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It is generally assumed that a condensate of paired fermions at equi-
librium is characterized by a macroscopic wavefunction with a well-
defined, immutable phase. In reality, all systems have a finite size and
are prepared at non-zero temperature; the condensate has then a fi-
nite coherence time, even when the system is isolated in its evolution
and the particle number N is fixed. The loss of phase memory is due
to interactions of the condensate with the excited modes that con-
stitute a dephasing environment. This fundamental effect, crucial for
applications using the condensate of pairs’ macroscopic coherence,
was scarcely studied. We link the coherence time to the condensate
phase dynamics, and we show with a microscopic theory that the

time derivative of the condensate phase operator θ̂0 is proportional
to a chemical potential operator that we construct including both
the pair-breaking and pair-motion excitation branches. In a single

realization of energy E, θ̂0 evolves at long times as −2µmc(E)t/~
where µmc(E) is the microcanonical chemical potential; energy fluc-
tuations from one realization to the other then lead to a ballistic
spreading of the phase and to a Gaussian decay of the temporal co-
herence function with a characteristic time ∝ N1/2. In the absence
of energy fluctuations, the coherence time scales as N due to the

diffusive motion of θ̂0. We propose a method to measure the co-
herence time with ultracold atoms, which we predict to be tens of
milliseconds for the canonical ensemble unitary Fermi gas.

Fermi gas | Quantum fluids | Quantum coherence

Setting the stage

Coherent gases of ultracold atoms confined in immate-
rial non-dissipative traps are unique examples of isolated

macroscopic quantum systems. The value of their intrinsic
coherence time is therefore a fundamental question. But it
is also a practical issue for all the applications which exploit
macroscopic coherence, such as interferometry or quantum en-
gineering where one generates non-trivial entangled states by
coherent evolution [1, 2, 3]. Coherence time measurements are
presently being performed in cold Bose gases [4, 5, 6]. Experi-
ments on Fermi gases, which up to now focused on traditional
aspects of the N-body problem, such as thermodynamic prop-
erties [7, 8], are moving towards correlation and coherence
measurements [9]. This turn will open a new research field,
including the strong coupling regime : that of fermionic quan-
tum optics [10]. However, a theory predicting the coherence
time of a pair-condensed Fermi gas was missing, except in the
limiting case of zero temperature [11]. In this paper we present
the first microscopic theory bridging this theoretical gap in a
general way. Our approach holds for other physical systems,
such as mesoscopic Josephson Junctions, provided that the
environment-induced decoherence is sufficiently reduced.

For a Bose-condensed gas of bosons, the finite coherence
time is due to the spreading of the condensate phase proba-
bility distribution. At zero temperature and in presence of
interactions, a ballistic phase spreading is caused by atom
number fluctuations in the sample. This effect has been mea-
sured by interfering two initially mutually-coherent conden-
sates, whose particle number fluctuates due to partition noise
[4, 6]. Contrarily to lasers, which are open quantum systems,
and somehow unexpectedly, a ballistic spreading persists in
Bose-Einstein condensates for a fixed atom number at non-

zero temperature [12, 13]. Fluctuations of the energy, another
conserved quantity, then play the same role as number fluctu-
ations.

For an unpolarized pair-condensed Fermi gas, the study of
coherence time presupposes a clear definition of the condensate

phase and of the corresponding operator θ̂0 [11]. Furthermore,
at non-zero temperature the speed of variation of the phase
should include the contribution of two excitation branches: the
fermionic pair-breaking one and the bosonic one exciting the
pair motion. For the fermionic branch Anderson’s Random
Phase Approximation (RPA) [14] is enough. For the bosonic
branch however, we need the equivalent for fermions of the

Bogoliubov method to construct quasiparticle creation b̂†α and

annihilation b̂α operators and to express dθ̂0/dt in term of
these operators. More than that, we need to include interac-

tions among quasiparticles in the evolution of the b̂α. This
is a non-trivial consequence of the dependence of condensate
wavefunction on the total number of particles N even for a
spatially homogeneous system, and clearly goes beyond the
RPA program.

Correlation function decay
Below the critical temperature, the time-correlation function

of the pairing field ψ̂↓(r)ψ̂↑(r
′) where ψ̂σ(r) is the fermionic

field operator of the spin σ component, is dominated at long
times by the condensate contribution:

g1(t) = 〈â†0(t)â0(0)〉 [1]

where â0 =
∫

d3rd3r′ϕ0(r, r
′)ψ̂↓(r)ψ̂↑(r

′) is the component of
the pairing field on the condensate wavefunction [11]. At equi-
librium the system is in a mixture of N-body eigenstates |ψλ〉,
with weights Πλ. We therefore study the correlation function
gλ1 (t) in the eigenstate |ψλ〉 of energy Eλ and particle number
Nλ. To exploit the weak relative fluctuations in the number of
condensed pairs for a large system, we split â0 into modulus
and phase hermitian operators [11]

â0 = eiθ̂0N̂
1/2
0 , [2]

and we approximate N̂0 by its mean value N̄0 in the equilib-
rium state to obtain

gλ1 (t) ≃ N̄0e
iEλt/~〈ψλ|e−i(Ĥ+Ŵ )t/~|ψλ〉 [3]

The operator Ŵ , difference between Ĥ transformed by eiθ̂0

and Ĥ ,

Ŵ = e−iθ̂0Ĥeiθ̂0 − Ĥ = −i[θ̂0, Ĥ]− 1

2
[θ̂0, [θ̂0, Ĥ]] + . . . [4]

is approximatively N times smaller than Ĥ . Indeed eiθ̂0 ,
like â0, changes the total particle number by a quantity
O(N0). While Ĥ is an extensive observable, Ŵ is inten-
sive and the double commutator in (4) is of order 1/N . In
equation (3) formally appears the evolution operator of the

Hamiltonian Ĥ perturbed by Ŵ , and restricted to the eigen-

state |ψλ〉 of Ĥ . Up to a phase factor, the function gλ1 /N̄0

is then proportional to the probability amplitude that the
system prepared in |ψλ〉 is still in that state after a time t.

www.pnas.org/cgi/doi/10.1073/pnas.0709640104 PNAS Issue Date Volume Issue Number 1–13
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A standard way to obtain a non-perturbative approximation
of this amplitude is to use the Green function or the resol-

vent operator Ĝ(z) =
(

z1̂− (Ĥ + Ŵ )
)−1

of the perturbed

Hamiltonian. Within the projectors method (see §III.B.2
of [15]), we introduce an effective non hermitian Hamilto-

nian Ĥeff(z) governing the evolution restricted to |ψλ〉, id est

〈ψλ|Ĝ(z)|ψλ〉 =
(

z − 〈ψλ|Ĥeff(z)|ψλ〉
)−1

. Keeping in Ĥeff(z)

terms up to order two in Ŵ and neglecting its z dependence

Ĥeff(z) ≈ Ĥeff(Eλ + i0+) (pole approximation), we obtain1

gλ1 (t) ≃ N̄0e
−it〈ψλ|Ŵ |ψλ〉/~e−(iδλ+γλ)t [5]

Introducing Q̂λ = 1̂ − |ψλ〉〈ψλ|, the projector orthogonal to

|ψλ〉, and the notation 〈Â〉λ ≡ 〈ψλ|Â|ψλ〉 one has2:

~(δλ − iγλ) = 〈Ŵ Q̂λ
Q̂λ

(Eλ + i0+)Q̂λ − Q̂λĤQ̂λ
Q̂λŴ 〉λ [6]

The leading term under the exponential in (5), 〈ψλ|Ŵ |ψλ〉,
is of order N0 like Ŵ . A key step in its interpretation is to
remark that, according to the expansion in (4), in the Heisen-
berg picture

Ŵ (t) = ~
dθ̂0
dt

+O

(

1

N

)

[7]

At this stage it may seem difficult to obtain a tractable ex-

plicit expression of dθ̂0/dt and to go beyond a purely formal
result for the phase dynamics. Fortunately this is not the case
and, as we will show in the next section, the coarse grained

time average of dθ̂0/dt in a weakly excited gas is proportional
to a chemical potential operator, which is in essence a ther-
modynamic quantity:

−~

2

dθ̂0
dt

t

= µ0(N̂) +
∑

s=F,B

∑

α

dǫs,α
dN

n̂s,α [8]

The sum on the right hand side runs over both the gapped
quasi-particles fermionic branch of excitation (in the homo-
geneous case α includes both an orbital and a spin index,
α = k, σ) and the bosonic one which, in the thermodynamic
limit and for an homogeneous system, has a phononic be-
haviour (α is then only orbital, α = q). By requiring that
the gas is weakly excited we mean that the thermal deple-
tion of the condensate of pairs must be small. This requires
in particular that the average number of quasi-particles is a
small fraction of the total particle number. The coarse grained
time average is taken over a time long with respect to the in-
verse of the quasi-particle eigenfrequencies ǫs,α/~ yet short
with respect to the typical time-scale of variation of the occu-
pation numbers n̂s,α. Finally µ0(N) is the zero temperature
chemical potential of the gas with N particles, that is the
derivative of the ground state energy with respect to N . We
interpret the second term on the right hand side of (8) as a
“chemical potential operator” in the sense that its quantum
average is the adiabatic derivative of the quasi-particle gas en-
ergy

∑

s=F,B

∑

α ǫs,α〈n̂s,α〉 with respect to N , that is at fixed

quasi-particle populations 〈n̂s,α〉. Equation (8) establishes the
link between the phase derivative and the chemical potential
at the level of quantum mechanical operators in a multimode
microscopic theory. In that respect, it goes beyond the usual
second Josephson relation for the phase of the superconduct-
ing order parameter (see §3.4 in [16]).

