0 (cm) 5–11 5–11 5–11 15–25 15–25
De/r0 2–5 2–5 2–5 2–3 2–3
fTZ (Hz) 4.5–9.5 4.5–9.5 4.5–9.5 1.9–2.9 1.9–2.9
r579 0.9 0.9 0.9 0.9 0.9
η579 0.8 0.8 0.8 1 1
θ 0 0 0 0 0
�P (s−1 m−2) ≈5 × 104 ≈2.2 × 105 ≈2.2 × 106 ≈7.0 × 104 ≈7.0 × 105

Dr (m) 1.52 1.52 1.52 8.0 8.0
(n − 1)/�n 25 18 18 18 18
η 0.08 0.08 0.08 0.13 0.13
ti,max (ms) 92 35 12–19 42–56 20–26

an adaptive optics system that was developed at the Observatoire
de la Côte d’Azur (Verinaud, Blazit & Mourard 2000). The origi-
nal, non-optimized ELP-OA system, as planned before the start of
Phase 1, provides for the use of CuHBr lasers (Coutance, Naylor
& Pique 1995; Coutance & Pique 1998) with powers P = 25 W
per emission wavelength, pulse repetition rate frep ≈ 15 kHz and
pulse length τp = 50 ns. We assume here that the laser beams are
emitted through a 0.25-m aperture with a low-order AO system, al-
though it is not yet clear whether ELP-OA will indeed be realized
in this way. All parameters of this system, hereafter referred to as
‘ELP-OA I’, as well as of the other systems investigated in this paper
are summarized in Table 1.

The OHP is located at the relatively low altitude of 650 m and has
decent seeing conditions for a low-altitude site. It is nevertheless not
comparable to high-altitude sites. Values of r0 range from approx-
imately 5 cm under bad seeing conditions to 11 cm in very good
seeing conditions, thus resulting in De/r0 values of between 2 and 5.
For such values of De/r0, even an emission AO system correcting
only for the three second-order Zernike terms can produce long-
exposure Strehl ratios of between 0.2 (in bad seeing conditions) and
close to unity (in good seeing conditions; Roddier (1993)). We will
see in Sections 4.1 and 5 that exposure times of the reception system
are of the order of tens of milliseconds. We are therefore dealing with
cases intermediate between long and short exposures and the Strehl
ratio of the ELP-OA emission system will be significantly closer to
unity than the long-exposure values given by Roddier. Thus, even
correcting only the defocus and third-order astigmatism terms, we
arrive at a basically diffraction-limited laser spot under good and
medium seeing conditions. If we correct seven Zernike terms (the
first nine terms minus tip and tilt), we obtain a diffraction-limited
laser spot under most if not all seeing conditions. In all examples
in this paper we will therefore assume that the emission system
produces a diffraction-limited laser spot in the mesosphere and that
Se = 1 in equation (2).

Because only a small-wavelength range needs to be covered by
the emission optics (569–589 nm), special coatings can be used that
have a very high reflectivity. Even with the possibly large number of
reflections necessary for an emission AO system, we will therefore
have a high overall reflectivity of the emission system. Here, we

assume r579 = 0.9. The atmospheric transmission at 579 nm at a
low-altitude site is η579 ≈ 0.8 (Allen 1976). We restrict ourselves
to the case of emission towards the zenith. We thus arrive at an
intensity in the mesosphere of Ic = 4.3 × 105 W m−2 in a spot of
approximately 25 cm diameter.

We compare this intensity to the intensity of the PASS-1 ex-
periment, where we had Pmax = 175 W, frep = 4.3 or 12.9 kHz,
τp = 50 ns, r579 ≈ 0.8 and η579 ≈ 0.9. The size of the emission beam
was approximately 4 × 8 cm2 and r0 was measured to be of the or-
der of 6 cm (Foy et al. 2000b). Using De ≈ r0 ≈ 6 cm and equation
(1) (multiplied by

√
2 to account for the combined effects of at-

mospheric and emission optics diffraction), yields a spot diameter
of approximately 1.5 m and laser intensities of 1.0 × 105 W m−2

for frep = 12.9 kHz and 3.1 × 105 W m−2 for frep = 4.3 kHz. In the
next section, we use the fact that the laser intensities of PASS-1
and ELP-OA are similar to estimate the expected photon return flux
from the PLGS for ELP-OA.

3 P H OTO N R E T U R N F L U X

Obtaining the PLGS photon return flux, �P, from the laser intensity
in the mesosphere is not a trivial problem and cannot be put into
simple equations. Detailed treatments, both theoretical and exper-
imental, of the return flux from monochromatic sodium LGSs are
available in the literature (for example in Morris 1994; Avicola et
al. 1994; Fugate et al. 1994; Milonni, Fugate & Telle 1998). How-
ever, no such information was available for the PLGS until recently
and was one of the major objectives of Phase 1 of ELP-OA. We
now have experimental results available from the two PASS exper-
iments (Foy et al. 2000a,b) and from theoretical simulations (Froc
et al. 2000; Bellanger 2002). Experimental and theoretical results
are consistent with each other and both can theoretically be used to
obtain the return flux expected from the PLGS.

In this paper we use the results obtained from our experimental
data. In that case, we do not have to take the non-constant spatial
intensity distribution in the mesosphere into account if we assume
that the shape of the intensity distributions as well as their temporal
variations are comparable between the PASS experiments and the
setup investigated here. At equal instantaneous laser intensity in the
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Performance analysis of laser guide stars 913

Table 2. Saturation intensities for sodium under mesospheric conditions. λe

is the laser wavelength, Isat,m is the saturation intensity of sodium per ho-
mogeneous linewidth (mode), �νL is the total linewidth including hyperfine
structure splitting and Doppler broadening of sodium under mesospheric
conditions, �νH is the homogeneous linewidth of the sodium transitions,
NM is the total number of modes and Isat is the overall saturation intensity
of mesospheric sodium. See Foy et al. (1995) for details.

