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Abstract

In this paper we study the influence of an electric field on a two dimen-

sional waveguide. We show that bound states that occur under a geometrical

deformation of the guide turn into resonances when we apply an electric field

of small intensity having a nonzero component on the longitudinal direction

of the system.
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1 Introduction

The study of resonances occurring in a quantum system subjected to a constant
electric field is now a well-known issue among the mathematical physics community.
In a recent past a large amount of literature has been devoted to this problem (see
e.g. [15, 17] and references therein). Mostly these works are concerned with quantum
systems living in the whole space R

n as e.g. atomic systems [6, 12, 16, 18, 26, 27].
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In the present paper we would like to address this question for an inhomogeneous
quantum system consisting in a curved quantum waveguide in R2. It is known that
bound states arise in curved guides [7, 10] and the corresponding eigenfunctions are
expected to be localized in space around the deformation. Therefore, based on these
results the main question is what happens with these bound states when the electric
field of small intensity is switched on?

A first result is given in [11] where the electric field is supposed to be orthogonal
to the guide outside a bounded region. But in this situation there is no Stark
resonance.

Here we are focusing on a strip Ω ⊂ R2 of constant width curved within a
compact region. The electric field is chosen with a strictly positive component both
on the longitudinal direction of the left part and of the right part of the curved
strip. Roughly speaking this situation is similar to the one of an atomic system
interacting with an external electric field. Due to the field, an eigenstate of the
curved waveguide at zero field turns into scattering state which is able to escape at
infinity under the dynamics. It is then natural to expect spectral resonances for this
system. In this work we would like to study this question in the weak field regime.

The resonances are defined as the complex poles in the second Riemann sheet of
the meromorphic continuation of the resolvent associated to the Stark operator. We
construct this extension using the distortion theory [4, 19]. Our proof of existence
of resonances borrows elements of strategy developed in [6, 16]. It is mainly based
on non-trapping estimates of [6]. For the applicability of these techniques to our
model, the difficulty we have to solve is that the system has a bounded transverse
direction.

To end this section let us mention a still open question related to this problem
and that we hope to solve in a future work. We claim that our regularity assumptions
on the curvature imply that the corresponding Stark operator (see (2.4)) has no real
eigenvalue [5]. In that case the complex poles have a non zero imaginary part then
they are resonances in the strict sense of the term [24].

Let us briefly review the content of the paper. In section 2 we describe precisely
the system, assumptions and the main results. The distortion and the definition
of resonances are given respectively in section 3 and 4. In section 5 we prove the
existence of resonances. Finally the section 6 is devoted to get an exponential
estimate on the width of resonances. Actually we show that the imaginary part of
resonances arising in this system follows a type of Oppenheimer’s law [22] when the
intensity of the field vanishes.
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2 Main results

2.1 Setting

Before describing the main results of the paper we want to recast the problem into
a more convenient form. This allows us to state precisely our assumptions on the
system.

Consider a curved strip Ω in R2 of a constant width d defined around a smooth
reference curve Γ, we suppose that Ω is not self-intersecting. The points X = (x, y)
of Ω are described by the curvilinear coordinates (s, u) ∈ R× (0, d),

x = a(s)− ub
′

(s),

y = b(s) + ua
′

(s), (2.1)

where a, b are smooth functions defining the reference curve Γ = {(a(s), b(s)), s ∈ R}
in R2. They are supposed to satisfy a′(s)2 + b′(s)2 = 1.

Introduce the signed curvature γ(s) of Γ,

γ(s) = b′(s)a′′(s)− a′(s)b′′(s). (2.2)

For a given curvature γ, the functions a and b can be chosen as

a(s) =

∫ s

0

cosα(t) dt, b(s) =

∫ s

0

sinα(t) dt, (2.3)

where α(s1, s2) = −
∫ s1
s2
γ(t) dt is the angle between the tangent vectors to Γ at the

points s1 and s2 (See e.g. [10] or [11] for more details). Set α(s) = α(s, 0), s ∈ R

and α0 = α(s0). We choose γ with a compact support, supp(γ) = [0, s0] for some
s0 > 0. In particular for s < 0 the strip is straight, parallel to the x−axis. Assume
also that

(h1) γ ∈ C2(R),

(h2) d‖γ‖∞ < 1.