By taking the average of equation (8) in the stationary state
|ψλ〉 and using the Eigenstate thermalization hypothesis [17]

to identify the quantum average in an eigenstate with the mi-
crocanonical average, we recognize the microcanonical chem-
ical potential µmc at energy Eλ and particle number Nλ and
obtain:

〈ψλ|~dθ̂0
dt

|ψλ〉 = −2µmc(Eλ, Nλ) [9]

We omitted here the coarse grained time average as the quan-
tum average is taken in an exact eigenstate of the system.

The next-to-leading term under the exponential in (5), is
of order 1/N . In order to prove it, we express this term in

terms of the correlation function of dθ̂0/dt in |ψλ〉: up to a
contribution of order 1/N2,

γλ + iδλ =

∫ +∞

0

dt

[〈

dθ̂0(t)

dt

dθ̂0(0)

dt

〉

λ

−
〈

dθ̂0
dt

〉2

λ

]

[10]

This is equivalent to (6) as can be checked by inserting
a closure relation. The t = 0 value of the integrand is

Varλ(dθ̂0/dt) = O(1/N) (this comes from adding up the vari-
ances of independent quasi-particles numbers in the canonical
ensemble and it overestimates the microcanonical variance);
the function then decays in a time τc which is the typical col-
lision time of quasi-particles and hence the correlation time of

the n̂s,α. Altogether we estimate |γλ+iδλ| ≈ τcVar(dθ̂0/dt) =
O (1/N). The energy shift δλ is thus of the same order in N

as the subleading term [θ̂0, [θ̂0, Ĥ ]] in Ŵ , i.e. N times smaller
than (9); we neglect both terms for a large system. In con-
trast, we keep γλ, the only term which leads to an exponential
decay of the correlation function gλ1 . It is in fact the phase dif-
fusion coefficient of a system prepared in the microcanonical
ensemble corresponding to |ψλ〉, γλ = D(Eλ, Nλ). If one can
write kinetic equations for the quasi-particles numbers appear-
ing in (8), one can calculate their time correlation functions
and hence D from (10), as done for bosons in [18]. Finally:

gλ1 (t) ≃ N̄0e
[2iµmc(Eλ,Nλ)/~−D(Eλ,Nλ)]t [11]

The final step is to take the statistical average over the prob-
ability distribution Πλ of the states |ψλ〉. For large N , we
assume that energy and atom number fluctuations around the
mean values Ē and N̄ are weak in relative value. This is
the case if Πλ describes a canonical or grand canonical en-
semble. We assume Gaussian fluctuations and linearize µmc

around (Ē, N̄) while, to this order, we keep only the cen-
tral value D(Ē, N̄) of the next-to-leading term. We are led
to the calculation of a Gaussian integral with a phase fac-
tor exp{2i[(∂µmc(Ē, N̄)/∂E)(E−Ē)+(∂µmc(Ē, N̄)/∂N)(N−
N̄)]t/~}. Altogether this leads to the main result of this work :

g1(t) ≃ N̄0e
2iµmc(Ē,N̄)t/~e−t

2/2t2bre−D(Ē,N̄)t [12]

In presence of energy or atom number fluctuations, the ther-
mal blurring at long times consists in a Gaussian decay of the
correlation function g1(t), with a characteristic time

(2tbr/~)
−2 = Var

(

N
∂µmc

∂N
(Ē, N̄) + E

∂µmc

∂E
(Ē, N̄)

)

[13]

1The pole approximation implicitly assumes that |ψλ〉 is coupled to a broad energy continuum.
As a consequence (5) holds only at times longer than the inverse frequency width of the continuum,
i.e. longer than the quasi particle correlation time τc introduced below.
2One might object that in a finite size system the spectrum is discrete, the resolvent has no
branch cut and there should be no imaginary part in equation (6). For a large system, how-
ever, the level spacing is so small that the dynamics imitates the exponential relaxation of an
infinite system, see §CI .3 of [15]. Given that the right hand side of equation (6) scales
as 1/N , the rigorous way to obtain the result is to take the thermodynamic limit after mul-
tiplication by N . To avoid the branch cut, one should first shift up the energy Eλ from
the real axis by a finite quantity η that will go to zero in the end: ~(δλ − iγλ) ≃
1
N

lim
η→0+

limN→+∞ N〈Ŵ Q̂λ
Q̂λ

(Eλ+iη)Q̂λ−Q̂λĤQ̂λ
Q̂λŴ 〉λ .

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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which diverges as N1/2 for normal fluctuations. The phase
diffusion coefficient D leads to an exponential decay with a
characteristic time diverging as N . As expected it is a sub-
leading effect at long times, except if the system is prepared in
the microcanonical ensemble in which case the intrinsic phase
diffusion may be directly observed.

Microscopic derivation of the phase operator equation
We give here the first (to our knowledge) microscopic deriva-
tion of equation (8), relating the evolution of the phase opera-
tor of a pair-condensed gas to a “chemical potential operator”.

The contribution of the fermionic branch of excitations to
dθ̂0/dt can be obtained from linearized equations of motion for

small fluctuations of the pair operators ψ̂↓ψ̂↑, ψ̂
†
↑ψ̂

†
↓ and ψ̂†

σψ̂σ
around the mean-field state in the Random Phase Approxi-
mation (RPA)[14]. Using equation (120) of reference [11] to

extract the time average of dθ̂0/dt, and rewriting equation (86)
of the same reference in terms of the fermionic quasi-particle
occupation numbers n̂F,α, we get3

−~

2

dθ̂0
dt

t

=
RPA

µ(N̄) +
dµ

dN̄
(N̂ − N̄) +

∑

α=k,σ

dǫF,α

dN̄
n̂F,α [14]

where ǫF,k,σ is the BCS excitation spectrum of an homoge-
neous system and N̄ the BCS average particle number in the
grand canonical ensemble of chemical potential µ.

We encountered fundamental difficulties in deriving the
phonon branch contribution to equation (8) within the RPA4.
We therefore decided to treat the problem variationally with
the most general time-dependent coherent state Ansatz5:

|ψ〉 = N (t) exp



l6
∑

r,r′

Γ(r, r′; t)ψ̂†
↑(r)ψ̂

†
↓(r

′)



 |0〉, [15]

Here N ensures normalization and the Γ(r, r′) form a set of
independent variables. The space has been discretized on a
cubic lattice of step l, which we take to zero in the end of
the calculations. The field operators obey anticommutation

relations of the kind: {ψ̂σ(r), ψ̂†
σ′(r

′)} = δσ,σ′δr,r′/l
3. Sec-

tion §9.9b of reference [19] constructs from Γ(r, r′),Γ∗(r, r′)
the set of canonically conjugate variables Φ(r, r′),Φ∗(r, r′). 6

This field Φ should not be confused with the usual pairing

field 〈ψ̂↓ψ̂↑〉7. When the pairs in (15) are at rest, Γ(r, r′, t)
depends only on r − r′ and the Fourier transform of Φ re-
produce the Vk amplitude of the k ↑, −k ↓ pair of BCS the-
ory [11], while the Fourier transform of the pairing field is

−UkVk = −Vk(1 − |Vk|2)1/2. For moving pairs we have no
physical interpretation, but the squared norm of Φ is still half
the mean number of particles in the state |ψ〉:

N

2
= ‖Φ‖2 ≡ l6

∑

r,r′

|Φ(r, r′; t)|2. [16]

Its evolution is governed by the classical Hamiltonian:

H(Φ,Φ∗) = 〈ψ|Ĥ |ψ〉. [17]

In the following we will need only the invariance of H under a
global phase change Φ(r, r′) → eiγΦ(r, r′), ∀γ ∈ R (U(1) sym-
metry), consequence of the conservation of the particle number

N̂ by evolution with Ĥ. At zero temperature and for a fixed N
the field Φ(r, r′) is frozen, up to a global phase factor, into the

minimizer Φ0(r, r
′) = (N/2)1/2φ0(r, r

′) of H. φ0 is chosen real
and normalized to one. It depends on N even in the spatially

homogeneous case and differs from the condensate wavefunc-
tion ϕ0 in the same way that Φ differs from the pairing field

〈ψ̂↓ψ̂↑〉 (see note 7). At sufficiently low temperature one can
expand H in powers of the small deviations of Φ away from
the circle γ 7→ eiγΦ0(r, r

′), locus of the minima of H for fixed
N . To this end, we split the field into its components parallel
and orthogonal to φ0 :

Φ(r, r′) = eiθ [n1/2φ0(r, r
′) + Λ(r, r′)] [18]

The phase θ can reach arbitrarily large values while Λ is
bounded. This framework allows us to develop a systematic
perturbation theory in powers of the field Λ (see appendix
A), the fermionic equivalent of the Bogoliubov U(1)-symmetry
conserving approach for bosons [20]. Provided that Λ stays
small, the phase θ remains close to the condensate phase θ0 as
we shall see. We therefore write down the equations of motion
of θ and of the fields Λ,Λ∗. At the end of the calculations
we systematically eliminate the condensate variables with the
relation n = ‖Φ‖2−‖Λ‖2, consequence of (16), and we restrict
ourselves to order 2 in Λ,Λ∗.