Transition 3S–3P3/2 3P3/2–4D5/2

λe (nm) 589 569
Isat,m (W m−2) 185 475
�νL (GHz) ≈3 ≈1
�νH (MHz) 10 16
NM = �νL/�νH 300 83
Isat = NM Isat,m (W m−2) 5.6 × 104 3.7 × 104

mesosphere, the return flux will then simply scale with the laser spot
size, the pulse repetition rate and the pulse length (see below). If,
on the other hand, theoretical models were used, simulations of the
intensities at each point in the mesosphere and the respective return
fluxes were necessary. While such a treatment might be desirable in
the final design phase of a PLGS AO system, it is well beyond the
intention of this paper.

3.1 Expected photon return flux for ELP-OA

As we have shown in Section 2.1, the laser intensity in the meso-
sphere during the PASS-1 experiment for a pulse repetition rate of
4.3 kHz, I PASS-1

c , is slightly smaller than the expected intensity for
ELP-OA, I ELP−OA

c , while both intensities are much larger than the
saturation intensity of mesospheric sodium (see Table 2). In the sat-
urated regime, the return flux from the PLGS will vary only slowly
with Ic. We can therefore use the return flux found during PASS-1
at 4.3 kHz, �PASS-1

P = 5 × 105 photon s−2 m−2 (see fig. 5 in Foy
et al. 2000b) for ELP-OA with little error. Note that we have used
the maximum of the three values found for the relevant PASS-1
configuration because I ELP-OA

c is greater than I PASS-1
c .

�PASS-1
P is, however, not equal to the return flux expected for

ELP-OA, �ELP-OA
P , because there exist differences in the repetition

rate, mesospheric spot size and laser frequency modulation between
PASS-1 and ELP-OA. Because the instantaneous laser intensities in
the mesosphere are approximately equal for PASS-1 and ELP-OA,
the dependence on the spot size and repetition rate is a simple scaling
given by �ELP-OA

P / �PASS-1
P = ( f ELP-OA

rep / f PASS-1
rep ) (AELP-OA/APASS-1),

where A denotes the respective laser spot areas in the mesosphere.
The dependence of the return flux on frequency modulation is

more complicated than that. During PASS-1, in order to excite sev-
eral velocity classes of the mesospheric sodium, the spectral lines of
the single-mode lasers were phase modulated with two sine waves,
one at 125 MHz and another at 300 MHz (Friedman 1999, private
communication). PASS-2 and laboratory experiments have shown
that this return flux cannot be increased by more than a factor of 2 by
changing the phase modulation. In fact, the entire Doppler spectrum
of mesospheric sodium cannot be continuously covered by a phase
modulated nanosecond laser because the frequency of the modu-
lation is limited on one hand by the inverse of the pulse duration
(the phase must oscillate at least several times during the pulse) and
on the other hand by the Doppler width (larger phase modulation
frequencies generate spectral modes outside the resonance transi-
tion). The situation in the second phase of ELP-OA will therefore
be comparable to PASS-1. We thus arrive at an expected return flux

of approximately 5 × 104 photon s−1 m−2 for the ELP-OA I config-
uration.

Even with phase modulation, the saturation of the sodium tran-
sitions is still a huge limitation. Physically, saturation means that
the sodium vapour becomes more transparent. One possibility with
which we have experimented is the use of a ‘modeless laser’ (Ewart
1985). Theoretical and experimental simulations (Pique & Soden
2002) have shown that a return flux increase of up to a factor of 10
might be obtained with a ‘modeless laser’. In brief, the saturation
parameter Sm = Ic,m/Isat,m per homogeneous linewidth is of the or-
der of several thousands for a single-mode laser, but it can be smaller
than 10 for a modeless laser, which is capable of exciting about 300
velocity classes of the 3-GHz linewidth of the 589-nm transition.
We believe that the development of an adequate modeless sodium
laser is fundamental for the success of ELP-OA and would also be
useful for monochromatic laser guide stars. Such a development is
in progress at the Laboratoire de Spectrométrie Physique.

4 T H E R E C E P T I O N S Y S T E M

For the reception system we consider a telescope of diameter Dr. The
tilt correction is performed using the diffraction-limited coherent
core of the PLGS in the mesosphere. The correction of modes of
the wavefront with orders higher than the tilt is assumed to be done
by a separate AO system, using a ‘standard’ monochromatic LGS
as a reference source. In a practical application, it will certainly be
most efficient to use the D2 component of the PLGS to provide this
reference source. Thus, the assumed system works like a standard
LGS AO system with a separate tip-tilt and higher-order system,
with the only difference from existing systems being that the tilt is
measured with a PLGS instead of an NGS.

The goal of this paper is to estimate the expected performance of
the tilt correction system. We thus only account for errors caused
by the wavefront tilt or the tilt correction system. If no other errors
are present, the tilt Strehl ratio, Stilt, of an image depends on the
variance of the tilt measurement, σ 2

tilt, as (Sandler et al. 1994)

Stilt = 1

1 + 1
2 π2σ 2

tilt(Dr/λc)
2 , (4)

where λc is the wavelength at which the wavefront is corrected.
Equation (4) is obtained by using a Gaussian with the same equiv-
alent width as the theoretical, unperturbed laser spot (Airy disc) in
the mesosphere. The tilt and thus σ 2

tilt are understood to be in angular
units. We point out that λc is generally not identical to any of the
two wavelengths used for the tilt determination.

