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UPMC-Sorbonne Universités, Collège de France, Paris, France

Coherent gases of ultracold atoms confined in immaterial non-dissipative traps are unique exam-
ples of isolated macroscopic quantum systems. The value of their intrinsic coherence time is then a
fundamental question. But it is also a practical issue for all the applications which exploit macro-
scopic coherence, such as interferometry [1], or quantum engineering where one generates non-trivial
entangled states by coherent evolution [2–4]. Coherence time measurements are presently being per-
formed in cold Bose gases [5–7]. Experiments on Fermi gases, that up to now focussed on traditional
aspects of the N-body problem, such as thermodynamic properties [8, 9], are moving towards cor-
relation and coherence measurements [10]. This turn will open a new research field, including the
strong coupling regime : that of fermionic quantum optics [11]. However a theory predicting the
coherence time of a pair-condensed Fermi gas was missing, except in the limiting case of zero tem-
perature [12]. In this paper we present the first microscopic theory bridging this theoretical gap in
a general way. Our results hold for other physical systems, such as mesoscopic Josephson Junctions,
provided that the environment-induced decoherence is sufficiently reduced.

Setting the stage: For a Bose-condensed gas of bosons,
the finite coherence time is due to the spreading of the
condensate phase probability distribution. At zero tem-
perature and in presence of interactions, a ballistic phase
spreading is caused by atom number fluctuations in the
sample. This effect has been measured by interfering
two initially mutually-coherent condensates, whose par-
ticle number fluctuates due to partition noise [5, 7]. Con-
trarily to lasers, which are open quantum systems, and
somehow unexpectedly [13], a ballistic spreading persists
in Bose-Einstein condensates for a fixed atom number
at non-zero temperature [14, 15]. Fluctuations of the en-
ergy, another conserved quantity, then play the same role
as number fluctuations.
For a unpolarized pair-condensed Fermi gas, the study

of coherence time presupposes a clear definition of the

condensate phase and of the corresponding operator θ̂0
[12]. Furthermore, at non-zero temperature the speed
of variation of the phase should include the contribution
of two excitation branches: the fermionic pair-breaking
one and the bosonic one exciting the pair motion. For
the fermionic branch Anderson’s Random Phase Approx-
imation (RPA) [16] is enough. For the bosonic branch
however, we need the equivalent for fermions of the Bo-

goliubov method to construct quasiparticle creation b̂†α
and annihilation b̂α operators, and to express dθ̂0/dt in
term of these operators. More than that, we need to in-
clude interactions among quasiparticles in the evolution

of the b̂α. This is a non-trivial consequence of the depen-
dence of condensate wavefunction on the total number
of particles N even for a spatially homogeneous system,
and clearly goes beyond the RPA program.
Correlation function decay: Below the critical temper-

ature, the time-correlation function of the pairing field

ψ̂↓(r)ψ̂↑(r
′) where ψ̂σ(r) is the fermionic field operator

of the spin σ component, is dominated at long times by
the condensate contribution:

g1(t) = 〈â†0(t)â0(0)〉 (1)

where â0 =
∫

d3rd3r′ϕ0(r, r
′)ψ̂↓(r)ψ̂↑(r

′) is the compo-
nent of the pairing field on the condensate wavefunction
[12]. At equilibrium the system is in a mixture of N -
body eigenstates |ψλ〉, with weights Πλ. We then study
the correlation function gλ1 (t) in the eigenstate |ψλ〉 of
energy Eλ and particle number Nλ. To exploit the weak
relative fluctuations in the number of condensed pairs
for a large system, we split â0 into modulus and phase
hermitian operators [12].

â0 = eiθ̂0N̂
1/2
0 , (2)

and we approximate N̂0 by its mean value N̄0 in the
equilibrium state, to obtain

gλ1 (t) ≃ N̄0e
iEλt/~〈ψλ|e

−i(Ĥ+Ŵ )t/~|ψλ〉 (3)

The operator Ŵ , difference between Ĥ transformed by

eiθ̂0 and Ĥ ,

Ŵ = e−iθ̂0Ĥeiθ̂0−Ĥ = −i[θ̂0, Ĥ]−
1

2
[θ̂0, [θ̂0, Ĥ ]]+. . . (4)

is approximatively N times smaller than Ĥ. Indeed eiθ̂0 ,
like â0, changes the total particle number by a quan-
tity O(N0). While Ĥ is an extensive observable, Ŵ is
intensive. In equation (3) formally appears the evolu-

tion operator of the Hamiltonian Ĥ perturbed by Ŵ ,
and restricted to the eigenstate |ψλ〉 of Ĥ. Up to a
phase factor, the function gλ1 /N̄0 is then proportional
to the probability amplitude that the system prepared
in |ψλ〉 is still in that state after a time t. A standard
way to obtain a non-perturbative approximation of this
amplitude is to use the Green function or the resolvant