The main challenge of the calculation is the occurrence of
a term linear in Λ,Λ∗ in dθ/dt, resulting from the fact that
φ0 depends on the number of pairs [11]. Without this term,
one would simply expand the field Λ on the eigenmodes of its
small linear oscillations obtained from a quadratization of the
Hamiltonian H at fixed N :

(

Λ(r, r′; t)
Λ∗(r, r′; t)

)

=
∑

α

bα(t)

(

uα(r, r
′)

vα(r, r
′)

)

+ b∗α(t)

(

v∗α(r, r
′)

u∗
α(r, r

′)

)

[19]
where the sum runs over the eigenmodes of positive en-
ergy ǫα, normalized as ‖uα‖2 − ‖vα‖2 = 1. To this order,

bα(t) = bα(0)e
−iǫαt/~. One would insert the expansion (19)

into dθ/dt and take a coarse grained temporal average to get

3We use
∆0

ǫF,k,σ
ζ̂k = n̂F,k,↑ + n̂F,−k,↓ where ∆0 and ζ̂k refer to notations of [11], and

we use equation (74) of that reference to recognize dǫF,k,σ/dµ. The trivial term µ(N̄) in the
phase derivative (14) is absent in [11] due to the use of the grand canonical Hamiltonian.
4The RPA result (14), restricted to the linear order in the pair operators, does not include the
contribution of the phonon branch. One might hope to obtain this contribution by pushing the RPA
calculation to the quadratic order in the pair operators as follows: First, one computes dθ̂0/dt up
to the quadratic order. Second, one collects all the RPA pair operators inducing a center of mass mo-

mentum change ~q, that is â−k−q↓âk↑, â
†
k+q↑

â
†
−k↓

, â
†
k+q↑

âk↑ and â
†
−k↓

â−k−q↓ ,

where âk↑ annihilates a fermion of wave vector k and spin ↑, and one writes the matrices Lq of
their closed linear RPA equations of motion. Each RPA matrix Lq has two collective modes, with
opposite energies linear in q for small q. The RPA operators are then expanded over the eigen-

modes of Lq, with amplitudes b̂−q and b̂†q on the collective modes that annihilate and create

a collective excitation of momentum ∓~q. Third, one inserts this modal expansion in the RPA
operators appearing in dθ̂0/dt and obtains a quadratic expression in the modal amplitudes, hence

terms in b̂†qb̂q as in (8). Unfortunately, this RPA approach is not reliable and must be abandoned

because the RPA operators, although linearly independent, are not quadratically independent, as
one can see by rearranging the pair operators using fermionic anticommutation relations, e.g.

(â
†
k+q↑

âk↑)(â
†
−k−q↓

â−k↓) = (â
†
k+q↑

â
†
−k−q↓

)(â−k↓âk↑)

This shows that (i) there is no unique way of expressing dθ̂0/dt as a quadratic function of the
RPA operators, (ii) the modal amplitudes are not quadratically independent, (iii) the coefficient

of b̂†qb̂q is not uniquely determined by this RPA approach.
5We use here for simplicity an Ansatz in which the number of particles has quantum fluctuations
(not to be confused with the thermal fluctuations of the grand canonical ensemble). The use of
an Ansatz with a fixed number of particles, possible although more difficult [16], would change the

coefficients in the energy functional by a relative correction O(N−1/2) and would not change
the spectrum in the thermodynamic limit.
6If Γ and Φ are the matrices of elements l3Γ(r, r′) and l3Φ(r, r′) respectively, then

Φ = −Γ(1 + Γ†Γ)−1/2. Their variational equations of motion follow from the usual La-

grangian L = i~ [〈ψ|(d/dt)|ψ〉 − c.c.] /2 − 〈ψ|H|ψ〉. Φ is cleverly defined such that

L = i~l6
∑

r,r′
[

Φ∗(r, r′)∂tΦ(r, r′) − c.c.
]

/2 − H(Φ,Φ∗), leading to ∂tΦ =

(i~l6)−1∂Φ∗H. This shows that the conjugate variable of Φ in the Hamiltonian formalism

is i~l6Φ∗ for the usual Poisson brackets, that is Φ∗ for the Poisson brackets {Φ,Φ∗} =

(i~l6)−1 , knowing that ∂tΦ = {Φ,H}.
7 With the same matrix notation as in note 6 one has 〈ψ̂↓ψ̂↑〉 = −Φ(1 − Φ†Φ)−1/2.

Footline Author PNAS Issue Date Volume Issue Number 3
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rid of the oscillating terms. dθ/dt
t
would then contain the

expected linear combination of the numbers of bosonic quasi-
particles nB,α = |bα|2. In reality, the problem is more subtle:

due to the interaction among the quasi-particles, bα
t
does not

vanish and is of order two in Λ and Λ∗. The contribution of
the linear term in dθ/dt is then comparable to that of the
quadratic ones. It is calculated in the appendix, using in par-
ticular the bounded nature of the field Λ (consequence of the
U(1)-symmetry preserving nature of expansion (18)) and the
Hellmann-Feynman theorem. One finds

−~

2

dθ

dt

t

= µ0(N) +
∑

α

dǫα
dN

|bα|2 +O(‖Λ‖3) [20]

We now briefly discuss the form of the energy spectrum ǫα
for a spatially homogeneous system, in the continuous limit
l → 0 for a s-wave contact interaction with a fixed scatter-
ing length between opposite spin fermions. For each value of
the total wave vector q, there exists (i) at most one discrete
value ǫB,q, (ii) a continuum parametrized by two wave vectors
(k1, ↑;k2, ↓) 7→ ǫF,k1,↑+ǫF,k2,↓ of constant sum (k1+k2 = q),
where ǫF,k,σ is the BCS dispersion relation. The branch ǫB,q
coincides with that of reference [21], as we have checked. It
has a phononic start and corresponds to the bosonic elemen-
tary excitations of the Fermi gas, whose contribution to the
phase dynamics was missing. The continuum corresponds to
the excitation of two fermionic quasi-particles. Indeed, since

the Hamiltonian Ĥ contains an even number of factors ψ̂ and

ψ̂†, each annihilating or creating one quasi-particle, fermionic
quasi-particles can only be created by pairs from the ground
state. The corresponding biexcitations are not physically in-
dependent8, and are identical to what has been included via
the RPA treatment.

Two more remarks are needed to obtain (8). (i) The fields

〈ψ̂↓ψ̂↑〉 and Φ differ and so do the phases θ̂0 and θ. Their
coarse grained temporal averages, however, only differ by a
term of order ‖Λ‖2, which, bounded hence negligible in the
long time limit, does not contribute to the phase blurring
of the condensate of pairs9. (ii) The phase θ of our varia-

tional approach is a classical variable, whereas θ̂0 in (8) is
a quantum operator. This gap can be bridged by using the
quantization procedure exposed in Chapter 11 of reference [19]
where the bα of the bosonic branch are in the end replaced by

bosonic operators10 b̂α, [̂bα, b̂
†
α] = 1. We argue that equation

(8), linking dθ̂0/dt to the chemical potential operator, and the
resulting equation (12) should hold beyond the validity range
of the microscopic variational derivation presented above, and
should apply even to the strongly interacting regime, provided
that the temperature is low enough for the quasi-particles life-
time to be much longer than the inverse of their eigenfre-
quency. Indeed, in the limiting case where one can neglect
the fermionic excitation branch and drop the non-phononic
part of the bosonic branch, Eq. (8) can be derived from the
irrotational version of the quantum hydrodynamic theory of
Landau and Khalatnikov [22, 23] (see appendix B).

Towards an experimental observation
Let us briefly explain how an experimental evidence of the
thermal blurring of a condensate of pairs could be obtained.
The key idea is to bosonize the atomic Cooper pairs into deeply
bound weakly interacting dimers during the preparation and
the measurement stage. This can be done in an adiabatic re-
versible way [24] by tuning the scattering length to a small
and positive value thanks to a magnetic Feshbach resonance.
It allows one to (i) produce a sample of dimers with weak

Fig. 1. Trapping configuration proposed here to measure g1(t) via Ramsey in-

terferometry: the condensed paired Fermi gas is confined in the main trap (with a

flat bottom on the figure); one transfers a small number of atoms (in the form of

dimers) in the (very narrow) secondary trap via a resonant tunneling effect, which can

be tuned by a barrier of adjustable height; in this way, one creates a phase reference,

which is made to interfere with the condensate after an evolution time t.
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40
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Fig. 2. Thermal blurring time of a coherent Fermi gas in the unitary limit in the

canonical ensemble, as a function of temperature T in units of the Fermi temperature

TF = εF /kB . Discs: from the equation of state measured in reference [8]. Dashed

line: expression (21) deduced from an approximated equation of state (see text).

number fluctuations from a melted Mott phase of an experi-
mental realization of the Bose Hubbard model [25], (ii) control
tunneling between the main trap (containing the N particles)
and a very narrow secondary trap by adjusting the height of a
potential barrier [2] (Fig.1), (iii) detect by fluorescence a sin-
gle dimer [26] in this secondary trap. For the measurement of
the g1(t) function, we adapt [27] the interferometric Ramsey
method of two Rabi pulses at a time interval t to the case of
paired fermions. The bosonized pairs are prepared initially in
the main trap. A first pulse of angle ǫ transfers on average
less than one dimer to the secondary trap; in this way, the
thermal blurring is not masked by partition noise. Then the
system evolves during a time t with interactions set to the
value at which phase dynamics is to be studied. Last, the gas
is rebosonized and a second pulse of angle ǫ closes the inter-
ferometer before the number nsec of dimers in the secondary
trap is measured. The average of nsec over the realizations
is an oscillating function of the time t, of angular frequency
2/~ times the difference of the two trapping zones chemical
potentials, and of contrast equal to |g1(t)/g1(0)|.

8Exciting α = (k1, ↑;k2, ↓) and α′ = (k′
1, ↑;k

′
2, ↓) amounts to exciting α′′ = (k′

1, ↑
;k2, ↓) and α′′′ = (k1, ↑;k′

2, ↓).
9Expressing in 〈â0〉 the pairing field in terms of Φ, one realizes that, for small Λ, 〈â0〉 =

eiθ
√
N0(1 + O(||Λ||)) and, since Λ

t
= O(||Λ||2), one has θ0

t
= θ

t
+ O(||Λ||2).