The error of the tilt correction is given by

σ 2
tilt = σ 2

ph + σ 2
bw + σ 2

instr + σ 2
cone, (5)

where the dominant error sources are the tilt measurement error
(photon noise), σ 2

ph, and the tilt bandwidth error caused by the finite
integration time, σ 2

bw. These two errors are treated in detail later in
this section.

σ 2
instr in equation (5) describes the sum of all instrumental errors.

These errors consist primarily of the readout noise and the dark
current of the detector. We will see later that, because of the nature
of the PLGS tilt determination process, we are dealing with exposure
times of at least tens of milliseconds and that we are working in a
high-photon regime. Thus we assume here that, when working with
a good detector, we can neglect both readout noise and dark current.
(We note that the centre-of-gravity method of the tilt determination
used in this section has a higher precision if a larger part of the
detector, that is, more pixels are used. The readout noise, however,
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914 M. Schöck et al.

also increases with the number of pixels. It is thus clear that, for a
specific system, a compromise between these two competing effects
has to be found.) We also make the assumption that no instrumental
biases exist. Thus, in this paper we neglect σ 2

instr with respect to the
dominant error sources.

The fourth term in equation (5), σ 2
cone, is the error caused by the tilt

cone effect. For ELP-OA, using a 1.52-m telescope, the cone effect is
small and can be neglected. For an 8-m-class telescope, a single laser
guide star produces non-acceptable wavefront distortions owing to
the cone effect even if the tilt is measured with an NGS. We therefore
assume that the PLGS will be implemented at a large telescope
only in combination with an MCAO system. There will then be no
significant contribution of σ 2

cone to the error budget.
The last error is caused by the seeing-limited halo of the laser

spot in the mesosphere. As described in Section 2, we only deal
with systems in this paper that produce a very high Strehl ratio
for the emission system. We can therefore assume that virtually all
photons come from the core of the mesospheric laser spot and that
we can neglect the halo. We will nevertheless set up the equations
for taking it into account in Appendix A, in case our formalism is
to be applied to an emission system with D/r0 	 1 and/or without
an emission AO system.

Using the assumptions made above, the total tilt error is now given
by σ 2

tilt = σ 2
ph + σ 2

bw. Foy et al. (1995) have shown that

σ 2
ph = σ 2

diff tilt

(
n − 1

�n

)2

, (6)

where σ 2
diff tilt is the variance of the differential tilt measurement, n is

the refractive index of air and �n is the difference in n between the
two colours of the PLGS. [(n − 1)/�n takes on values of 18 and 25
for the cases considered in this paper; see Table 1.] The differential
tilt is defined as the difference of the tilts at two different wavelengths
caused by the chromatic properties of the refractive index of air. If
we determine the tilt at each wavelength from the centre of gravity
of the PLGS images, we obtain

σ 2
diff tilt = σ 2

spot(λ1)

N (λ1)
+ σ 2

spot(λ2)

N (λ2)
, (7)

where σspot(λ) is the angular radius (defined as the standard deviation
of a Gaussian with the same equivalent width as the respective Airy
disc) of the laser spot on the detector and N (λ) is the number of
photons returned from the PLGS. λ1 and λ2 are the two wavelengths
used for the tilt determination.

For the systems considered in this paper, we always have Dr 	
De. Thus, the spot in the mesosphere will always be resolved by the
reception telescope. σspot is then given by

σspot =
√

2

π

λe

De
(8)

and is independent of the wavelength of the returned light.
Ignoring the central obscuration,

N (λ) = η(λ)�P(λ)π(Dr/2)2ti, (9)

where η(λ) is the combined transmissivity of the atmosphere and the
instrument and �P(λ) is, as before, the return flux from the PLGS
(before taking the atmospheric transmissivity into account), both at
wavelength λ. ti is the integration time. Owing to the wavelength
dependence of the atmospheric transmission and the nature of the
two-colour sodium excitation process used here (Foy et al. 1995),
the number at photons at 330 nm and at the D1 line (589.6 nm),
which are the two lines most easily observed from a technical point
of view, arriving at the reception telescope are essentially equal.

The two terms in equation (7) are therefore approximately equal
and we can work with twice the term obtained for λ1 = 330 nm,
which is the wavelength that we observed most carefully during the
PASS experiments. For simplicity, we will therefore stop writing
the explicit wavelength dependences in equations (7) and (9) and
assume that η and �P are the transmissivity and the return flux at
330 nm. Combining all of this we obtain

σ 2
ph =

(
n − 1

�n

)2
16

π3

λ2
e

η�P D2
e D2

r ti
. (10)

The next step is the calculation of the variance of the one-
dimensional jitter of the Z-tilt, σ 2

bw. (We need to use the Z-tilt for
our calculation as the higher-order Zernike terms are assumed to
be corrected by another AO system. Because the two systems have
to be independent, the modes corrected by the systems need to be
mutually orthogonal.) If �Z is the one-dimensional power spectrum
and E is the error transfer function defined in equation (18) below,
σ 2

bw is given by

σ 2
bw =

∫ ∞

0

�Z( f )|E( f )|2 d f . (11)

We use the expression given by Tyler (1994) for the power spectrum,
but with the simplifying assumption of a constant wind speed, V (h),
at all altitudes, h.1 With the definition v = V/Dr one finds

�Z( f ) = 1.85

(
λc

Dr

)2

f 2
TZv5/3 f −14/3 FZ( f/v) (12)

with

FZ( f/v) =
∫ 1

0

dx
x11/3

√
1 − x2

J 2
2

(
π

x

f

v

)
. (13)

Using again the simplifying assumption of a constant wind speed
at all altitudes, the atmospheric tilt coherence frequency, fTZ (anal-
ogous to the Greenwood frequency but only considering the tilt
component of the distorted wavefront) in equation (12) is given by

fTZ = 0.368D−1/6
r λ−1

c V sec1/2 θ

[∫
dh C2

n (h)