operator Ĝ(z) =
(

z1̂− (Ĥ + Ŵ )
)−1

of the perturbed

Hamiltonian. Within the projectors method [17], we in-

troduce an effective non hermitian Hamiltonian Ĥeff(z)
governing the evolution restricted to |ψλ〉, which gives
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〈ψλ|Ĝ(z)|ψλ〉 =
(

z − 〈ψλ|Ĥeff(z)|ψλ〉
)−1

. Keeping in

Ĥeff(z) terms up to order two in Ŵ and neglecting its

z dependence Ĥeff(z) ≈ Ĥeff(Eλ+ i0+) (pole approxima-
tion), we obtain

gλ1 (t) ≃ N̄0e
−it〈ψλ|Ŵ |ψλ〉/~e−(iδλ+γλ)t (5)

Introducing Q̂λ = 1̂− |ψλ〉〈ψλ|, the projector orthogonal

to |ψλ〉, and the notation 〈Â〉λ ≡ 〈ψλ|Â|ψλ〉 one has:

~(δλ − iγλ) = 〈Ŵ Q̂λ
Q̂λ

(Eλ + i0+)Q̂λ − Q̂λĤQ̂λ
Q̂λŴ 〉λ

(6)
The leading term under the exponential in (5),

〈ψλ|Ŵ |ψλ〉, is of order N0 like Ŵ . A first step in its
interpretation is to remark that, according to the expan-

sion (4), Ŵ = ~dθ̂0/dt+O(1/N). We then use a central
relation, proved in the next section, giving the coarse

grained time average of dθ̂0/dt in a weakly excited gas

−
~

2

dθ̂0
dt

t

= µ0(N̂) +
∑

s=F,B

∑

α

dǫs,α
dN

n̂s,α (7)

The sum on the right hand side runs over both the gapped
quasi-particles fermionic branch of excitation (in the ho-
mogenous case α includes both a spin and an orbital in-
dex, α = k, σ) and the bosonic one which, in the ther-
modynamic limit and for an homogeneous system, has a
phononic behaviour (α is then only orbital, α = q). The
coarse grained time average is taken over a time long
with respect to the inverse of the quasi-particle eigen-
frequencies ǫs,α/~, yet short with respect to the typical
time-scale of variation of the occupation numbers n̂s,α.
Finally µ0(N) is the zero temperature chemical potential

of the gas with N particles. We interpret dθ̂0/dt as the
adiabatic derivative of the energy that is at fixed quasi-
particle populations. By taking the average of equation
(7) in the stationary state |ψλ〉 and using the Eigenstate
thermalization hypothesis [18] to identify the quantum
average in an eigenstate with the microcanonical aver-
age, we recognize the microcanonical chemical potential
µmc at energy Eλ and particle number Nλ and obtain:

〈ψλ|~
dθ̂0
dt

|ψλ〉 = −2µmc(Eλ, Nλ) (8)

The next-to-leading term under the exponential in (5),
is of order 1/N . In order to prove it, we express it in

terms of the correlation function of dθ̂0/dt in |ψλ〉:

γλ + iδλ =

∫ +∞

0

dt





〈

dθ̂0(t)

dt

dθ̂0(0)

dt

〉

λ

−

〈

dθ̂0
dt

〉2

λ





(9)
This is equivalent to (6) as can be checked by inserting
a closure relation. The t = 0 value of the integrand is

Varλ(dθ̂0/dt) = O(1/N) (this comes from adding up the
variances of independent quasi-particles numbers in the
canonical ensemble and overestimates the microcanon-
ical variance) ; the function then decays in a time τc
which is the typical collision time of quasi-particles and
hence the correlation time of the n̂s,α. Altogether we es-

timate |γλ+iδλ| ≈ τcVar(dθ̂0/dt) = O (1/N). The energy
shift δλ is thus of the same order in N as the neglected

term [θ̂0, [θ̂0, Ĥ ]] in Ŵ , that is N times smaller than (8);
we neglect it for a large system. In contrast, we keep
γλ, the only term leading to an exponential decay of the
correlation function gλ1 . It is in fact the phase diffusion
coefficient of a system prepared in the microcanonical en-
semble corresponding to |ψλ〉, γλ = D(Eλ, Nλ). Finally:

gλ1 (t) ≃ N̄0e
[2iµmc(Eλ,Nλ)/~−D(Eλ,Nλ)]t (10)