10 More precisely, these operators are bosonic only for a weak density of excitations. For a spa-
tially homogeneous system and in a U(1) symmetry breaking formalism (θ = 0), we obtain

from Eq.(11.81c) of [19] extended to the paired case (âp, â
†
h

replaced by the BCS fermionic

quasi-particle operators b̂kσ ) and restricted to weakly excited bosonic images (BB† negligible):

b̂q =
∑

kX
q
k
b̂−k↓ b̂k+q↑+Y

q
k
b̂
†
k−q↑

b̂
†
−k↓

. The real coefficientsXq and Y q are linear

combinations of the corresponding uq and vq in Eq.(19), and inherit the normalization condition
∑

k(X
q

k
)2 − (Y

q

k
)2 = 1. Then in a state (15) with θ = 0, δ̂q ≡ [b̂q, b̂

†
q]− 1̂ has a mean

value and a variance O(||Λ||2/N) since b̂kσ |ψ〉 = O(||Λ||/N1/2) if ||Λ||/N1/2→0.
11The good agreement with the experimental data has to be taken cautiously. If one treats the

two branches to all order in kBT , one gets an upward shift of tbrεF /(~N
1/2) more or less

constant and equal to 5 over the temperature range of figure 2.

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Explicit results for the unitary gas
We first estimate the blurring time for a unitary Fermi gas
prepared in the canonical ensemble, that is with energy fluc-
tuations of variance VarE = kBT

2∂T Ē. From the equation
of state of the unpolarized unitary gas measured in reference
[8], and for a spatially homogeneous system (in a flat bot-
tom potential [28]) we find the thermal blurring times tbr
plotted as discs in figure 2. For example, at a temperature
T = 0.12 TF ≃ 0.7 Tc, we find tbr ≈ 7N1/2

~/εF corre-
sponding to 20 milliseconds for a typical Fermi temperature
TF = εF/kB = 1µK and a typical atom number N = 105. As
in reference [29], one can also estimate the equation of state
of the unitary gas from simple dispersion relations for the el-
ementary excitations. For the bosonic branch one takes [29]
ǫB,q = ~cq with c the T = 0 sound velocity, mc2 = 2

3
ξεF and

ξ the Bertsch parameter. For the fermionic branch, one takes

[30] ǫF,k,σ = ∆+( ~
2k2

2m
−ε0)2/(2f0), where ∆ is the gap, and ε0

and f0 give the location of the minimum and the curvature of
the dispersion relation. Keeping each branch contribution to
its leading order at low temperature [29] and using the exper-
imental values [8, 31] ξ = 0.376, ∆ = 0.44εF , ε0 = 0.85εF and
the theoretical value [30] f0 = 0.846εF , we find (see appendix
C)

~
2N

(tbrεF )2
≃

(

Θ

0.46

)5
(1 + 2r)2

(1 + r)
[21]

with Θ = T/TF and r ≃
(

0.316
Θ

)9/2
e−0.44/Θ the relative weight

of the two excitation branches. This formula11, plotted as a
dashed line in figure 2, is an exact equivalent to tbr for Θ → 0.

At finite times12 t = O(N0) ≪ tbr, the contribution of
D to g1(t) in equation (12) is a priori comparable to that
of t−2

br since both scale as 1/N in the canonical ensemble. D
can be calculated at very low temperatures keeping only the
phononic part of the spectrum. As the bosonic branch [21] is
convex at low q for the unitary gas, phonons interact through
Landau-Beliaev processes as in the weakly interacting Bose
gas and one can adapt the treatment of [18] based on kinetic
equations to obtain (see appendix D)

~ND

εF
∼

Θ→0
C Θ4 with C ≃ 0.4 [22]

With this we reach a complete picture of the thermal blurring
of the unitary Fermi gas at low temperature.

Conclusion
We have presented the first microscopic theory of the thermal
blurring of the phase of a condensate of pairs of fermions (12),
revealing a ballistic blurring and a subleading phase diffusion.
The blurring time depends on the variance of the total energy
of the gas, and on the derivative of the microcanonical chemi-
cal potential with respect to the energy. This relies on the fact
that the time derivative of the condensate phase is given by
the chemical potential operator of the gas, see equation (8).
We have derived this central relation in a fully microscopic
way, including both the bosonic and the fermionic branches
of excitation. Last, we have proposed a realistic experimen-
tal protocol to measure this blurring time, that we estimated
to be tens of milliseconds for a coherent gas prepared in the
unitary limit in the canonical ensemble.

ACKNOWLEDGMENTS. We acknowledge support from the EU project QIBEC.

Appendix A: More on the variational calculation
Here we derive equation (20) of the time average of θ within
the microscopic model based on the Ansatz (15), coherent
state of moving pairs. In a first stage one should perform
the expansion of the Hamiltonian H treating the real quantity
n and the complex field Λ as independent variables, that is,
not fixing the value of ‖Φ‖. To include interactions among the
quasi-particles, one must go to third order in Λ and Λ∗:

H(Φ,Φ∗) = T0[n, φ0(N)] +
3

∑

j=1

Tj [n, φ0(N)](Λ,Λ∗) +O(‖Λ‖4)

[23]
where the tensor Tj is of rank j so that Tj(Λ,Λ∗) is exactly of
order j in Λ and Λ∗. It may be expressed in terms of the differ-
ential of order j of H taken at (Φ,Φ∗) = (n1/2φ0, n

1/2φ0) and
restricted to the subspace orthogonal to (φ0, 0) and (0, φ0). It
does not depend on the phase θ due to U(1) symmetry. For a
fixed total number of particles, the energy does not vary to first
order around the minimizer so that T1[N/2, φ0(N)] = 0, which
is the famous gap equation when the system is spatially homo-
geneous. Furthermore, one can check that ∂nT0[N/2, φ0(N)] =
2µ0(N) where µ0(N) = dE0(N)/dN is the gas chemical po-
tential at zero temperature, E0(N) = T0[N/2, φ0(N)] being
the ground state energy.

The phase and the modulus square of the component of the
field Φ on the mode φ0 are canonically conjugate variables, so
that −~dθ/dt = ∂nH(Φ,Φ∗). Once this derivative is taken in
(23) for fixed Λ and Λ∗, one can fix the norm of Φ to the value

(N/2)1/2 (that is the total particle number is fixed to N), and
eliminate n through the identity n = ‖Φ‖2 − ‖Λ‖2; the field
Λ then remains the only dynamical variable of the problem.
The resulting expression is useful up to order 2 in Λ,Λ∗:

− ~
dθ

dt
= ∂nT0[N/2, φ0(N)]− ‖Λ‖2∂2

nT0[N/2, φ0(N)]

+
2

∑

j=1

∂nTj [N/2, φ0(N)](Λ,Λ∗) +O(‖Λ‖3) [24]

The Hamiltonian that determines the evolution of Λ at fixed
particle number is obtained by replacing n with N/2 − ‖Λ‖2
in (23) and by expanding the resulting expression up to order
three in Λ,Λ∗:

HN (Λ,Λ∗) = E0(N)+Ť2[N ](Λ,Λ∗)+T3[N/2, φ0(N)](Λ,Λ∗)

− ‖Λ‖2∂nT1[N/2, φ0(N)](Λ,Λ∗) +O(‖Λ‖4) [25]

with the quadratic form Ť2[N ](Λ,Λ∗) obtained by subtract-
ing 2µ0(N)‖Λ‖2 from T2[N/2, φ0(N)](Λ,Λ∗). To compute the
coarse grained time average of ∂nT1[N/2, φ0(N)](Λ,Λ∗), we
write the temporal derivative of the imaginary part of the
component of the field Λ on the function (N/2)1/2dφ0/dN ,

Y =
l6

2i

∑

r,r′

(

N

2

)1/2
dφ0(r, r

′)

dN
(Λ(r, r′)− Λ∗(r, r′)) [26]

Since i~∂tΛ = l−6∂Λ∗HN (Λ,Λ∗), one gets

− 2~
dY

dt
= D · HN (Λ,Λ∗) = D · Ť2[N ](Λ,Λ∗)

+D · Hcub
N (Λ,Λ∗) +O(‖Λ‖3) [27]

12Still we must have t > τc (see note 1). For the unitary gas τc ≃
Θ→0

(0.149/Θ)5 , as shown

in Appendix C.

Footline Author PNAS Issue Date Volume Issue Number 5
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where Hcub
N is the component of HN of order three in Λ,Λ∗.

We have introduced the differential operator

D =
∑

r,r′

(

N

2

)1/2
dφ0(r, r

′)

dN

(

∂Λ(r,r′) + ∂Λ∗(r,r′)

)

[28]

We shall now take advantage of two identities that exactly
hold for all Λ orthogonal to φ0:

2D · Ť2[N ](Λ,Λ∗) = −∂nT1(Λ,Λ
∗) [29]

2D · Hcub
N (Λ,Λ∗) = 2

d

dN
Ť2(Λ,Λ

∗)− ∂nT2(Λ,Λ
∗)

+‖Λ‖2∂2
nT0 [30]

where all the tensors are taken at [n = N/2, φ0(N)] or simply
at N for Ť2. To prove these relations, one formally considers a
field Φ′ with N + δN particles and determines in two different
ways the quadratic expansion of HN+δN (Λ′,Λ′∗) in powers of
Λ′ and Λ′∗, where Λ′ is as in (18) (written for N + δN parti-
cles) the component of Φ′ orthogonal to φ0(N + δN). First,
one simply replaces N with N + δN and Λ with Λ′ in (25),
and then expands to first order in δN . The tensor dŤ2/dN [N ]
naturally appears from this expansion. Second, one applies to
H(Φ′,Φ′∗) the expansion (23) around Φ0(N) and takes into
account the fact that, to first order in δN , the component of
Φ′ orthogonal to φ0(N) contains, in addition to Λ′

⊥ coming
from Λ′, a contribution coming from dφ0/dN :

Λ = δN

(

N

2

)1/2
dφ0

dN
+Λ′

⊥+O(δN2, δN‖Λ′‖, ‖Λ′‖2) [31]

This infinitesimal shift proportional to δN along the direction
of dφ0/dN is responsible for the occurrence of the operator D.
Equations (29) and (30) are finally obtained by identification
of the two resulting expressions ofHN+δN(Λ′,Λ′∗) respectively
to first and second order in Λ′ and Λ′∗.