]1/2

, (14)

where C2
n (h) is the turbulence structure constant as a function of

altitude. With the definition

r0 = 0.185

[
λ−2

c sec(θ )

∫
dh C2

n (h)

]−3/5

, (15)

the atmospheric tilt coherence frequency can then be written as

fTZ = 0.0902

(
r0

Dr

)1/6 (
V

r0

)
. (16)

The control loop of the system investigated here consists of an
integration of the tilt over an integration time ti and an immediate
correction with a tip/tilt mirror. Immediate correction means that
all the delays caused by the readout of the charge-coupled device
(CCD), the calculation of the tilt value, and the setting of the mirror
are neglected. This is, in view of the relatively large integration
times of the order of tens of milliseconds (see Section 4.1), certainly

1It is fairly common to use the approximate tilt power spectrum; that is, the
power spectrum consisting of the high- and low-frequency limit asymptotes,
to perform calculations like this because the integrals become much simpler
by doing this. However, this introduces errors of more than 40 per cent into
the calculation of σ 2

bw. The use of the exact power spectrum is therefore
necessary in this calculation.
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Performance analysis of laser guide stars 915

a justified assumption. The common open-loop transfer function H
used for this type of control loop (Parenti & Sasiela 1994) is the
product of a factor describing the averaging of the signal during
the integration time and an integrator describing the summation of
the signals on the tip/tilt mirror,

H ( f ) = g
1 − e−i2πf ti

(i2π f ti)2
, (17)

where g is a gain factor. With standard techniques it can be shown
that, with a gain of g = 1, the closed control loop is stable. (Note
that this transfer function describes exactly a control loop where, in
the limit n → ∞ and ti → 0, the signal is the sliding average over
integration times nti and the gain is 1/n. We have performed numer-
ical simulations to confirm that this description is also sufficiently
accurate for the basic control loop with n = 1 that is outlined above.)
The error transfer function used in equation (11) is then given by
(Parenti & Sasiela 1994)

|E( f )|2 =
∣∣∣∣ 1

1 + H

∣∣∣∣
= (2π f ti)

2

4 sin2(π f ti)
[
1/(2π f ti)

2 − 1
] + (2π f ti)

2
. (18)

In the limit of small products f ti, that is, in the high-bandwidth
limit, the error transfer function can be approximated by

|Ehigh( f )|2 = (2π f ti)
2 =

(
f

fc

)2

, (19)

where fc = 1/(2πti) is defined as the frequency where this function
cuts the 0 dB line. Using Ehigh, Tyler (1994) has shown that σbw,high

is given by

σ 2
bw,high = ( fTZ/ fc)

2(λc/Dr)
2. (20)

We now combine equations (4), (10) and (20) and find the overall
tilt Strehl ratio of the system,

Stilt =
[

1 + π2

2

(
σ 2

ph + σ 2
bw

)(
Dr

λc

)2]−1

=
[

1 +
(

n − 1

�n

)2
8

π

λ2
e

η�P D2
e λ

2
c ti

+ 2π4 f 2
TZt2

i

]−1

. (21)

We simplify equation (21) by introducing the constants

a =
(

n − 1

�n

)2
8

π

λ2
e

η�P D2
e λ

2
c

b = 2π4 f 2
TZ

for convenience for the following calculations. We then have

Stilt = 1

1 + a/ti + bt2
i

, (22)

in which we notice the expected competing effects of measurement
and bandwidth errors. The final step is to determine the integration
time, ti,max, for which a maximum Stilt is obtained. The Strehl ratio
is maximum when σ 2

tilt in equation (4) takes on its minimum value
and we easily show that

ti,max =
(

a

2b

)1/3

= 0.187

[(
n − 1

�n

)2
λ2

e

η�P D2
e λ

2
c f 2

TZ

]1/3

. (23)

Thus, we arrive at a simple analytical solution for determining the
maximum Strehl ratio of the tilt correction system in the high-
bandwidth limit.

Figure 1. Left: normalized bandwidth error as a function of the inte-
gration time, ti, calculated numerically from the power spectrum in the
high-bandwidth limit (σ 2

bw,n,high, dotted line) and using the error trans-
fer function E( f ) for ratios V/Dr = 6.12 s−1 (σ 2

bw,n,1, solid line) and
V/Dr = 12.24 s−1 (σ 2

bw,n,2, dashed line), right: ratios σ 2
bw,n,1/σ

2
bw,n,high

(solid line) and σ 2
bw,n,2/σ

2
bw,n,high (dashed line).

Equations (20)–(23) are, however, not applicable to all cases
treated in this paper because the system bandwidth is not signif-
icantly higher than the tilt coherence time for all of them. We have
therefore also evaluated the integral in equation (11) numerically
using the power spectrum given by equation (12) and the error trans-
fer function given by equation (18) with gain g = 1. The results are
shown in Fig. 1. The plot on the left shows the normalized functions

σ 2
bw,n = σ 2

bw

(
Dr

λc

)2 (
1

fTZ

)2

. (24)

The dotted line is the high-bandwidth limit given by equation (20)
which is proportional to (2πti)2 and therefore shows up as a straight
line in the figure. The two other lines are the results of the numer-
ical integration of σ 2

bw,n with ratios V/Dr = 9.3/(1.52 s) = 6.12 s−1

(solid line) and V/Dr = 12.24 s−1 (dashed line) as functions of the
integration time ti. The first value of V/Dr was chosen because it
is the value used in most of the examples in Section 4.1. The sec-
ond value was chosen to show how changing V/Dr by a factor of 2
affects σ 2

bw,n.
The plots on the right-hand side of Fig. 1 show the ratios of the

exact bandwidth error to the bandwidth errors in the high-bandwidth
limit. The integration time for which the ratios attain a given value
is roughly inversely proportional to the ratio V/Dr. We can see
that the approximation only works well for integration times up
to approximately 50 ms for the values of D/r0 of interest in this
paper. If we cannot make the approximations of the high-bandwidth
limit, no analytical solution for the maximum Strehl ratio exists.
The easiest way of dealing with this case is to modify equation (22)
to

Stilt = 1

1 + a/ti + c(ti)bt2
i

, (25)

where c(ti) is a correction factor that is equal to the ratio of the
real σ 2

bw to the high-bandwidth case, σ 2
bw,high. It is therefore the same

quantity that is plotted on the right-hand side of Fig. 1. Equation (25)
is used for the few cases in Section 4.1 for which the high-bandwidth
approximation turns out not to be sufficiently accurate.