The final step is to take the statistical average over the
probability distribution Πλ of the states |ψλ〉. For large
N , we assume that energy and atom number fluctuations
around the mean values Ē and N̄ are weak in relative
value. This is the case if Πλ describes a canonical or
grand canonical ensemble. We assume Gaussian fluctu-
ations and linearize µmc around (Ē, N̄). To this order,
we keep only the central value D(Ē, N̄) of the next-to-
leading term. Altogether this leads to the main result of
this work :

g1(t) ≃ N̄0e
2iµmc(Ē,N̄)t/~e−t

2/2t2
bre−D(Ē,N̄)t (11)

At long times, the thermal blurring thus consists in a
Gaussian decay of the correlation function g1(t), with a
characteristic time

(2tbr/~)
−2 = Var

(

N
∂µmc

∂N
(Ē, N̄) + E

∂µmc

∂E
(Ē, N̄)

)

(12)
which diverges N1/2 for normal fluctuations. The phase
diffusion coefficient D leads to an exponential decay with
a characteristic time diverging as N . As expected it is
a subleading effect at long times, except if the system is
prepared in the microcanonical ensemble.
Microscopic derivation of the dynamical equation of the

phase : We give here the first (to our knowledge) micro-
scopic derivation of equation (7), relating the evolution
of the phase of a pair-condensed gas to what one could
call the chemical potential operator.
The contribution of the fermionic branch of excitations

to dθ̂0/dt can be obtained from the linearized equations
of motion for small fluctuations of the pair operators

ψ̂↓ψ̂↑, ψ̂
†
↑ψ̂

†
↓ and ψ̂†

σψ̂σ around the mean-field state [16].

Using equation (120) of reference [12] to extract the time

average of dθ̂0/dt, and rewriting equation (86) of [12]
in terms of the fermionic quasi-particle occupation num-
bers, we get

−
~

2

dθ0
dt

t

=
RPA

µ(N̄)+
dµ

dN̄
(N̂−N̄)+

∑

α=k,σ

dǫF,α
dN̄

n̂F,α (13)
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where ǫF,k,σ is the BCS excitation spectrum of an homo-
geneous system and N̄ the BCS average particle number
in the grand canonical ensemble of chemical potential µ
The result (13) does not include the contribution of the

phonon branch because at the linear order of the RPA
the phase of the condensate (formed of pairs at rest) is
not coupled to moving pairs operators. One could ex-
pect to obtain such coupling by pushing the expansion to
the quadratic order. Unfortunately the operators of the
RPA, although linearly independent, are linked by non-
linear relations, as one can see by rearranging the pair
operators using fermionic anticommutation relations. As
a consequence, if one inserts the modal expansion ob-
tained from the linearized equations of motion in a non-

linear expression such as dθ̂0/dt, the coefficient of b̂†qb̂q
is not uniquely determined. We then decided to treat
the nonlinearity with a variational approach based on a
time-dependent coherent state including moving pairs:

|ψ〉 = N (t) exp



b6
∑

r,r′

Γ(r, r′; t)ψ̂†
↑(r)ψ̂

†
↓(r

′)



 |0〉, (14)

Here N ensures normalization and the Γ(r, r′) form a
set of independent variables. The space has been dis-
cretized on a cubic lattice of step b, which we take
to zero in the end of the calculations. The field op-
erators obey anticommutation relations of the kind:

{ψ̂σ(r), ψ̂
†
σ′ (r′)} = δσ,σ′δr,r′/b

3. Reference [19] con-
structs from Γ(r, r′),Γ∗(r, r′) the set of canonically con-
jugate variables Φ(r, r′),Φ∗(r, r′). This field Φ has no

simple relationship with the usual pairing field 〈ψ̂↓ψ̂↑〉.
The square of its norm is exactly the mean number of
pairs in |ψ〉

N

2
= ‖Φ‖2 ≡ b6

∑

r,r′

|Φ(r, r′; t)|2. (15)

Its evolution is governed by the classical Hamiltonian:

H(Φ,Φ∗) = 〈ψ|Ĥ |ψ〉. (16)

In the following we will need only the invariance of
H under a global phase change Φ(r, r′) → eiγΦ(r, r′),
∀γ ∈ R (U(1) symmetry), consequence of the conserva-

tion of the particle number N̂ by evolution with Ĥ . At
zero temperature and for a fixed N the field Φ(r, r′) is
fixed, up to a global phase factor, into the minimizer
Φ0(r, r

′) = (N/2)1/2φ0(r, r
′) of H. φ0 is chosen real and

normalized to one. It depends on N even in the spa-
tially homogeneous case and differs from the condensate
wavefunction ϕ0 in the same way that Φ differs from the

pairing field 〈ψ̂↓ψ̂↑〉. At sufficiently low temperature one
can expandH in powers of the small deviations of Φ away
from the circle γ 7→ eiγΦ0(r, r

′), locus of the minima of
H for fixed N . We split the field into its components
parallel and orthogonal to φ0 :