It remains to combine equations (24), (27), (29), and (30)
after a coarse grained temporal average to obtain

−~

2

dθ

dt

t

= µ0(N) +
dŤ2

dN
[N ](Λ,Λ∗)

t

+O(‖Λ‖3) [32]

where we used the crucial property that dΛ/dt
t
vanishes (and

so does dY /dt
t
), since the range of variation of the field Λ

is bounded. The quadratic form Ť2[N ] is represented by the

matrix ηL[N ] with η =

(

1 0
0 −1

)

, using a block notation and

the scalar product 〈, 〉 generating the norm ‖‖:

Ť2[N ](Λ,Λ∗) =
1

2

〈

(

Λ,Λ∗) , ηL[N ]

(

Λ
Λ∗

)〉

[33]

Then one inserts the modal decomposition (19) in the deriva-
tive with respect to N of the equation (33); we recall that
ǫα and (uα, vα), −ǫα and (v∗α, u

∗
α) are the eigenvalues and the

eigenvectors of L. The coarse grained temporal average
t

removes the crossed terms, and the Hellmann-Feynman the-

orem ensures that 〈(u∗
α,−v∗α), dL[N]

dN

(

uα
vα

)

〉 = dǫα/dN , since

(uα,−vα) is the dual vector of (uα, vα) due to (ηL)† = ηL,
and finally leads to equation (20).

Appendix B: Irrotational quantum hydrodynamics

In this supplementary section we give an additional deriva-
tion of equation (8) based on quantum hydrodynamics. Al-
though this derivation is not microscopic contrarily to the one
presented in the paper, and although it neglects the internal

fermionic degrees of freedom treating the pairs of fermions at
large spatial scales as a bosonic field, it has the advantage of
relying only on the equation of state and thus of being valid
in all interaction regimes.

To calculate the viscosity of superfluid helium at low tem-
perature, Landau and Khalatnikov have developed in 1949 the
theory of quantum hydrodynamics [22]. It allows one to de-
termine, to leading order in T , the effect of a non-zero temper-
ature on the quantum fluid, at least on the observables that
only involve low energy scales and large length scales. Re-
markably, the only specific ingredient is the zero-temperature
equation of state of the fluid, which is here the energy per unit
volume e0(ρ) of the ground state of the spatially homogeneous
system of density ρ.

To obtain the time derivative of the phase operator of the
condensate of fermion pairs, we refine the theory in two ways:
by regularizing ultraviolet divergences and by specializing to
the irrotational case.

First, we solve the issue of the Landau-Khalatnikov Hamil-
tonian ground state energy, that diverges due to the zero-point
motion of the system eigenmodes. We discretize the space in
a cubic lattice of spacing l, a sub-multiple of the size L of the
quantization volume, which is much smaller than the typical
wavelength 2π/qth of the thermal excitations of the fluid but

much larger than the mean interparticle distance ρ−1/3,

ρ−1/3 ≪ l ≪ q−1
th [34]

both conditions being compatible at sufficiently low tempera-
ture. This is in the spirit of the validity range of hydrodynam-
ics, which relies on a spatial coarse graining, and it provides
a natural cut-off for the wave vectors q by restricting them to
the first Brillouin zone13 D = [−π/l, π/l[3. In the Hamilto-
nian one must then replace the differential operators such as
the gradient, the divergence and the Laplacian, by their dis-
crete versions, as we shall implicitly do below, and introduce
the bare energy density e0,0(ρ), which depends on the lattice
spacing l. Following the ideas of renormalization, the zero-
point energy of the modes, that formally diverges when l → 0,
adds up to e0,0(ρ) to exactly reconstruct the effective or true
energy density e0(ρ), that does not depend on l and is what
is measured experimentally.

Second, we specialize the theory to the case of an irrota-
tional velocity field operator v̂(r, t) that can then be written

as the gradient of the phase field operator φ̂(r, t), itself canon-
ically conjugate to the density field operator ρ̂(r, t):

v̂(r, t) =
~

m
grad φ̂(r, t) with [ρ̂(r, t), φ̂(r′, t)] = i

δr,r′

l3
[35]

This amounts to neglecting the transverse component of the
field v̂(r, t), as done in reference [22] to determine the phonon-
phonon interaction and go forward in the computation of vis-
cosity. In the particular scale invariant case of the unitary
Fermi gas, this was justified within the effective field theory in
reference [23]. We note en passant that the density of fermionic
quasi-particles is exponentially small in 1/T and is directly
omitted by hydrodynamic theory.

13We also require thatmcl/~ > 1, where c is the T = 0 sound velocity, so that the elementary
excitations of the system remain phononic over the whole domain D. This condition is weaker than

the already assumed one, lρ1/3 ≫ 1, in the strongly interacting regime or in the BCS limit, since
c is then of the order of the Fermi velocity. It must be added explicitly in the so-called BEC limit,
where the fermion pairs can be considered as bosons and form a weakly interacting condensate.

6 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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The steps that follow are rather usual. One starts form the
equations of motion of the fields in Heisenberg picture, that
is the quantum continuity equation and the quantum Euler
equation for the potential (whose gradient gives the quantum
Euler equation for the velocity):

∂tρ̂+ div

[

1

2
{ρ̂, v̂}

]

= 0 [36]

~∂tφ̂ = −1

2
mv̂2 − µ0,0(ρ̂) [37]

where {Â, B̂} = ÂB̂ + B̂Â is the anticommutator of two op-
erators and

µ0,0(ρ) =
d

dρ
e0,0(ρ) = e′0,0(ρ) [38]

is the bare ground state chemical potential at density ρ. These
equations originate from the Hamiltonian

Ĥhydro = l3
∑

r

[

1

2
mv̂ · ρ̂v̂ + e0,0(ρ̂)

]

[39]

The quantum spatial density and phase fluctuations are weak
provided that ρ1/3l is large enough; the thermal ones are weak
if in addition qthl is small enough14. Under these conditions
one can linearize as in [22] the equations of motion around the
spatially uniform solution:

ρ̂(r, t) = ρ̂0 + δρ̂(r, t) [40]

φ̂(r, t) = φ̂0(t) + δφ̂(r, t) [41]

The operator ρ̂0 reduces to N̂/L3, where N̂ is the operator
giving the total number of particles, and is a constant of mo-

tion. The operator φ̂0 is the phase operator of the condensate;
one has here

φ̂0 = θ̂0/2 [42]

since the phase operator θ̂0 in equation (2) takes the pairs
as the building block, whereas equations (36,37) are build on

the fermionic particles. The spatial fluctuations δρ̂ and δφ̂,
of vanishing (discrete) integral over the whole space, can be
expanded on the plane waves of non-zero wave vector q, and
commute with ρ̂0. One solves the linearized equations for δρ̂

and δφ̂ and one can use the usual expansion on eigenmodes:

δρ̂(r, t) =
ρ̂
1/2
0

L3/2

∑

q∈ 2π
L

Z3∗∩D

(

~q

2mĉ0,0

)1/2

(B̂q + B̂†
−q) e

iq·r [43]

δφ̂(r, t) =
−i

ρ̂
1/2
0 L3/2

∑

q∈ 2π
L

Z3∗∩D

(

mĉ0,0
2~q

)1/2

(B̂q − B̂†
−q) e

iq·r [44]

where the creation operator B̂†
q and the annihilation opera-

tor B̂q of a phonon with wave vector q and energy ~qĉ0,0 obey

bosonic commutation relations [B̂q, B̂
†
q′ ] = δq,q′ and where we

introduced the zero-temperature bare sound velocity operator

ĉ0,0 ≡
(

ρ̂0µ
′
0,0(ρ̂0)

m

)1/2

[45]

It remains to expand the right-hand side of (37) up to second

order in δρ̂ and δθ̂, to extract the zero wave vector Fourier
component, to perform a coarse grained temporal average to

get rid of the oscillating crossed terms B̂qB̂−q and B̂†
−qB̂

†
q,

and to use the identity

d

dρ
[ρµ′

0,0(ρ)]
1/2 =

µ′
0,0(ρ) + ρµ′′

0,0(ρ)

2[ρµ′
0,0(ρ)]

1/2
[46]

to obtain

~
d

dt
φ̂0

t

= −µ0,0(ρ̂0)−
∑

q∈ 2π
L

Z3∗∩D

(

~q
d

dN̂
ĉ0,0

)(

B̂†
qB̂q +

1

2

)

[47]
At this order of the expansion, one can collect in (47) the
zero-point contribution of the modes (the term 1/2 in be-
tween parentheses) and the bare chemical potential µ0,0(ρ̂0)
to form the true chemical potential µ0(ρ̂0) of the fluid at zero
temperature, and one can identify ĉ0,0 in the prefactor of the

phonon number operator B̂†
qB̂q with the true sound velocity

at zero temperature, ĉ0 ≡ [ρ̂0µ
′
0(ρ̂0)/m]1/2. One then obtains

the (low temperature) phononic limit of relation (8), without
any constraint on the interaction strength.