We conclude this section with a few physical interpretations of
equations (21) and (23). We first point out that, because of the pro-
portionality fT ∝ λ−1

c in equation (14), ti,max does not depend on
the wavelength of observation. This independence originates from
the fact that the quantity of concern is the angle of arrival of the
wavefront, which is independent of the correction wavelength, λc.
Nevertheless, and as expected, both error terms in equation (21)
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916 M. Schöck et al.

depend on λc in such a way that a higher Strehl ratio is obtained at
longer wavelengths.

We also note that the tilt measurement error, σ 2
ph, does not depend

on Dr. While more photons are collected with a larger reception
telescope, the precision needed in the differential tilt determination
also increases with Dr. This result is in accordance with and ex-
plained by Foy et al. (1995). A slight dependence on Dr, favouring
large telescopes, enters equation (21) through fTZ.

At constant laser intensity in the mesosphere, the return flux, �P,
is directly proportional to the area of the laser spot in the mesosphere,
which is proportional to D−2

e . Thus, equation (23) shows that, for a
constant intensity, Stilt does not depend on the size of the laser spot
in the mesosphere. However, if the spot size is decreased at constant
laser power, the intensity in the spot and with it the return flux per
spot area (or the ‘brightness’ of the PLGS) increases. This increase
in return flux is linear with intensity (or, in other words, proportional
to D2

e ) before saturation of the sodium transitions and approximately
proportional to the square root of the laser intensity (proportional to
De) for intensities higher than saturation. Thus, the Strehl ratio of
the tilt measurement will increase with decreasing laser spot size. As
already mentioned in Section 2, it is therefore desirable to produce
the smallest possible laser spot in the mesosphere, favouring a large
emission telescope with an AO system.

In summary, we have shown that the performance of a tilt correc-
tion system with a PLGS improves with increasing diameter of both
the emission and the reception telescopes and that an AO system for
the emission telescope is desirable. (It is clear, that a compromise
between increased performance on one hand and system cost and
saturation effects on the other hand needs to be found.) It should
be obvious that increasing the return flux from the PLGS, for ex-
ample by increasing the laser power or duty cycle, and increasing
the magnitude of the dispersion effect by using a larger difference
between the wavelengths of the two lasers also improve the per-
formance. These two effects are represented in equation (21) by the
dependence of Stilt on �P and �n. Finally, and as always, the quality
of the atmospheric conditions of the site, that is, the magnitude of
the tilt coherence frequency, fTZ, has a large influence on the Strehl
ratio achieved by the system.

4.1 Performance estimates of possible ELP-OA systems

In order to calculate the expected performance of the proposed ELP-
OA system, we first need to obtain an estimate of the tilt coherence
frequency fTZ. Tyler (1994) uses the HV5/7 Hufnagel–Valley tur-
bulence profile corresponding to r0 = 5 cm (Hufnagel 1974), and
a wind profile from Air Force Cambridge Research Laboratories
(1965). For λc = 0.5 µm, Dr = 3.5 m, r0 = 5 cm and θ = 0, he finds
fTG = 7.44 Hz for the G-tilt, which translates to fTZ = 8.27 Hz for
the Z-tilt under the same conditions. In our effort to keep the treat-
ment in this paper analytical, we apply this fTZ to a turbulence profile
with a constant wind velocity profile (as we have done before) and
scale fTZ with Dr and r0 according to equation (16). Scaling fTZ

with the aperture diameter of the reception telescope is independent
of the specific turbulence profile and introduces no error. The scal-
ing with r0 depends on the particular wind and turbulence profile.
However, because turbulence has been shown to consist frequently
of only a few (or even just one) strong layers (see, e.g., Vernin &
Mũnoz-Tuñón 1994; Tallon et al. 1992), this assumption will not
usually introduce significant errors into the calculation. As was the
case before, if more accurate results are needed for detailed design
studies, numerical integrations of the turbulence and wind profiles
can be performed. Within the framework of this paper this is, how-

ever, not necessary, as we only attempt to outline the procedure
and to obtain an impression of the general feasibility of the PLGS
concept.

The conditions used by Tyler result in a wind speed V =
vDr = 9.3 m s−1 in equation (16). With Dr = 1.52 m, we then obtain
values for fTZ of between 9.5 and 4.5 Hz for values of r0 ranging
from 5 to 11 cm. It further needs to be noted that these values are
the fTZ values at λc = 0.5 µm and that fTZ scales as λ−1

c . fTZ there-
fore also needs to be multiplied by (0.5 µm)/λc in the following
calculations.

While these values appear surprisingly low, they are in good
agreement with both theoretical predictions and experimental re-
sults found by other authors, for example, Glindemann (1997) for
the 3.5-m telescope at Calar Alto, Close & McCarthy (1994) for the
2.3-m telescope on Kitt Peak, or Dekens et al. (1994) and Chanan
et al. (1996) for the Keck telescopes on Mauna Kea. Care must be
taken, however, because the quoted frequencies do not always re-
fer to exactly the same quantities. Different definitions of the tilt
coherence frequencies appear in the literature and sometimes the
quoted value refers to the ‘break frequency’, that is, the frequency
at which the ‘kink’ in the tilt power spectrum occurs. While all of
these values are of the same order of magnitude, they are not strictly
comparable. Whenever we talk about the tilt coherence frequency
in this paper, we refer to fTZ in the sense of Tyler (1994) as defined
in equations (14) and (16).