Evidently this implies that γ has a continuous and bounded derivative up to second
order.

Let F = F (cos(η), sin(η)) be the electric field. In this work the intensity of the
field F > 0 is the free parameter and the direction η is fixed. It satisfies

(h3) |η| < π
2
and |η − α0| <

π
2
.

See the Remark 2.1 below for a discussion about assumptions on η. We consider the
Stark effect Hamiltonian on L2(Ω),

H(F ) = −∆Ω + F ·X, F > 0, (2.4)
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with Dirichlet boundary conditions on ∂Ω, the boundary of Ω. One can check that
under (h1) and (h2), then by using natural curvilinear coordinates, H(F ) is unitarily
equivalent to the Schrödinger operator defined by

H(F ) = H0(F ) + V0, H0(F ) = H0 +W (F ), H0 = Ts + Tu (2.5)

on the Hilbert space L2(Ω), Ω = R × (0, d) with Dirichlet boundary conditions on
∂Ω = R× {0, d}. Here

Ts = −∂sg∂s, g = g(s, u) = (1 + uγ(s))−2, Tu = −∂2u (2.6)

and W (F ) is the operator multiplication by the function,

W (F, s, u) =





F (cos(η)s+ sin(η)u) if s < 0

F (
∫ s
0
cos(η − α(t)) dt+ sin(η − α(s))u) if 0 ≤ s ≤ s0

F (cos(η − α0)(s− s0) + A+ sin(η − α0)u) if s > s0

(2.7)

where A =
∫ s0
0

cos(η − α(t)) dt
and

V0(s, u) = −
γ(s)2

4(1 + uγ(s))2
+

uγ′′(s)

2(1 + uγ(s))3
−

5

4

u2γ′(s)2

(1 + uγ(s))4
. (2.8)

Denote by H = H0 + V0. This is the hamiltonian associated with the guide
in absence of electric field. If (h1) and (h2) are satisfied, then H is a self-adjoint
operator on L2(Ω) with domain D(H) coinciding with the one of H0 and [20]

D(H) = D(H0) = {ϕ ∈ H1
0(Ω), H0ϕ ∈ L2(Ω)} (2.9)

In this paper we use standard notation from Sobolev space theory. The essential
spectrum of H , σess(H) = [λ0,+∞) where λ0 is the first transverse mode of the
system i.e the first eigenvalue of the operator Tu on L

2(0, d) with Dirichlet boundary
conditions at {0, d}.

Moreover under our assumptions the operator H has at least one discrete eigen-
value below the essential spectrum (see [10]). Although we do not know the discrete
spectrum of H our study below works even in the case where H has infinitely
many distinct discrete eigenvalues (possibly degenerate) which can accumulate at
the threshold λ0.
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Remark 2.1. The situation where η = π
2
and α0 = 0 has been considered in [11],

but in that case there is no Stark resonance. It is also true if we suppose |η| ≥ π
2
and

|η − α0| <
π
2
since W (F ) is now a confining potential. Note that the regime |η| > π

2

and |η−α0| >
π
2
is a symmetric case of the one considered in this paper and can be

studied in the same way. While for |η| < π
2
and |η − α0| >

π
2
, the situation is quite

different since W (F ) → −∞ at both s → ±∞ the ”escape” region corresponding
to any negative energy contains {s < −a, u ∈ (0, d)} ∪ {s > a, u ∈ (0, d)} for
some a > 0 and large. This needs slight modifications of our method. It is actually
studying in [14].

2.2 Results

In this section we give the main results of the paper. Some minor points will be
specified later in the text.

First we need to define rigorously the Stark Hamiltonian associated to our sys-
tem. Here we adopt a common fact in the literature about Stark operators i.e. H(F )
is well defined as an essentially self-adjoint operator on L2(Ω) [8, 20, 23]. In the
appendix of the paper where the proof of the theorem below is proved, we give a
core for H(F ).