Φ(r, r′) = eiθ[n1/2φ0(r, r
′) + Λ(r, r′)] (17)

The phase θ can reach arbitrarily large values while Λ is
bounded. This framework allows us to develop a system-
atic perturbation theory in powers of the field Λ (cf. Ap-
pendix A), fermionic equivalent of the Bogoliubov U(1)-
symmetry conserving approach for bosons [20]. Provided
that Λ stays small, the phase θ remains close to the con-
densate phase θ0 as we shall see. We then write down the
equations of motion of θ and of the fields Λ,Λ∗. At the
end of the calculations we systematically eliminate the
condensate variables with the relation n = ‖Φ‖2 − ‖Λ‖2,
consequence of (15), and we restrict ourselves to order 2
in Λ,Λ∗.
The main challenge of the calculation is the occurrence

of a term linear in Λ,Λ∗ in dθ/dt, resulting from the fact
that φ0 depends on the number of pairs [12]. Without
this term, one would simply expand the field Λ on the
eigenmodes of its small linear oscillations, obtained from
a quadratization of the Hamiltonian H at fixed N :
(

Λ(r, r′; t)
Λ∗(r, r′; t)

)

=
∑

α

bα(t)

(

uα(r, r
′)

vα(r, r
′)

)

+ b∗α(t)

(

v∗α(r, r
′)

u∗α(r, r
′)

)

(18)
where the sum runs over the eigenmodes of positive en-
ergy ǫα, normalized as ‖uα‖2−‖vα‖2 = 1. At this order,
bα(t) = bα(0)e

−iǫαt/~. One would insert the expansion
(18) into dθ/dt and take a coarse grained temporal aver-

age to get rid of the oscillating terms. dθ/dt
t
would then

contain the expected linear combination of the numbers
of bosonic quasi-particles nB,α = |bα|2. In reality, the
problem is more subtle: due to the interaction among

the quasi-particles, bα
t
does not vanish and is of order

two in Λ and Λ∗. The contribution of the linear term
in dθ/dt is then comparable to the quadratic terms. It
is calculated in the Appendix A, exploiting in particu-
lar the bounded nature of the field Λ (consequence of the
U(1)-symmetry preserving nature of expansion (17)) and
the Hellmann-Feynman theorem. One finds

−
~

2

dθ

dt

t

= µ0(N) +
∑

α

dǫα
dN

|bα|
2 +O(‖Λ‖3) (19)

We now briefly discuss the form of the energy spectrum
ǫα for a spatially homogeneous system, in the continu-
ous limit b → 0 for a s-wave contact interaction with a
fixed scattering length between opposite spin fermions.
For each value of the total wave vector q, there ex-
ists (i) at most one discrete value ǫB,q, (ii) a contin-
uum parametrized by two wave vectors (k1, ↑;k2, ↓) 7→
ǫF,k1,↑ + ǫF,k2,↓ of constant sum (k1 + k2 = q), where
ǫF,k,σ is the BCS dispersion relation. The branch ǫB,q
coincides with that of reference [21], as we have checked.
It has a phononic start and corresponds to the bosonic
elementary excitations of the Fermi gas, whose contri-
bution to the phase dynamics was missing. It must be
included in (19). The continuum corresponds to the ex-
citation of two fermionic quasi-particles. Indeed, since

the Hamiltonian Ĥ contains an even number of factors ψ̂

and ψ̂†, each annihilating or creating one quasi-particle,
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fermionic quasi-particles can only be created by pairs
from the ground state. The corresponding biexcitations
are not physically independent and are redundant with

the RPA contribution to dθ̂0/dt. They must not be in-
cluded in (19).
Two more remarks are needed to obtain (7). (i) The

fields 〈ψ̂↓ψ̂↑〉 and Φ differ and so do the phases θ̂0 and θ.
Their coarse grained temporal averages, however, only
differ by a term of order ‖Λ‖2, which, bounded hence
negligible in the long time limit, does not contribute to
the phase blurring of the condensate of pairs. (ii) The
phase θ of our variational approach is a classical variable,

whereas θ̂0 in (7) is a quantum operator. This gap can
be bridged by using the quantization procedure exposed
in Chapter 11 of reference [19], where the bα are in the

end replaced by bosonic operators b̂α, [b̂α, b̂
†
α] = 1. We

argue that equation (7), linking dθ̂0/dt to the chemical
potential operator, and the resulting equation (11) should
hold beyond the validity range of the microscopic varia-
tional derivation presented above, and should apply even
to the strongly interacting regime, provided that the tem-
perature is low enough for the quasi-particles lifetime to
be much longer than the inverse of their eigenfrequency.
Indeed, in the limiting case where one can neglect the
fermionic excitation branch and drop the non-phononic
part of the bosonic branch, equation (7) can be derived
from the irrotational version of the quantum hydrody-
namic theory of Landau and Khalatnikov [22] (see Ap-
pendix B).