If light at 330 and 589.6 nm is used for the tilt measurement,
(n − 1)/�n = 25 (Foy et al. 1995). The transmissivity of the atmo-
sphere at 330 nm is approximately 0.3 at low altitudes (Allen 1976;
Foy et al. 2000b). Following Foy et al. (1995), we use an instru-
ment and detector efficiency of approximately 0.26 (two telescope
mirrors at 0.85, transmission of instrument of 0.6, detector quantum
efficiency 0.6) such that η ≈ 0.08. Having specified the entire tilt
correction system at this point, we now present different aspects of
the system performance.

In Fig. 2, we show the Strehl ratio, Stilt, calculated from equa-
tion (21) as a function of integration time for several astronomical
observation bands and r0 = 10 cm (at 0.5 µm) for the configuration
denoted ‘ELP-OA I’ in Table 1. It is clearly visible that the optimum
integration time, ti,max, is independent of wavelength as we have

Figure 2. Strehl ratio versus integration time for several astronomical ob-
servation bands for the original configuration of ELP-OA (‘ELP-OA I’ in
Table 1) and r0 = 10 cm (at 0.5 µm). The high-bandwidth approximation
was used to calculate these results. The optimal integration time, ti,max, is
92 ms.
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Performance analysis of laser guide stars 917

Figure 3. Plots of the same data as in Fig. 2. In addition, the Strehl ratios
using the exact equations for the bandwidth error are plotted as dotted lines.

shown theoretically in Section 4. The maxima of all curves are at
92 ms as can be verified using equation (23).

One would therefore assume that the maximum attainable Strehl
ratio of the ELP-OA I system is given by the 92-ms value of the
curves. This is, however, not the case, as Fig. 2 has been calcu-
lated using the high-bandwidth approximation, fc = (2πti)−1 � 4 fTZ

(Tyler 1994), which is clearly not the case for this example. We thus
need to calculate the exact Stilt, using equation (25) and the correc-
tion factor, ci(t). The results are shown in Fig. 3 as dotted lines.
For ease of comparison, the results from Fig. 2 are repeated here.
It seems at first peculiar that the exact curves do not display max-
ima but keep increasing with increasing integration time. This is,
however, readily explained using Fig. 1. σ 2

bw does not increase in-
definitely with ti, but converges towards a constant value, which is
simply the tilt variance of uncorrected turbulence. For the ELP-OA
I case, the return flux from the PLGS is so low that the photon noise
variance, σ 2

ph, dominates even for relatively long integration times
and suppressed the occurrence of maxima in the curves in Fig. 3.
The best Strehl ratio is obtained for very large values of ti, when
σ 2

ph approaches zero and σ 2
bw becomes constant. This is equivalent

to not performing any tilt correction at all and the values towards
which the dotted curves tend in Fig. 3 are in good agreement with
the low-bandwidth limit given by Tyler (1994) for the Z-tilt (Tyler’s
equation 90). The ELPOA I configuration is therefore not sufficient
to produce a tilt correction in a long-exposure image. There ex-
ist, however, many possibilities to improve the performance of the
system described above.

Improvements of the PLGS performance with respect to the
ELPOA I case can be achieved with relatively simple means by us-
ing left-circularly polarized laser light [increase of the return flux by
a factor between 1.2 and 1.5 (Jeys et al. 1992)] and by measuring the
differential tilt between wavelengths of 330 nm and 2.3 µm [decreas-
ing (n−1)/�n from 25 to 18]. The inclusion of infrared wavelengths
also means that the measurement error produced by the infrared light
in equation (7) is negligible with respect to the 330-nm light (Foy
et al. 1995). σ 2

ph is therefore reduced by a factor of 2 in equations
(10)–(25). Laser technology has progressed to the point where a laser
with P = 25 W, frep = 30 kHz and τp = 70–80 ns seems feasible
for use in Phase 2 of ELP-OA. With this new configuration, denoted
‘ELP-OA II’ in Table 1, the PLGS system can achieve the Strehl ra-
tios shown in Fig. 4. We can now see that a maximum shows up in the

Figure 4. Strehl ratio versus integration time for several astronomical ob-
servation bands for the configuration denoted ‘ELP-OA II’ in Table 1 and
r0 = 10 cm. Solid and dashed lines, high-bandwidth approximation; dotted
lines, exact solution. The optimal integration time, ti,max, is 35 ms.

exact curves (dotted lines) for Stilt. This maximum is approximately
twice as high as the uncorrected tilt Strehl ratio (the asymptotic
limit for large integration times) for all wavelength bands shown.
An experimental verification of this effect should be possible, in par-
ticular at infrared wavelengths. We also note that the approximations
(solid and dashed lines) produce almost the same results for both
the location (35 ms) and the magnitudes of the maxima as the ex-
act curves (dotted lines). Since all the following examples work in a
regime where the approximation is even more accurate than in Fig. 4,
it suffices to work with the high-bandwidth approximation from
here on.