Appendix C: Thermodynamics of non interacting quasi

particles, application to the unitary gas
In this supplementary section we explain how to obtain the
approximated expression (21) giving the blurring time of the
unpolarized unitary Fermi gas, prepared in thermal equilib-
rium in the canonical ensemble. The gas is here spatially
homogeneous in a cubic quantization volume V = L3 with
periodic boundary conditions. The approach we shall use is a
variant of the one used in reference [29] and it requires that
the temperature is sufficiently low.
Effective Hamiltonian at low energy: At low energy we
expect that the partition function and the thermodynamic
quantities of the gas can be deduced with good accuracy from
an effective low energy Hamiltonian

Heff = E0(N,V ) +
∑

γ

ǫγ(N,V )b̂†γ b̂γ [48]

where N is the total number of particles in the gas, E0(N,V )
is its ground state energy in the quantization volume V , and
the excited energy levels are those of an ideal gas of quasi-

particles whose creation and annihilation operators are b̂†γ and

b̂γ and whose dispersion relation γ 7→ ǫγ(N, V ) depends on N
and V , but not on the temperature.

We do not need at this stage to specify the ensemble of
variation of the index γ and the quantum statistics (bosonic

or fermionic) of the operators b̂γ , nor the dispersion rela-
tion. In practice the index γ will represent a composite index
(B,q) or (F,k, σ), q or k being the quasi-particle wave vector,
σ = ±1/2 is a spin index, and s ∈ {B,F} labels the excitation
branch which is bosonic (with a phononic start at q → 0) or
fermionic (displaying an energy gap and varying quadratically
with k around its minimum).
Going back to the canonical ensemble: The expres-
sion (13) involves the microcanonical chemical potential
µmc(N, V,E) and its derivative with respect to the total energy
E. In the limit of a large system however, the microcanonical
and canonical chemical potentials can be identified provided
the two ensembles have the same mean energy, that is the
canonical mean energy Ecan(N,V, T ) for a well chosen tem-
perature T coincides with the energy E of the microcanonical

14One first checks that the density fluctuations on a given lattice site are small in relative value,
using (43). At T = 0, 〈δρ̂2〉/ρ2 ≈ ~

mcl
1

ρl3
≪ 1, using (34) and the note 13. At T > 0,

there is the additional thermal contribution ≈ ~

mcl

(kthl)4

ρl3
which is ≪ 1 for the same reasons.

Second, one checks that the phase fluctuations between two neighboring lattice sites are small in ab-
solute value. To this end, one notes from (44) that l2〈(grad δθ̂)2〉 = (mcl/~)2〈δρ̂2〉/ρ2 .
To conclude, it remains to use mc/(~ρ1/3) = O(1), a property that holds in the whole BEC-

BCS crossover, as well as the previous estimates of 〈δρ̂2〉/ρ2 .

Footline Author PNAS Issue Date Volume Issue Number 7
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ensemble [12]:

µmc(N, V,Ecan(N,V, T )) ≃ µcan(N,V, T ) [49]

By taking the derivative with respect to T , one then obtains

∂Eµmc(N,V,Ecan(N,V, T )) ≃ ∂Tµcan(N,V, T )

∂TEcan(N, V, T )
[50]

The free energy and its derivatives: The partition func-
tion of the effective Hamiltonian in the canonical ensemble at
temperature T is simply given by

Z = e−βE0
∏

γ

∑

{nγ}
e−βnγǫγ [51]

where β = 1/(kBT ) and where the occupation numbers nγ
vary in the ensemble {0, 1} for the Fermi statistics and in that
of the natural integers N for the Bose statistics. The free en-
ergy F = −kBT lnZ can then be written as

F = E0 − kBT
∑

γ

ln





∑

{nγ}
e−βnγǫγ



 [52]

By taking the derivative of F with respect to the tempera-
ture or the number of particles, one obtains the mean energy,
the energy variance and the chemical potential of the gas in
the canonical ensemble:

Ecan = ∂β(βF ) = E0 +
∑

γ

ǫγ n̄γ [53]

VarcanE = kBT
2∂TEcan [54]

µcan = ∂NF = µ0 +
∑

γ

(∂Nǫγ)n̄γ [55]

where
µ0 ≡ ∂NE0 [56]

is the chemical potential of the gas at zero temperature, that
is in the absence of quasi-particles, and where

n̄γ ≡
∑

{nγ} nγe
−βnγǫγ

∑

{nγ} e
−βnγǫγ

[57]

is the mean number of quasi-particles in the mode γ following
the Bose or Fermi-Dirac distribution. We have now at hand
all the useful expressions to determine the blurring time tbr in
equation (13) when the Fermi gas is prepared in the canonical
ensemble.
Dispersion relations: The idea is reduce the dispersion re-
lations of the two excitation branches, that are not known
exactly, to their essential feature at low temperature. The
bosonic branch is reduced to its phononic start at q → 0, i.e.
we take a linear dispersion relation corresponding to the sound
velocity c of the zero temperature gas,

ǫB,q ≃ ~cq [58]

the cutoff at large q being ensured by the Bose law n̄B,q ≃
[exp(β~cq) − 1]−1. In the thermodynamic limit, the mean
phonon energy and its derivative with respect to T are then
given by

EB,can =
π2

30
V
(kBT )

4

(~c)3
[59]

∂TEB,can =
2π2

15
V
kB(kBT )

3

(~c)3
[60]

The sound velocity and the contribution µB,can of the phonons
to the gas chemical potential can be obtained very simply at
the unitary limit. Indeed, due to scaling invariance, the zero
temperature equation of state reduces to µ0 = ξεF , where the
Bertsch parameter ξ, a number, has been precisely measured
[8], and

εF =
~
2

2m

(

3π2N

V

)2/3

[61]

is the Fermi energy of an ideal unpolarized gas of spin 1/2
fermions with the same total density ρ = N/V as the unitary
gas, m being the mass of a fermion. Then the exact hydrody-
namic relation mc2 = ρ d

dρ
µ0 simplifies into mc2 = 2

3
µ0 and c

varies as ρ1/3, so that ∂NǫB,q = ǫB,q/(3N) in equation (55)
and

µB,can =
1

3N
EB,can [62]

∂TµB,can =
1

3N
∂TEB,can [63]

The fermionic branch at unitarity has a minimum, the gap
∆, for k = k0, around which it varies quadratically [30], which
should be a sufficient description at low temperature, as the
dominant contribution to the free energy and to its derivatives
should come from a neighbourhood of this minimum. We then
take as in reference [30]

ǫF,k,σ ≃ ǫk ≡ ∆+

(

~
2k2

2m
− ~

2k20
2m

)2

2f0
[64]

where we recall that σ = ±1/2. The values of the parame-
ters ∆ and k0 have been measured [31], while the curvature
parameter f0 has only being estimated theoretically [30].

According to equation (53), the mean energy corresponding
to fermionic quasi-particles in the thermodynamic limit is

EF,can = 2V

∫

R3

d3k

(2π)3
ǫk

eβǫk + 1
[65]

To leading order in temperature, one can neglect the 1 with
respect to exp(βǫk) ≥ exp(∆/kBT ) ≫ 1 in the denominator,
making an exponentially small error when T → 0 ; within the
same order of approximation, after integrating over the direc-
tion of k, one can extend the integration over the modulus k
to the whole real axis, using (64) for all k ∈ R. This gives

EF,can ≃ V e−β∆

π2

∫

R

dk k2ǫke
−β(ǫk−∆) [66]

where we made evident the activation law associated to the
width ∆ of the energy gap. When T → 0, the Boltzmann
factor e−β(ǫk−∆) gets more and more peaked around its max-
imum, reached in k = k0 and of value 1, with a width in k
that goes to zero as T 1/2. One then makes an error that is
polynomial in T (more precisely, it is a linear combination of
kBT/∆ and m2kBTf0/(~

2k20)
2) when one replaces the prefac-

tor by its leading approximation, k2ǫk ≃ k20∆, and when one
quadratizes the dispersion relation in the exponential:

ǫk −∆ ≃ 1

2f0

[

~
2k0(k − k0)

m

]2

[67]

It is then simple to perform the resulting Gaussian integral,
and to calculate the derivative of the result with respect to

8 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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T to leading order, that is here by differentiating only the
activation factor exp(−β∆):

EF,can ≃ V

π2

mk0
~2

(2πf0kBT )
1/2∆e−β∆ [68]

∂TEF,can ≃ ∆

kBT 2
EF,can [69]

Again for the spectrum (64), the fermionic quasi-particles
contribution to the chemical potential in the thermodynamic
limit is, according to equation (55),

µF,can = 2V

∫

R3

d3k

(2π)3
∂N ǫk

eβǫk + 1
[70]

As we have just seen, for T → 0 we are led to approximate
∂Nǫk with ∂N∆ in the prefactor of the thermal occupation
number. Considering the scale invariance of the unitary gas,
which imposes ∆ ∝ ρ2/3, we immediately obtain to leading
order in T :

µF,can ≃ 2

3N
EF,can [71]

∂TµF,can ≃ 2

3N
∂TEF,can [72]

In terms of the ratio r: One obtains a relatively simple
expression of the blurring time by introducing the dimension-
less ratio r between the contributions of the bosonic and the
fermionic branch to ∂TEcan, that is to the denominator of the
right hand side of equation (50):

r ≡ ∂TEF,can
∂TEB,can

∼
T→0

10(2π)1/2

31/2π4

ǫ
1/2
0 f

1/2
0 µ

3/2
0 ∆2

(kBT )9/2
e−β∆ [73]

where we introduced ǫ0 = ~
2k20/(2m) and we used equations

(60,69). By replacing the parameters with their approximated
values given just above equation (21), one obtains the expres-
sion of r given below this same equation. Thanks to the scale
invariance of the unitary gas, the ratio between the bosonic
and the fermionic contributions to ∂Tµcan is simply related to
r at low temperature, see equations (63,72):

∂TµF,can
∂TµB,can

∼
T→0

2
3N
∂TEF,can

1
3N
∂TEB,can

= 2r [74]

so that one arrives at the approximation

N∂Tµcan

∂TEcan
≃ 1 + 2r

3(1 + r)
[75]

where µcan is the full chemical potential of the gas and Ecan

its total mean energy when it is prepared in the canonical en-
semble. One easily obtains the energy variance by using the
general relation (54) and (61) to eliminate the volume V :

1

N
VarcanE ≃ 33/2π4

20
(1 + r)

(kBT )
5

ε
3/2
F µ

3/2
0

[76]

Last, one has to combine these relations with the identity

(2tbr/~)
−2 =

(

∂T µcan

∂TEcan

)2

VarcanE which follows from the equa-

tions (13,50), to finally obtain

N~
2

(εF tbr)2
≃ 33/2π4

45

(1 + 2r)2

(1 + r)

(

εF
µ0

)3/2 (
kBT

εF

)5

[77]

from which equation (21) which we wanted to justify, is ob-
tained by simple numerical substitution.