FIG. 1: Trapping configuration proposed here to measure
g1(t) via Ramsey interferometry: the condensed paired Fermi
gas is confined in the main trap (with a flat bottom on the
figure); one transfers a small number of atoms (in the form
of dimers) in the (very narrow) secondary trap via a reso-
nant tunneling effect, which can be tuned by a barrier of ad-
justable height; in this way, one creates a phase reference,
which is made to interfere with the condensate after an evo-
lution time t.

Let us briefly explain how an experimental evidence of
the thermal blurring of a condensate of pairs could be
obtained. The key idea is to bosonize the atomic Cooper
pairs into deeply bound weakly interacting dimers during
the preparation and the measurement stage. This can be
done in an adiabatic reversible way [23] by tuning the
scattering length to a small and positive value thanks to
a magnetic Feshbach resonance. It allows one to (i) pro-
duce a sample of dimers with weak number fluctuations
from a melted Mott phase of an experimental realization
of the Bose Hubbard model [24], (ii) control tunneling
between the main trap (containing the N particles) and

0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
T/ T

F

10

20

30

40

ε Ft br
/(

h_  N
1/

2 )

FIG. 2: Thermal blurring time of a coherent Fermi gas in
the unitary limit in the canonical ensemble, as a function of
temperature T in units of the Fermi temperature TF = ǫF /kB .
Discs: from the equation of state measured in reference [9].
Dashed line: expression (20) deduced from an approximated
equation of state (see text).

a very narrow secondary trap by adjusting the height of a
potential barrier [3] (Fig.1), (iii) detect by fluorescence a
single dimer [25] in this secondary trap. For the measure-
ment of the g1(t) function, we adapt [26] the interferomet-
ric Ramsey method of two Rabi pulses at a time interval
t to the case of paired fermions. The bosonized pairs are
prepared initially in the main trap. A first pulse of angle ǫ
transfers on average less than one dimer to the secondary
trap; in this way, the thermal blurring is not masked by
partition noise. Then the system evolves during a time t
with interactions set to the value at which phase dynam-
ics is to be studied. Last, the gas is rebosonized and a
second pulse of angle ǫ closes the interferometer, and the
number nsec of dimers in the secondary trap is measured.
The average of nsec over the realizations is an oscillating
function of time t, of angular frequency 2/~ times the
difference of the two trapping zones chemical potentials,
with a contrast equal to |g1(t)/g1(0)|.

Finally, we estimate the blurring time for a unitary
Fermi gas prepared in the canonical ensemble, that is
with energy fluctuations of variance VarE = kBT

2∂T Ē.
From the equation of state of the unpolarized unitary
gas measured in reference [9], and for a spatially homo-
geneous system (in a flat bottom potential [27]) we find
the thermal blurring times tbr plotted as discs in figure 2.
For example, at a temperature T = 0.12 TF ≃ 0.7 Tc, we
find tbr ≈ 7N1/2

~/ǫF corresponding to 20 milliseconds
for a typical Fermi temperature TF = ǫF /kB = 1µK and
a typical atom number N = 105. As in reference [28], one
can also estimate the equation of state of the unitary gas
from simple dispersion relations for the elementary exci-
tations. For the bosonic branch one takes [28] ǫB,q = ~cq
with c the T = 0 sound velocity, mc2 = 2

3ξǫF and ξ the
Bertsch parameter. For the fermionic branch, one takes

[29] ǫF,k,σ = ∆+(~
2k2

2m − ǫ0)
2/(2φ0), where ∆ is the gap,

and ǫ0 and φ0 give the location of the minimum and the
curvature of the dispersion relation. Keeping each branch
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contribution to its leading order at low temperature, as
in reference [28], and using the experimental values [9, 30]
ξ = 0.376, ∆ = 0.44ǫF , ǫ0 = 0.85ǫF and the theoretical
value [29] φ0 = 0.846ǫF , we find

N~
2

(tbrǫF )2
≃

(

θ

0.296

)5
(1 + 2r)2

9(1 + r)
(20)

where θ = T/TF and r ≃
(

0.316
θ

)9/2
e−0.44/θ gives the

relative weight of the two excitation branches. This for-
mula, plotted as a dashed line in figure 2, is an exact
equivalent to tbr in the limit θ → 0. The good agreement
with the experimental data has to be taken cautiously. If
one treats the two branches to all order in kBT , one gets
an upward shift of tbrǫF /(~N