As we mentioned in Section 3, we expect another significant im-
provement of system performance from implementing a ‘modeless
laser’, which could produce an increase of return flux of up to a
factor of 10. If this increase turns out to be realistic, we arrive at
the Strehl ratios shown in Fig. 5 as a function of wavelength. In this
and all the following figures, only the maximum Strehl ratios, that
is, the Strehl ratios obtained for the optimum integration times are
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Figure 5. Maximum Strehl ratio versus wavelength for values of r0 ranging
from 5 to 11 cm for the original configuration denoted ‘ELP-OA III’ in
Table 1. Optimal integration times range from 12 ms (r0 = 5 cm) to 19 ms
(r0 = 11 cm).
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918 M. Schöck et al.

plotted. The parameters used to produce Fig. 5 are summarized un-
der ‘ELP-OA III’ in Table 1. Optimal integration times range from
12 ms (r0 = 5 cm) to 19 ms (r0 = 11 cm) for this setup. In the near-
infrared, very high Strehl ratios are obtained and the implementation
of a PLGS at an AO system would not degrade the performance sig-
nificantly with respect to using a natural tilt guide star while yielding
100 per cent sky coverage. An equally high Strehl ratio cannot be
obtained at visible wavelengths for ELP-OA. However, the goal of
the ELP-OA project has never been to build a PLGS adaptive optics
system at a small (1.5-m) telescope at a low-altitude site. Its goal
is to serve as a test bed for the implementation of such a system
at a large (8-m or greater diameter) telescope at a good astronomi-
cal site. This demonstration should be possible at both infrared and
visible wavelengths.

Summarizing this section, we believe that we have collected suf-
ficient evidence to show that the feasibility of the PLGS concept
can be verified experimentally in the second phase of ELP-OA. The
results of these experiments will serve as tests if any of the assump-
tions made in this section need to be adjusted. However, even if this
turns out to be the case, we are confident that ongoing development
in particular of CuHBr lasers should soon allow a PLGS tilt system
to produce high Strehl ratios at least at near-infrared wavelengths
at a telescope such as the OHP 1.52-m telescope. Apart from an
increase of pulse repetition rate and pulse length for pulse lasers,
the most promising developments could be the arrival of modeless
lasers and of continuous wave (CW) lasers with output powers of
tens of watts.2 The use of these kinds of lasers would eliminate the
saturation of mesospheric sodium (see Table 2) and increase the
photon return flux for a fixed average laser power significantly with
respect to pulsed lasers.

5 I M P L E M E N TAT I O N AT A L A R G E
A S T RO N O M I C A L T E L E S C O P E

Implementing a PLGS tilt correction system at a large telescope
at a good astronomical site will produce higher Strehl ratios than
those found for the systems investigated in the previous section. This
is mostly caused by the better atmospheric conditions, translating
into a smaller fT in equation (21) and fewer losses owing to at-
mospheric absorption and scattering. A second, albeit much smaller
gain, is caused by the larger radius of the reception telescope, Dr (see
equation 14).

As an example of a PLGS system at a site such as Cerro Paranal
or Mauna Kea, we use the system parameters of the fourth column,
denoted ‘8-m I’, in Table 1. For the tilt coherence time, we use
the same single-layer model as before (V = 9.3 m s−1), but now
with Dr = 8 m and r0 ranging from 15 to 25 cm. We then obtain
values of fTZ between 2.9 and 1.9 Hz. The atmospheric transmission
at 330 nm at a high-altitude site is approximately 0.5 leading to
η ≈ 0.13. Because of the better seeing, we can also afford to use
a larger emission telescope (De = 0.5 m) without introducing any
additional complexity compared with the ELP-OA system.

Using the system parameters of Table 1 and equation (2), we find
Ic = 6.8 × 105 W m−2, which is approximately 1.5 times higher than
the intensity for the ELP-OA I configuration. In order to obtain an
estimate of the expected return flux, we assume that �P increases
approximately as

√
Ic in the saturated regime if everything else

2Of course, it is also likely that pulse lasers with much higher output power
will become available. It is, however, debatable whether one would wish to
install such a high-power laser at an astronomical site.
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Figure 6. Maximum Strehl ratio versus wavelength for values of r0 ranging
from 15 to 25 cm for the 8-m configuration denoted ‘8-m I’ in Table 1. Opti-
mal integration times range from 42 ms (r0 = 15 cm) to 56 ms (r0 = 25 cm).
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Figure 7. Maximum Strehl ratio versus wavelength for values of r0 ranging
from 15 to 25 cm for the 8-m configuration denoted ‘8-m II’ in Table 1. Opti-
mal integration times range from 20 ms (r0 = 15 cm) to 26 ms (r0 = 25 cm).

remain unchanged. After taking all relevant parameters into account
we thus expect �P ≈ 7.0 × 104 photon s−1 m−2.

Combining all of these values and using a pulse laser system
with left-circularly polarized light (the complete list of parameters
is given under ‘8-m I’ in Table 1), we obtain the results shown in
Fig. 6. Optimal integration times are found to range from 42 ms
(r0 = 15 cm) to 56 ms (r0 = 25 cm). We see that we can achieve a
good correction at infrared wavelengths but that the correction at
visible wavelengths is not acceptable for use with an AO system.
If we further apply the expected increase in return flux owing to a
modeless laser to an otherwise identical system (the parameters are
listed under ‘8-m II’ in Table 1), we find high Strehl ratios even at
visible wavelengths (Fig. 7). Optimal integration times are found
to range from 20 ms (r0 = 15 cm) to 26 ms (r0 = 25 cm) for this
configuration.