Appendix D: phase diffusion coefficient of the unitary

Fermi gas at low temperature
This supplementary section explains how to obtain the expres-
sion (22) of the diffusion coefficient D(E,N) of the conden-
sate phase in a spatially homogeneous unpolarized spin 1/2
unitary Fermi gas prepared in the microcanonical ensemble.
We start from equation (10) and compute the right-hand-side
by a straightforward adaptation of the kinetic equations ap-
proach of reference [18]. This adaptation consists mainly in a
rescaling of the wave vectors, of the excitation spectrum and
of the Beliaev-Landau scattering amplitudes.
Principle of the computation of D from kinetic equa-
tions: Let us first recall why γλ = D(Eλ, Nλ) as it is ex-
pressed in (10) can be obtained from kinetic equations, as done
in detail in reference [18]. Replacing the derivative of the phase
by its coarse grained average (8) yields time integrals of the
quasi-particles occupation numbers n̂s,α correlation functions.
When the quasi-particles are weakly interacting, the state of
the system at time zero can be seen as a microcanonical sta-
tistical mixture of Fock states |(ns,α)〉 of quasi-particles with
well-defined integer occupation numbers ns,α. All one needs
is then to determine the correlation functions15

〈(ns,α)|n̂s2,α2(t)n̂s1,α1(0)|(ns,α)〉 =
〈(ns,α)|n̂s2,α2(t)|(ns,α)〉ns1,α1(0) [78]

hence the evolution of the mean quasi-particle number in each
mode when the interactions among them are taken into ac-
count. This is exactly the purpose of kinetic equations. In
a typical initial configuration, the occupation numbers (ns,α)
are in practice very close to their microcanonical mean value
(n̄s,α), where n̄s,α = 〈n̂s,α〉, and 〈. . .〉 is the microcanonical
average, and the kinetic equations can therefore be linearized
around the set of n̄s,α. After performing the average over the
initial Fock states, we obtain the system

d ~X(t)

dt
=M ~X(t) [79]

where M is the matrix of the linearized kinetic equations re-
stricted to the subspace δE = 0 of zero energy fluctuation
(that is the subspace of vectors ~x satisfying ~ǫ · ~x = 0, with ~ǫ
the vector of coordinates the energies (ǫs,α)) and the unknown

vector ~X(t) contains the correlation functions

Xs,α(t) ≡ 〈(n̂s,α(t)− n̄s,α)
[

− dθ̂0
dt

t

(0)
]

〉

=
∑

s′,α′

As′,α′〈(n̂s,α(t)− n̄s,α)(n̂s′,α′(0)− n̄s′,α′)〉 [80]

Here ~A is the vector whose coordinates are the coefficients of

n̂s,α in − dθ̂0
dt

t

, that is, from equation (8) 16 :

As,α =
2

~

d

dN
ǫs,α [81]

15 At this level of approximation, δλ = 0 in equation (10), since the correlation function in (78)
is real.
16Equation (8) has a factor 2 with respect to its equivalent (2) in [18], hence the factor 2 in the

numerator of As,α. Since ~X(0) is a linear function of ~A, see (80), this leads in turn to a factor
4 in D.

Footline Author PNAS Issue Date Volume Issue Number 9
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The computation of the initial value ~X(0) is done in details in
reference [18] and will be sketched later on. The phase diffu-

sion coefficient D follows from ~X(t) by a time integration :

D =

∫ +∞

0

dt ~A · ~X(t) = −(P ~A) ·M−1 ~X(0) [82]

The projector P , hermitian conjugate of the projector onto the
zero energy fluctuation subspace 17, subtracts the component
parallel to the energy vector ~ǫ, i.e. P~ǫ = ~0. We act with it on
~A in (82) when a multiplication by the matrix M−1 defined
only in the sub-space δE = 0 occurs. Such a precaution is

unnecessary for ~X(0) since by construction ~ǫ · ~X(0) = 0 in the
microcanonical ensemble18.
Importance of the curvature of the excitation spec-
trum: We now consider a gas of fermions prepared in the
microcanonical ensemble at an arbitrarily small yet non zero
temperature T . We can then neglect the fermionic branch of
excitations and limit ourselves to the region of arbitrarily small
wave vectors q of the bosonic one. This is the validity range of
Landau and Khalatnikov’s quantum hydrodynamics (see our
supplementary information) which we shall use. A physically
interesting point, already mentioned by Landau and Khalat-
nikov in their calculation of the viscosity of Helium III [22], is
that taking a linear approximation for the excitation spectrum
leads to wrong conclusions. Indeed, even to leading order in
T the result does depend on the dimensionless curvature pa-
rameter γ defined as

ǫB,q =
~q/(mc)→0

~cq +
γ~3q3

8m2c
+O(q5) [83]

where c is the zero temperature sound velocity andm the mass
of a fermion. The role of γ is double: First, its sign distin-
guishes between two worlds in the formalism of the kinetic
equations: when γ > 0 the bosonic quasi-particles interaction
processes of the type 2 → 1 or 1 → 2 (two quasi-particles
disappear and a new one is formed, or the other way around,
see figure 3) dominate at low temperature whereas they are
forbidden by energy conservation when γ < 0 and the 2 → 2
processes take over. Second, the absolute value of γ also mat-
ters as suggested by the result of reference [22] for the viscosity
which depends on |γ| even to leading order in T . We expect
a similar behavior for D: with a bosonic branch linear in q,

we are condemned to have − ~

2
dθ̂0
dt

t

− µ0(N̂) [in (8) and lim-
ited to the bosonic branch s = B] proportional to the energy
of the quasi-particles

∑

q
ǫB,qn̂B,q, a constant of motion for

the kinetic equations, hence not subject to diffusion. We thus
expect the phase diffusion coefficient to vanish, D → 0, in the
limit of a spectrum with zero curvature19.

q

k k’

q k

k’

Beliaev Landau

Fig. 3. Bosonic quasi-particles interaction processes 1 → 2 (Beliaev) and

2 → 1 (Landau) involving wave vectors q, k and k′, with k′ = q − k and

k′ = q+ k respectively.

Kinetic equations for the unitary gas at low temper-
ature: At unitarity, the numerical calculation of the bosonic
excitation spectrum according to the equation of reference [21]
yields a curvature parameter γ which, thanks to scale invari-
ance, is a pure number independent of the density of the gas:

γ ≃ 0.1 [84]

Since γ > 0 the bosonic branch is convex in the vicinity of
q = 0, and we can focus on 2 → 1 and 1 → 2 quasi-particle
interaction processes. Qualitatively the situation is then simi-
lar to that of a weakly interacting Bose gas, and so should be
the kinetic equations. Quantitatively however there are some
differences: the dispersion relation q 7→ ǫB,q is not the same,
nor are the dimensionless Landau-Beliaev scattering ampli-
tudes Aq

k1,k2
that appear in the Hamiltonian describing to

lowest order the interactions between the quasi-particles:

H2↔1 =
mc2

(ρL3)1/2

∑

q,k1,k2 6=0

Aq

k1,k2
δk1+k2,q

[

b̂†k1
b̂†k2

b̂q + h.c.
]

[85]
where ρ is the total density, L3 the volume of the quantiza-
tion box and the Kronecker δ ensures momentum conservation.
Despite these differences however, the low temperature limit

ε ≡ kBT

mc2
≪ 1 [86]

is universal, meaning that it does not depend on the micro-
scopic details of the physical system, since the wave vectors
appearing in the kinetic equation have a small typical thermal
value

qtherm ≈ kBT

~c
= ε

mc

~
≪ mc

~
[87]

Let us explain in two steps why and how this universal limit
for D is obtained.
Limit of the matrix M when ε → 0: First, one can artifi-
cially rewrite (83) in a way that mimics the Bogoliubov form
(the true Bogoliubov spectrum is obtained setting γ = 1) and
which is valid up to order 3 in ~q/(mc) :

ǫB,q ≃
[

~
2q2

2m

(

2mc2 +
γ~2q2

2m

)]1/2

[88]

At the thermodynamic limit, the kinetic equation of the time
derivative of the mean number of quasi-particles of wave vec-
tor q contains an integral over the wave vectors k1 and k2

involved in the corresponding 2 ↔ 1 processes (see figure 3).
Integrating over one of those wave vectors, say k′, is straight-
forward thanks to the momentum conservation Dirac δ. In-
tegrating over the angle between q and the remaining wave
vector k is harder, but can be done analytically for the Bo-
goliubov spectrum thanks to the energy conservation Dirac δ
[18]. This calculation, which yields k′ as a function of k and q,
can be recycled here by simply adapting it to the Bogoliubov-
like spectrum (88) 20. Using the rotational invariance of the
unknowns XB,q(t) there remains a one dimensional integral
over the wave vector k.