1/2) more or less constant
and equal to 5 over the temperature range of figure 2.
Conclusion : We have presented the first microscopic

theory of the thermal blurring of the phase of a conden-
sate of pairs of fermions (11), revealing a ballistic blurring

and a subleading phase diffusion. The blurring time de-
pends on the variance of the total energy of the gas, and
on the derivative of the microcanonical chemical poten-
tial with respect to the energy. This relies crucially on
the fact that the time derivative of the condensate phase
is given by the chemical potential operator of the gas,
see equation (7). We have derived this central relation in
a fully microscopic way, including both the bosonic and
the fermionic branches of excitation. Last, we have pro-
posed a realistic experimental protocol to measure this
blurring time, that we estimated to be tens of millisec-
onds for a coherent gas prepared in the unitary limit in
the canonical ensemble.
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Appendix A: More on the pair coherent state variational calculation

In a first stage, it is convenient to treat the real quantity n and the complex field Λ as independent variables, that
is one does not fix the value of ‖Φ‖. To include interactions among the quasi-particles, one must go up to third order
in Λ and Λ∗, so that

H(Φ,Φ∗) = T0[n, φ0(N)] +

3
∑

j=1

Tj [n, φ0(N)](Λ,Λ∗) +O(‖Λ‖4) (A1)

where the tensor Tj is of rank j so that Tj(Λ,Λ
∗) is exactly of order j in Λ and Λ∗. It may be expressed in terms of the

differential of order j of H taken at (Φ,Φ∗) = (n1/2φ0, n
1/2φ0) and restricted to the subspace orthogonal to (φ0, 0) and

(0, φ0). It does not depend on the phase θ due to the U(1) symmetry. For a fixed total number of particles, the energy
does not vary to first order around the minimizer so that T1[N/2, φ0(N)] = 0. This apparently not very inspiring
equation is actually the famous gap equation when the system is spatially homogeneous. Furthermore, one can check
that ∂nT0[N/2, φ0(N)] = 2µ0(N) where µ0(N) = dE0(N)/dN is the gas chemical potential at zero temperature,
E0(N) = T0[N/2, φ0(N)] being the ground state energy.
The phase and the modulus square of the amplitude of the field Φ on the mode φ0 are canonically conjugate

variables, so that −~dθ/dt = ∂nH(Φ,Φ∗). Once this derivative is taken in (A1) for fixed Λ and Λ∗, one can fix the
norm of Φ to the value (N/2)1/2 (that is the total particle number is fixed to N), and eliminate n through the identity
n = ‖Φ‖2 − ‖Λ‖2; the field Λ then remains the only dynamical variable of the problem. The resulting expression is
useful up to order 2 in Λ,Λ∗:

−~
dθ

dt
= ∂nT0[N/2, φ0(N)]− ‖Λ‖2∂2nT0[N/2, φ0(N)] +

2
∑

j=1

∂nTj [N/2, φ0(N)](Λ,Λ∗) +O(‖Λ‖3) (A2)

The Hamiltonian that determines the evolution of Λ at fixed particle number is obtained by replacing n with
N/2− ‖Λ‖2 in (A1) and by expanding the resulting expression up to order three in Λ,Λ∗:

HN (Λ,Λ∗) = E0(N) + Ť2[N ](Λ,Λ∗) + T3[N/2, φ0(N)](Λ,Λ∗)− ‖Λ‖2∂nT1[N/2, φ0(N)](Λ,Λ∗) +O(‖Λ‖4) (A3)

where the quadratic form Ť2[N ](Λ,Λ∗) is obtained by subtracting 2µ0(N)‖Λ‖2 from T2[N/2, φ0(N)](Λ,Λ∗). The trick
is then to directly write the temporal derivative of the imaginary part of the component of the field Λ on the function
(N/2)1/2dφ0/dN ,

Y =
b6

2i

∑

r,r′

(

N

2

)1/2
dφ0(r, r

′)

dN
(Λ(r, r′)− Λ∗(r, r′)) (A4)
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Since i~∂tΛ = b−6∂Λ∗HN (Λ,Λ∗), one gets

−2~
dY

dt
= D · HN (Λ,Λ∗) = D · Ť2[N ](Λ,Λ∗) +D · Hcub

N (Λ,Λ∗) +O(‖Λ‖3) (A5)

where Hcub
N is the component of HN of order three in Λ,Λ∗. We have introduced the differential operator

D =
∑

r,r′

(

N

2

)1/2
dφ0(r, r

′)

dN

(

∂Λ(r,r′) + ∂Λ∗(r,r′)

)

(A6)

We shall now take advantage of two identities that exactly hold for all Λ orthogonal to φ0:

∂nT1(Λ,Λ
∗) + 2D · Ť2[N ](Λ,Λ∗) = 0 (A7)