Theorem 2.1. Suppose that (h1) and (h2) hold, then for F > 0,
(i) H(F ) is an essentially self-adjoint operator on L2(Ω), We will denote the

closure of H(F ) by the same symbol.
(ii) The spectrum of H(F ), σ(H(F )) = R.

We now are focusing on the second main result and its proof. For any subset D
of C, denote by D− = {z ∈ D, Imz ≤ 0}.

Theorem 2.2. Suppose that (h1), (h2) and (h3) hold. Let E0 be an discrete eigen-
value of H of finite multiplicity j ∈ N. There exits Fc > 0, a F-independent complex
neighbourhood νE0 of the semi axis (−∞, E0+

1
8
(λ0−E0)] and a F-independent dense

subset A of L2(Ω)such that for 0 < F ≤ Fc
i) the function

z ∈ C, Imz > 0 → Rϕ(z) =
(
(H(F )− z)−1ϕ, ϕ), ϕ ∈ A

has an meromorphic extension in νE0 through the cut due to the spectrum of H(F ).
ii) ∪ϕ∈A{poles of Rϕ(z)} ∩ ν−E0

contains j poles Z0(F ), ...Zj(F ) converging to E0

when F → 0.

Here resonances of the stark operator H(F ) are defined as the set [24]

∪ϕ∈A{poles of Rϕ(z)} ∩ C
−.
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The resonances have necessarily a negative imaginary part. But as it is discussed
in the introduction, a still open question is concerned with the strict negativity.

We shall show below that using the distortion theory, the resonances coincide
with discrete eigenvalues of a non self-adjoint operator.

Finally we get the following exponential bound on the width of resonances.

Theorem 2.3. Under conditions of the Theorem 2.2. Let E0 be a simple eigenvalue
of H and Z0 the corresponding resonance for H(F ) given by the Theorem 2.2. Then
there exist two constants 0 < c1, c2 such that for 0 < F ≤ Fc,

|ImZ0| ≤ c1e
− c2

F , k = 1, .., j.

Remark 2.2. Our results exhibit a critical field value Fc. For the Theorem 2.2
i) this value is estimated explicitly (see formula (4.25) below). But this is not true
for the rest of the results since our method use certain abstract analysis arguments
which are valid for F small enough. This does not give an explicit critical Fc.

3 The distortion theory

In this section, by using the distortion theory we construct a family of non self
adjoint operators {Hθ(F ), θ ∈ C, |Imθ| < θ0} for some θ0 > 0. In the next section
we will see that under conditions the discrete spectrum of Hθ(F ) coincides with
resonances ofH(F ). We refer the reader to [4, 19, 23] for basic tools of the distortion
theory. Here we assume that (h1), (h2) and (h3) are satisfied. To give a sense to the
construction below we need to consider electric fields of finite magnitude. Without
loss of generality we may suppose in the sequel that 0 < F ≤ 1.

Introduce the distortion on Ω,

Sθ : (s, u) 7→ (s+ θf(s), u) (3.10)

defined from the vector field f = − 1
F cos(η)

Φ where Φ ∈ C∞(R) is as follow. Let

E < 0, be the reference energy, 0 < δE < 1
2
min{1, |E|}, E− = E − δE and

E+ = E + δE. Set Φ(s) = φ[F cos(η)s] where φ ∈ C∞(R) is a non-increasing
function such that

φ(t) = 1 if t < E, φ(t) = 0 if t > E+ (3.11)

and satisfying ‖φ(k)‖∞ = o(( 1
δE
)k. Note that for s < E

F cos(η)
, Sθ coincides with a

translation w.r.t. the longitudinal variable s.
Clearly for k ≥ 1, ‖Φ(k)‖∞ ≤ ( F

δE
)k and ‖f (k)‖∞ ≤ F k−1

(δE)k
. For θ ∈ R, |θ| < δE,

Sθ implements a family of unitary operators on L2(Ω) by

Uθψ = (1 + θf ′)
1
2ψ ◦ Sθ. (3.12)
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We note that
Hθ(F ) = UθH(F )U−1