17Careful, these are not orthogonal projectors, see equation (41) of reference [18].
18This is actually true at all times ~ǫ · ~X(t) = 0, ∀t > 0, since the energy is conserved by the
kinetic equations.
19Mathematically, this results from the fact that P ~A = 0 in (82) since ~A is then colinear to ~ǫ.
20This amounts to replacing 1+ǩ′2 by 1+γǩ′2 and 1+ǩ′′2 by 1+γǩ′′2 in the denominators
of equations (A9) and (A10) of reference [18]. Equation (A10) and (A11) of the same reference are

also changed to γǩ′2 =
√

1 + γ(ǫ̌q + ǫ̌k)2 − 1 and γǩ′′2 =
√

1 + γ(ǫ̌k − ǫ̌q)2 − 1.

We have introduced the rescalings ǩ = ~k/(
√
2mc) and ǫ̌k = ǫB,k/(mc

2).
21Our rescaling procedure mainly amounts to replacing ρg by mc2 in [18] since in a weakly

interacting Bose gas, mc2 = ρg where g is the s-wave coupling constant..

10 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Second, the limit ε→ 0 is taken in the kinetic equation after
rescaling the wave vectors to their typical thermal value:

q̃ ≡ ~qc√
2kBT

[89]

and the time t to the inverse of the typical collision rate be-
tween quasi-particles:

t̃ ≡ ε5
(
√
2mc

~

)3
mc2

2π2~ρ
t [90]

The dimensionless rescaled quantities q̃, k̃ and t̃ are kept con-
stant when taking the limit. Definitions (89) and (90) are
consistent with equations (D4,A5,A7) of reference [18], up to
the inclusion of a trivial ε5 factor in t̃. Similarly the definition
(86) is consistent with equation (D1) of the same reference21.
Doing so, we find that the dependence on the curvature pa-
rameter γ disappears from the coefficients of the kinetic equa-
tions, hence from M . To leading order in ε, only the sign γ
matters (it allows resonant 2 ↔ 1 processes) not its absolute
value. In particular, as shown by expanding the quantum hy-
drodynamic Hamiltonian (39) up to order three in density (43)
and phase (44) fluctuations, the scattering amplitudes for the
unitary gas have an equivalent independent of γ:

Aq

k,k′ ∼
ε→0

3(1 + Λ)

27/4
ε3/2(q̃k̃k̃′)1/2 [91]

Ak′

k,q ∼
ε→0

3(1 + Λ)

27/4
ε3/2(q̃k̃k̃′)1/2, [92]

Momentum and energy conservation lead to k̃′ = q̃ − k̃ in the
right-hand-side of (91) and to k̃′ = q̃+ k̃ in the right-hand-side
of (92). In other words, at low energy the only resonant 2 ↔ 1
scattering processes are those where the three wave vectors
are almost colinear. We have introduced

Λ =
ρµ′′

0 (ρ)

3µ′
0(ρ)

[93]

where µ0(ρ) is the zero temperature chemical potential, such
that mc2 = ρµ′

0(ρ). Here Λ = −1/9 since the scale invari-

ance of the unitary gas leads to µ0(ρ) ∝ ρ2/3. For a weakly
interacting Bose gas, µ0(ρ) ∝ ρ, hence Λ = 0 and equations
(91,92) reproduce equations (D8) and (D9) of reference [18],
as they should. Altogether this leads to the kinetic equations
for the correlation functions (80) by introducing the notations
XB,q(t) ≡ Xq̃(t̃) and n̄B,q ≡ n̄q̃ :

d

dt̃
Xq̃ = −(Γ̃

(B)
q̃ + Γ̃

(L)
q̃ )Xq̃ +

9π

4
(1 + Λ)2

[∫ +∞

0

dk̃k̃2(q̃ + k̃)2

× (n̄k̃+q̃ − n̄q̃)Xk̃ +

∫ +∞

q̃

dk̃k̃2(q̃ − k̃)2(1 + n̄k̃−q̃ + n̄q̃)Xk̃

+

∫ q̃

0

dk̃k̃2(q̃ − k̃)2(n̄q̃−k̃ − n̄q̃)Xk̃

]

[94]

where

Γ̃
(B)
q̃ =

9π

8
(1 + Λ)2

∫ q̃

0

dk̃k̃2(q̃ − k̃)2(1 + n̄k̃ + n̄q̃−k̃) [95]

Γ̃
(L)
q̃ =

9π

4
(1 + Λ)2

∫ +∞

0

dk̃k̃2(q̃ + k̃)2(n̄k̃ − n̄k̃+q̃), [96]

that with we successfully compare to (D10,D11,D12) of ref-
erence [18]. Note that we have obtained the Beliaev-Landau

decay rates Γ̃
(B)
q̃ and Γ̃

(L)
q̃ of the quasi-particle of wave vector

q. They are dimensionless and rescaled according to (90).

Limit of ~X(0) and P ~A and behaviour of D when ε→ 0:
To leading order in ε, the curvature parameter γ only ap-

pears in the initial value ~X(0) of the unknown vector and in

the projection P ~A of the coefficient vector, see (82). These
two quantities are in fact proportional to γ. The initial value
~X(0) is obtained by acting with the microcanonical quasi-

particle numbers covariance matrix on the vector ~A of equa-
tion (81). This covariance matrix appearing in (80) is de-
rived by applying the projector onto the zero energy fluctua-
tion subspace and its hermitian conjugate to the well-known
canonical covariance matrix, see equations (21,41,47,48,49)
of reference [18] for the derivation and equation (43) of the
same reference setting η = 0 for the final result. The pa-

rameter γ appears in the coordinates of ~A, and more indi-
rectly in the covariance matrix through the occupation num-
bers n̄B,q = 1/[exp(ǫB,q/kBT )− 1], which themselves depend
on the energies ǫB,q and therefore on γ. The rather long en-
suing calculation follows step-by-step the one conducted in
[18]. The starting point are the low-temperature expansions
for fixed q̃

ǫB,q =
ε→0

√
2kBT q̃

[

1 +
1

4
γε2q̃2 +O(ε4)

]

[97]

~AB,q =
ε→0

2
√
2

3N
kBT q̃

[

1− 1

4
γε2q̃2 +O(ε4)

]

[98]

where, in the second relation, we have used Ndc/dN = c/3
and dγ/dN = 0, a consequence of the scale invariance. The

result for ~X(0) is 4γ/3 times that of [18] for the same value
of ε, provided we express them both in units of the quantity
mc2/(N~) corresponding to the considered system (weakly in-
teracting Bose gas or unitary Fermi gas) and we consider them
as functions of the corresponding q̃ as in (A17) and (D14) of
reference [18]. The same conclusion holds for the projection

P ~A for which one can refer to equations (A16) and (D13) of
reference [18]. Introducing the constant c1 obtained by nu-
merically solving the kinetic equations (94) for Λ = 0, see
equations (50) and (D17) of [18],

c1 ≃ 0.3036 [99]

we finally obtain the phase diffusion coefficient of the unitary
Fermi gas to leading order in temperature

~ND

mc2
∼
T→0

(4γ/3)2

(1 + Λ)2
c1

(

kBT

mc2

)4

[100]

Using the experimental numerical value of the parameter
ξ of the equation of state µ0(ρ) = ξεF where εF ≡
~
2(3π2ρ)2/3/(2m), see the body of the article, leads to
mc2/εF = 2ξ/3 = 0.251 and to the expression of D given
in (22).
In short : Let us now give a synthetic, if not convincing, ex-
planation of the result (100), starting from the one obtained

in [18], ~ND/(mc2) = c1
(

kBT/mc
2
)4
, and keeping track of

all the corrective factors allowing to pass from the weakly in-
teracting Bose gas to the unitary Fermi gas. Knowing that D

is a quadratic function of ~A (see equations (80,82)): (i) the

factor 2 in the coefficients of dθ̂0
dt

t

, see equation (81), leads
to a factor 4 in D, (ii) the equation of state is changed from

µ0(ρ) ∝ ρ to µ0(ρ) ∝ ρ2/3 hence (N/c)dc/dN changes from

1/2 to 1/3, which leads to a factor 2/3 in ~A, hence a factor

4/9 in D, (iii) P ~A and ~X(0), that are equal to zero for an
excitation branch purely linear in q, are proportional at low
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temperature to the curvature parameter γ, which is equal to 1
in [18], hence a factor γ2 in D. All this explains well the factor
(4γ/3)2 in the numerator of equation (100). Last, the factor
(1 + Λ)2 in the denominator of (100) originates from the fact
that the Beliaev-Landau amplitudes for the unitary gas are
(1+Λ) times those of the weakly interacting Bose gas (for the
same rescaled infinitesimal wave vectors), which increases the
correlation time of the quasi-particle occupation numbers, and
hence D, by a global factor (1 + Λ)−2. Keeping equation (55)

of reference [18] in mind, this further leads to the expression

of the finite correlation time τc of d
dt
θ̂0 induced by collisions

among quasi-particles,

τc ∼
T→0

c3
(1 + Λ)2

~ρ

mc2ε5

(

~√
2mc

)3

with c3 ≃ 0.05472 [101]

whose value for the unitary gas is given in the footnote 12 of
our paper.
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