2D · Hcub
N (Λ,Λ∗) = 2

d

dN
Ť2(Λ,Λ

∗)− ∂nT2(Λ,Λ
∗) + ‖Λ‖2∂2nT0 (A8)

where all the tensors are taken at [n = N/2, φ0(N)] or simply at N for Ť2. To prove these relations, one formally con-
siders a field Φ′ with N+δN particles and determines in two different ways the quadratic expansion of HN+δN (Λ′,Λ′∗)
in powers of Λ′ and Λ′∗, where Λ′ is as in (17) (written for N + δN particles) the component of Φ′ orthogonal to
φ0(N + δN). First, one simply replaces N with N + δN and Λ with Λ′ in (A3), and then expands to first order in δN .
The tensor dŤ2/dN [N ] naturally appears from this expansion. Second, one applies to H(Φ′,Φ′∗) the expansion (A1)
around Φ0(N) and takes into account the fact that, to first order in δN , the component of Φ′ orthogonal to φ0(N)
contains, in addition to Λ′

⊥ coming from Λ′, a contribution coming from dφ0/dN :

Λ(r, r′) = δN

(

N

2

)1/2
dφ0
dN

(r, r′) + Λ′
⊥(r, r

′) +O(δN2, δN‖Λ′‖, ‖Λ′‖2) (A9)

This infinitesimal shift proportional to δN along the direction of dφ0/dN is responsible for the occurrence of the
operator D. Equations (A7) and (A8) are finally obtained by identification of the two resulting expressions of
HN+δN (Λ′,Λ′∗) respectively to first and second order in Λ′ and Λ′∗.
At this stage most of the work has been done. It remains to combine equations (A2), (A5), (A7), and (A8) after a

coarse grained temporal average (over a time scale much longer than the oscillation period of the modal amplitudes
bα but much shorter than the evolution time of the quasi-particle numbers |bα|2), to obtain

−
~

2

dθ

dt

t

= µ0(N) +
dŤ2
dN

[N ](Λ,Λ∗)

t

+O(‖Λ‖3) (A10)

where we used the crucial property that dΛ/dt
t
vanishes (and so does dY /dt

t
), since the range of variation of the

field Λ is bounded. The quadratic form Ť2[N ] is represented by the matrix ηL[N ] with η =

(

1 0
0 −1

)

, using a block

notation and the scalar product 〈, 〉 generating the norm ‖‖:

Ť2[N ](Λ,Λ∗) =
1

2

〈

(

Λ,Λ∗
)

, ηL[N ]

(

Λ
Λ∗

)〉

(A11)

Then one inserts the modal decomposition (18) in the derivative with respect to N of the equation (A11); we recall that
ǫα and (uα, vα), −ǫα and (v∗α, u

∗
α) are the eigenvalues and the eigenvectors of L. The coarse grained temporal average

t
gets rid of the crossed terms, and the Hellmann-Feynman theorem ensures that[33] 〈(u∗α,−v

∗
α),

dL[N ]
dN

(

uα
vα

)

〉 =

dǫα/dN and finally leads to equation (19).

Appendix B: Irrotational quantum hydrodynamics

To calculate the viscosity of superfluid helium at low temperature, Landau and Khalatnikov have developed in
1949 the theory of quantum hydrodynamics [22, 31]. It allows one to determine, to leading order in T , the effect of a
non-zero temperature on the quantum fluid, at least on the observables that only involve low energy scales and large
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length scales. Remarkably, the only specific ingredient is the zero-temperature equation of state of the fluid, which is
here the energy per unit volume e0(ρ) of the ground state of the spatially homogeneous system of density ρ.
To obtain the time derivative of the phase operator of the condensate of fermion pairs, we refine the theory in two

ways: by regularizing ultraviolet divergences and by specializing to the irrotational case.
First, we solve the issue of the Landau-Khalatnikov Hamiltonian ground state energy, that diverges due to the

zero-point motion of the system eigenmodes. We discretize the space in a cubic lattice of spacing b, a sub-multiple
of the size L of the quantization volume, which is much smaller than the typical wavelength 2π/qth of the thermal
excitations of the fluid but much larger than the mean interparticle distance ρ−1/3,

ρ−1/3 ≪ b≪ q−1
th (B1)

both conditions being compatible at sufficiently low temperature. This is in the spirit of the validity range of
hydrodynamics, which relies on a spatial coarse graining, and it provides a natural cut-off for the wave vectors q by
restricting them to the first Brillouin zone[34] D = [−π/b, π/b[3. In the Hamiltonian one must then replace the
differential operators such as the gradient, the divergence and the Laplacian, by their discrete versions, as we shall
implicitly do below, and introduce the bare energy density e0,0(ρ), which depends on the lattice spacing b. Following
the ideas of renormalization, the zero-point energy of the modes, that formally diverges when b → 0, adds up to
e0,0(ρ) to exactly reconstruct the effective or true energy density e0(ρ), that does not depend on b and is what is
measured experimentally.
Second, we specialize the theory to the case of an irrotational velocity field operator v̂(r, t) that can then be written

as the gradient of the phase field operator φ̂(r, t), itself canonically conjugate to the density field operator ρ̂(r, t):

v̂(r, t) =
~

m
grad φ̂(r, t) with [ρ̂(r, t), φ̂(r′, t)] = i

δr,r′

b3
(B2)