θ = H0,θ(F ) + V0. (3.13)

H0,θ(F ) = Ts,θ + Tu +Wθ(F ) (3.14)

where
Ts,θ = −(1 + θf ′)−

1
2∂s(1 + θf ′)−1g∂s(1 + θf ′)−

1
2 , (3.15)

Wθ(F ) =W (F ) ◦ Sθ. (3.16)

We now want to extend the definition of Hθ(F ) for complex θ. Set θ0 = αδE
where α is a some small and strictly positive constant which we fix in the proof of
the Theorem 3.1 below. In fact θ0 is the critical value of distortion parameter.

Proposition 3.1. There exists 0 < α < 1/2 independent of E and F such that for
0 < F < δE, {Hθ(F ), |Imθ| < θ0} is a self-adjoint analytic family of operators (see
[20]).

Proof. An computation shows that

Ts,θ = −∂s(1 + θf ′)−2g∂s +Rθ, (3.17)

where Rθ =
g
2

θf
′′′

(1+θf ′)3
− 5g

4
θ2f ′′2

(1+θf ′)4
is a bounded function. Let h(F ) = H0 + w(F ) be

the operator in L2(Ω) where w(F ) is the multiplication operator by

w(F, s) =





F cos(η)s if s < 0

0 if 0 ≤ s ≤ s0

F cos(η − α0)s if s > s0.

(3.18)

Since h = h(F ) differs from H(F ) by adding a bounded symmetric operator, it is
also a self-adjoint operator.

We have

Hθ(F ) = h+ ∂sGθ∂s +Rθ +Wθ(F )− w(F ) + V0, Gθ = g
(2θf ′ + θ2f ′2

(1 + θf ′)2
)
. (3.19)

Let us show that for |θ| small enough then D(H0,θ(F )) = D(h). Through unitary
equivalence we may suppose that Reθ = 0. In view of the perturbation theory [20]
and (3.19)we only need to to show that ∂sGθ∂s is h-bounded with a relative bound
strictly smaller than one. By using the resolvent identity,

∂sGθ∂s(h+ i)−1 = ∂sGθ∂s(H0 + i)−1 − ∂sGθ∂s(H0 + i)−1w(F )(h+ i)−1

= ∂sGθ∂s(H0 + i)−1 − ∂sGθ∂sFs(H0 + i)−1w(F )

Fs
(h+ i)−1

− ∂sGθ∂s(H0 + i)−1(∂sg + g∂s)(H0 + i)−1w(F )

s
(h + i)−1.

7



We know that D(H0) ⊂ H2
loc(Ω̄) ∩ H1

0(Ω), [2, 9, 21]. Let χ be a characteris-
tic function of supp(f ′). Then by the closed graph theorem [20] ∂sg(H0 + i)−1,
g∂s(H0 + i)−1, χ∂sg∂s(H0 + i)−1 and χ∂sg∂sFs(H0 + i)−1 are bounded operators.

The multiplication operators w(F )
s

and w(F )
Fs

are also bounded. Hence this is true for
the operator ∂sGθ∂s(h+ i)−1.

It is easy to check that under conditions on parameters θ and F ,

‖∂sGθ∂s(H0+ i)
−1‖ ≤

3α

(1− α)3
(
‖χ∂sg∂s(H0+ i)

−1‖+‖g∂s(H0+ i)
−1‖

)
≤ C

3α

(1− α)3

for some constant C > 0 independent of F and E. Evidently ‖∂sGθ∂sFs(H0+ i)
−1‖

satisfies a similar estimate. Choosing α so small such that ‖∂sGθ∂s(h + i)−1‖ < 1,
then ∂sGθ∂s is relatively bounded to h with relative bound strictly smaller that one.
Thus the statement follows.

The proof is complete if we can show that for ψ ∈ D(Hθ(F ))

θ ∈ {θ ∈ C, |θ| < θ0} 7−→ (Hθ(F )ψ, ψ)

is an analytic function. But this last fact can be readily verified by using standard
arguments of measure theory and the explicit expression (3.19) (see e.g. [23, 20]).