We have mentioned before that using different laser configura-
tions (different pulse lengths or repetition rates, pulsed versus con-
tinuous wave lasers, etc.) produces different results for an otherwise
identical setup. We might therefore want to ask a different question
than before by requiring a certain Strehl ratio at a given wavelength
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Figure 8. Maximum Strehl ratio versus return flux at 330 nm for the 8-m
configurations of Table 1. The set of three curves with the highest values is
calculated for tilt correction in the K band (2.20 µm), the middle set is for
the J band (1.25 µm), and the bottom set is for the V band (0.55 µm). The
three curves in each set correspond to different values of r0: 15 cm (solid
lines), 20 cm (dashed lines) and 25 cm (dotted lines). The return flux used is
the flux before accounting for atmospheric and instrument transmission and
thus corresponds to the variable �P as it is used throughout this paper. The
vertical line indicates the setup used in Fig. 7, that is, �P ≈ 7.0 × 105 photon
s−1 m−2.

and trying to find the laser configuration that best matches these
requirements. This kind of problem can also be investigated using
the formalism of this paper as we demonstrate in Fig. 8. Therein
we show Stilt as a function of the return flux from the PLGS at
330 nm, �P, for three different wavelengths and three values of
r0. The system setup used is equivalent to that of Fig. 7 with the
exception that we make no assumptions concerning the lasers. (As
an orientation, the laser configuration and respective return flux
used in Fig. 7 is indicated by the vertical line.) Any laser produc-
ing a given return flux can be used to achieve the respective Strehl
ratio.

As a final example, we demonstrate the effect of changing at-
mospheric conditions on the performance of the PLGS system. Up
to this point we have always assumed that we have perfect knowl-
edge of r0 (or the turbulence profile if we cannot assume a constant
wind velocity profile) and thus of the tilt coherence time, fTZ, and
that we can therefore apply the optimum integration time at any
instant. In reality, we might want to measure r0 only sporadically,
or even simply use an average value for the site, and work with a
fixed ti in between measurements. It is important to understand the
implications of such an approach for the performance of the PLGS
system.

In Fig. 9 we show the effect of a changing r0 on the performance
of the system. Three sets of curves are shown for observations in the
astronomical K (2.20 µm), J (1.25 µm) and V (0.55 µm) bands for
the same system that was used for Fig. 7. Each curve is a plot of the
Strehl ratio versus the atmospheric coherence length, r0, for the same
constant velocity profile with V = 9.3 m s−1 that was used before.
The solid lines are calculated using the best integration time, ti,max,
for the given conditions (r0, fTZ). The crosses and diamonds show
the performance of the system if the ti,max optimized for r0 = 15 cm
(diamonds) and 30 cm (crosses) are used instead. We can see that
the degradation in Strehl ratio is insignificant over a wide range of
r0 if the Strehl ratio is high in the first place. For lower Strehl ratios,
however, one might find a significant decrease in performance if
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Figure 9. Maximum Strehl ratio versus r0 at 0.5 µm for the same system
that was used in Fig. 7. Three sets of curves are shown for observations in the
astronomical K (2.20 µm), J (1.25 µm) and V (0.55 µm) bands. The solid
lines show the Strehl ratio if the best integration time, ti,max, for the given
conditions (r0, fTZ) is used. The crosses and diamonds show the performance
of the system if the ti,max optimized for r0 = 15 cm (diamonds) and 30 cm
(crosses) are used.

one does not work with an optimized integration time. The need for
frequent – or continuous – measurements of the turbulence profile
will therefore depend on the particular site, PLGS system and Strehl
ratio requirements. The formalism of this paper in combination with
data from site testing campaigns can be used to investigate whether
such an approach is necessary for a given system.

6 C O N C L U S I O N S

We have developed a formalism that permits us to analyse the per-
formance of adaptive optics systems that use polychromatic laser
guide stars for tilt sensing. This formalism was originally devel-
oped as a design study for ELP-OA, a project in which we intend
to demonstrate the feasibility of the PLGS concept experimentally.
It can also be used to predict the performance of an astronomical
adaptive optics system that uses a PLGS as its tilt guide star. Such a
system would be completely independent of natural guide stars and
obtain 100 per cent sky coverage.

We have demonstrated that ELP-OA is feasible and that a verifi-
cation of the PLGS concept should be possible at visible and near-
infrared wavelengths using existing laser technology. It has also
become clear that the original design of ELP-OA is not sufficient
for this purpose. We suggest modifications to this design and show
that the system performance can be improved significantly with re-
spect to the original design. We expect the tilt correction system to
produce high Strehl ratios at near-infrared wavelengths if a system
similar to the ELP-OA system is moved to a high-altitude astronomi-
cal site. Medium Strehl ratios can be attained at visible wavelengths.
We show how to use the formalism of this paper to determine the
laser requirements to satisfy performance specifications of a PLGS
system. We also demonstrate the effect of changing conditions of
atmospheric turbulence on the performance of the system.
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A P P E N D I X A : H A L O C O N T R I BU T I O N
TO T H E E R RO R BU D G E T

In this appendix we derive the tilt correction error if the seeing-
limited halo of the PLGS is taken into account. The derivation is
analogous to the derivation of the photon noise in Section 4. The only
difference is that the spot size of the halo and the number of photons
returned from the halo have to be considered in equations (4) and
(7) in addition to the spot size of and return flux from the core. The
photon noise term is now a weighted average of the contributions
from the core and the halo. If we assume again that a fraction Se of
the return flux comes from the core and the rest, 1− Se, comes from
the halo, we can write σ 2

ph as

σ 2
ph =

(
n − 1

�n

)2
16

π3

λ2
e

η�P D2
r ti

[
Se

D2
e

+ 1 − Se

r 2
0

]
. (A1)

This changes only the definition of the constant a in equation (22)
and therefore the explicit form of the optimum integration time, ti

in equation (23), while the general form of ti remains unchanged.
We thus obtain

ti =
(

a

2b

)1/3

= 0.187

[(
n − 1

�n

)2
λ2

e

η�Pλ
2
c f 2

T

(
Se

D2
e

+ 1 − Se

r 2
0

)]1/3

. (A2)

We see that equations (A1) and (A2) reduce to equations (10) and
(23) when the Strehl ratio of the emission system approaches unity.
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