This amounts to neglecting the transverse component of the field v̂(r, t), as done in reference [22] to determine the
phonon-phonon interaction and go forward in the computation of viscosity. In the particular scale invariant case of
the unitary Fermi gas, this was justified within the effective field theory in reference [32]. We note en passant that
the density of fermionic quasi-particles is exponentially small in 1/T and is directly omitted by hydrodynamic theory.
The steps that follow are rather usual. One starts form the equations of motion of the fields in Heisenberg picture,

that is the quantum continuity equation and the quantum Euler equation for the potential (whose gradient gives the
quantum Euler equation for the velocity):

∂tρ̂+ div

[

1

2
{ρ̂, v̂}

]

= 0 (B3)

~∂tφ̂ = −
1

2
mv̂2 − µ0,0(ρ̂) (B4)

where {Â, B̂} = ÂB̂ + B̂Â is the anticommutator of two operators and

µ0,0(ρ) =
d

dρ
e0,0(ρ) = e′0,0(ρ) (B5)

is the bare ground state chemical potential at density ρ. The quantum spatial density and phase fluctuations are
weak provided that ρ1/3b is large enough; the thermal ones are weak if in addition qthb is small enough [35]. Under
these conditions one can linearize as in [22] the equations of motion around the spatially uniform solution:

ρ̂(r, t) = ρ̂0 + δρ̂(r, t) (B6)

φ̂(r, t) = φ̂0(t) + δφ̂(r, t) (B7)

The operator ρ̂0 reduces to N̂/L3, where N̂ is the operator giving the total number of particles, and is a constant of

motion. The operator φ̂0 is the phase operator of the condensate; one has here

φ̂0 = θ̂0/2 (B8)

since the phase operator θ̂0 in equation (2) takes the pairs as the building block, whereas equations (B3,B4) are build

on the fermionic particles. The spatial fluctuations δρ̂ and δφ̂, of vanishing (discrete) integral over the whole space,
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can be expanded on the plane waves of non-zero wave vector q, and commute with ρ̂0. One solves the linearized

equations for δρ̂ and δφ̂ and one can use the usual expansion on eigenmodes:

δρ̂(r, t) =
ρ̂
1/2
0

L3/2

∑

q∈ 2π

L
Z3∗∩D

(

~q

2mĉ0,0

)1/2

(B̂q + B̂†
−q) e

iq·r (B9)

δφ̂(r, t) =
−i

ρ̂
1/2
0 L3/2

∑

q∈ 2π

L
Z3∗∩D

(

mĉ0,0
2~q

)1/2

(B̂q − B̂†
−q) e

iq·r (B10)

where the creation operator B̂†
q and the annihilation operator B̂q of a phonon with wave vector q and energy ~qĉ0,0

obey bosonic commutation relations [B̂q, B̂
†
q′ ] = δq,q′ and where we introduced the zero-temperature bare sound

velocity operator

ĉ0,0 ≡

(

ρ̂0µ
′
0,0(ρ̂0)

m

)1/2

(B11)

It remains to expand the right-hand side of (B4) up to second order in δρ̂ and δθ̂, to extract the zero wave vector

Fourier component, to perform a coarse grained temporal average to get rid of the oscillating crossed terms B̂qB̂−q

and B̂†
−qB̂

†
q, and to use the identity

d

dρ
[ρµ′

0,0(ρ)]
1/2 =

µ′
0,0(ρ) + ρµ′′

0,0(ρ)

2[ρµ′
0,0(ρ)]

1/2
(B12)

to obtain

~
d

dt
φ̂0

t

= −µ0,0(ρ̂0)−
∑

q∈ 2π

L
Z3∗∩D

(

~q
d

dN̂
ĉ0,0

)(

B̂†
qB̂q +

1

2

)

(B13)

At this order of the expansion, one can collect in (B13) the zero-point contribution of the modes (the term 1/2 in
between parentheses) and the bare chemical potential µ0,0(ρ̂0) to form the true chemical potential µ0(ρ̂0) of the fluid

at zero temperature, and one can identify ĉ0,0 in the prefactor of the phonon number operator B̂†
qB̂q with the true

sound velocity at zero temperature, ĉ0 ≡ [ρ̂0µ
′
0(ρ̂0)/m]1/2. One then obtains the (low temperature) phononic limit of

relation (7), without any constraint on the interaction strength.
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