Remark 3.3. For θ ∈ R, |θ| < δE consider the unitary transformation on L2(R)

uθψ(s) = (1 + θf ′(s))
1
2ψ(s+ θf(s)), ψ ∈ L2(R).

We know from [19, 24] that there exists a dense subset of analytic vectors ψ asso-
ciated with uθ in |θ| < δE√

2
i.e. θ ∈ R → uθψ has an L2(R)-analytic extension in

|θ| < δE√
2
. denote this set as A1. It is shown in [19] that A1 is dense in L

2(R). Let A

be the linear subspace generated by vectors of the form ϕ⊗ψ, ϕ ∈ A1, ψ ∈ L2
(
(0, d)

)
.

Then A is a dense subset of analytic vectors associated to the transformation Uθ in
|θ| < θ0.

For further developments we need to introduce the following modified operator
on L2(Ω). Let s1 > s0, such that cos(η − α0)(s− s0) + A+ sin(η − α0)u ≥ 0 for all
u ∈ (0, d). Set

H̃0(F ) = H0 + W̃ (F ), (3.20)

where W̃ (F ) is a multiplication operator by

W̃ (F, s, u) =





W (F, s, u) if s < 0, s > s1

0 if 0 ≤ s ≤ s1.
(3.21)

For θ ∈ R, |θ| < θ0, let H̃0,θ(F ) = UθH̃0(F )U
−1
θ = Ts,θ + Tu + W̃θ(F ). Then we

have
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Corollary 3.1. For 0 < F < δE, {H̃0,θ(F ), |Imθ| < θ0} is a self-adjoint analytic
family of operators.

Proof. We have Hθ(F )− H̃0,θ(F ) = V0+Wθ(F )−W̃θ(F ), but V0 as well asWθ(F )−

W̃θ(F ) are bounded and θ-independent so by the Proposition 3.1 the corollary fol-
lows.

4 Meromorphic extension of the resolvent.

Let θ = iβ, we suppose that 0 < β < θ0. Set

µθ = 1 + θf ♯ (4.22)

with f ♯ = Φ − 1 and Φ defined in the Section 3. Then the multiplier operator by
the function µθ defined a one to one map from D(Hθ(F )) to D(Hθ(F )). Recall that
λ0 = infσ(Tu) is the first transverse mode. Let

νθ = {z ∈ C, Imµ2
θ(E− + λ0 − z) < β

δE

2
}. (4.23)

νcθ denotes its complement in C. It is easy to see that νθ contains a F -independent
complex neighbourhood of the semi axis (−∞, λ0 + E − 3

4
δE] denoted by ν̃θ. It is

defined as

ν̃θ = {x ≤ 0, y ≥ −
βδE

2
} ∪ {(x > 0, y ≥ 2βx−

βδE

2
} (4.24)

where x = Rez − λ0 − E− and y = Imz.
In this section our main result is the following. Let

F0 = α′(δE)2min{1, 1/d} (4.25)

where α′ is a strictly positive constant independent of E and β which is determined
in the proof of the Lemma 4.1. We have

Proposition 4.2. There exits α′ > 0 such that for all E < 0, 0 < F ≤ F0, the
function

z ∈ C, Imz > 0 → Rϕ(z) =
(
(H(F )− z)−1ϕ, ϕ), ϕ ∈ A

has an meromorphic extension in ∪0<β<θ0νβ.

As a consequence of the Proposition 4.2, the Theorem 2.2 i) is proved.
The proof of the Proposition 4.2 is based on the two following results. For a

given operator O on L2(Ω) we denote by ̺(O) its the resolvent set.

Lemma 4.1. There exits α′ > 0 such that for E < 0, 0 < F ≤ F0 and 0 < β < θ0.
Then
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(i) νθ ⊂ ̺(H̃0,θ(F )).

(ii) ∀z ∈ νθ, ‖(H̃0,θ(F )− z)−1‖ ≤ dist−1(z, νcθ).

Proof. By using a standard commutation relation we derive from (3.15),

µθTs,θµθ = T1(θ) + iT2(θ) + µθ(Ts,θµθ) (4.26)

where T1(θ) = −∂sRe{µ
2
θ(1 + θf ′)−2}g∂s, T2(θ) = −∂sIm{µ2

θ(1 + θf ′)−2}g∂s. The
operators T1(θ), T2(θ) are symmetric and we know from [6] that T2(θ) is negative.
Moreover a straightforward calculation shows

Imµθ(Ts,θµθ) = O

(
βF 2

(δE)3

)
. (4.27)

In the other hand, let z ∈ νθ, set βS = −Imµ2
θ(W̃θ(F )−E−)− Imµθ(Ts,θµθ) in fact

S = (1− β2f ♯
2
)Φ− 2f ♯

(
W̃ (F )− E−

)
− β−1Imµθ(Ts,θµθ). (4.28)

On supp(f ♯) = supp(Φ− 1), we have cos(η − α0)(s− s0) + sin(η − α0)u+ A ≥ 0 if
s > s1, F cos(η)s− E− ≥ δE if s < 0 and then

F cos(η)sχ{s<0}+F (cos(η−α0)+sin(η−α0)u+A)χ{s≥s1}−E− ≥ δEχ{s<0}−E−χ{s≥0} ≥ δE.

By using (4.27), we get for 0 < β < θ0

S ≥
1

2
Φ + 2(1− Φ)(δE + Fu sin ηχ{s<0}) +O

(
F 2

(δE)3

)
.

Then we can choose α′ so small such that,

S ≥
1

2
min{

1

2
, δE} =

δE

2
.

Further in the quadratic form sense on D(Hθ(F ))×D(Hθ(F )), we have

Imµθ(H̃0,θ(F )− z)µθ = T2(θ)− βS + Imµ2
θTu + Imµ2

θ(E− − z). (4.29)

Thus for 0 < β < θ0, 0 < F ≤ F0 and z ∈ νθ, since Imµ2
θ = 2βf ♯ ≤ 0, we get

Imµθ(H̃0,θ(F )− z)µθ ≤ −β
δE

2
+ Imµ2

θ(E− + λ0 − z) < 0. (4.30)

This last estimate with together some usual arguments for non-trapping estimates
given in [6] complete the proof of the Lemma (4.1).
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Introduce the following operator, let θ ∈ C, |θ| < θ0 and z ∈ νθ

Kθ(F, z) = (V0 +Wθ(F )− W̃θ(F ))(H̃0,θ(F )− z)−1. (4.31)

Lemma 4.2. In the same conditions as in the previous lemma.

(i) z ∈ νθ → Kθ(F, z) is an analytic compact operator valued function.

(ii) For z ∈ νθ, Imz > 0 large enough, ‖Kθ(F, z)‖ < 1.

Proof. By the Lemma 4.1, (i) follows if we show that Kθ(F, z), z ∈ νθ are compact

operators. Set V = V0 +Wθ(F ) − W̃θ(F ). Notice that V has compact support in
the longitudinal direction and it is a bounded operator.

Introduce the operator h̃ = h̃(F ) = H0 + w̃(F ) on L2(Ω) where w̃(F ) is the
multiplication operator by

w̃(F, s) =





F cos(η)s if s < 0

0 if 0 ≤ s ≤ s1

F cos(η − α0)s if s > s1.

(4.32)

Then
H̃0,θ(F )− h̃ = ∂sGθ∂s +Rθ + W̃θ(F )− w̃(F ), (4.33)

where Rθ, Gθ and W̃θ(F ) are defined in the Section 3. Suppose |θ| < θ0, 0 < F < δE,
this is satisfied under assumptions of the lemma. Then following step by step the
proof of the Proposition3.1, H̃0,θ(F )− h̃ is h̃-bounded with a relative bound smaller
than one. Therefore, to prove (i) we are left to show that for z ∈ νθ, Imz 6= 0,
V (h̃− z)−1 is compact.

Denote by IH the identity operator on the space H. Let h0 = −∂2s ⊗ IL2(0,d) +
IL2(R) ⊗ Tu and G = g − 1, we have

V (h̃− z)−1 = V (h0 − z)−1 + V (h0 − z)−1
(
∂sG∂s − w̃(F )

)
(h̃− z)−1 (4.34)

Note that by using again the Herbst’s argument [16], the second term of the r.h.s of
(4.34) can be written as

V (h0 − z)−1w̃(F )(h̃− z)−1 = V s(h0 − z)−1 w̃(F )

s
(h̃− z)−1+

V (h0 − z)−1[s, h0](h0 − z)−1 w̃(F )

s
(h̃− z)−1. (4.35)
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In the one hand let χ be a C∞ characteristic function of [0, s1] then χ(h0 − z)−1 is
a compact operator. Indeed,

χ(h0 − z)−1 =
∑

n≥0

χ(−∂2s + λn − z)−1 ⊗ pn

where λn, n ∈ N are the eigenvalues of the operator Tu (transverse modes) and
pn, n ∈ N the associated projectors. We know that χ(−∂2s + λn − z)−1 ⊗ pn is
compact [23] and for large n,

‖χ(−∂2s + λn − z)−1 ⊗ pn‖ ≤ ‖(−∂2s + λn − z)−1‖ = O(
1

n2
). (4.36)

Thus χ(h0 − z)−1 is compact since it is a limit of a sequence of compact operators
in the norm topology. This holds true for operators V (h0 − z)−1 and V s(h0 − z)−1.

On the other hand the function G has a bounded support in the longitudinal
direction then the same arguments as in the proof of the Proposition 3.1 imply that
the operator ∂sG∂s(h̃− z)−1 is bounded. By the closed graph theorem [s, h0](h0 −
z)−1 = 2∂s(h0 − z)−1 is also bounded.

Then by (4.34) and (4.35) the statement follows.
The assertion (ii) is a direct consequence of the Lemma 4.1 (ii) and the fact that

V is a bounded operator.

4.1 Proof of the Proposition 4.2

Here we refer e.g. to [24] for the reader unfamiliar with the distortion theory.
Let E < 0, |θ| < θ0 and 0 < F ≤ F0. By Lemmas 4.1, 4.2 and the standard

Fredholm alternative theorem, the operator IL2(Ω) + Kθ(F, z) is invertible for all
z ∈ νθ \ R where R is a discrete set. In the bounded operator sense, we have

(Hθ(F )− z)−1 = (H̃0,θ(F )− z)−1
(
IL2(Ω) +Kθ(F, z)

)−1
. (4.37)

This implies that νθ \ R ⊂ ρ(Hθ(F )).
Further let O an open subset of νθ \ R. For ϕ ∈ A, consider the function

z ∈ O → Rϕ(z) =
(
(H(F )− z)−1ϕ, ϕ

)
. (4.38)

For θ ∈ R, |θ| < θ0, by using the identity U∗
θUθ = IL2(Ω) in the scalar product of the

r.h.s. of (4.38), we have Rϕ(z) =
(
(Hθ(F )− z)−1ϕθ, ϕθ

)
, ϕθ = Uθϕ. Then together

with the Proposition 3.1, it holds

Rϕ(z) =
(
(Hθ(F )− z)−1ϕθ, ϕθ̄

)
. (4.39)

in the disk {θ ∈ C, |θ| < θ0}.

12



Fix θ = iβ, 0 < |β| < θ0 then Rϕ has an meromorphic extension in νθ given by

Rϕ(z) =
(
(H̃0,θ(F )− z)−1

(
IL2(Ω) +Kθ(F, z)

)−1
ϕθ, ϕθ̄

)
.

The poles of Rϕ are locally θ-independent. From [19] and standard arguments, these
poles are the set of z ∈ νθ such that the equation Kθ(F, z)ψ = −ψ has non-zero
solution in L2(Ω). In view of (4.37) they are the discrete eigenvalues of the operator
Hθ(F ).

5 Resonances.

This section is devoted to the proof ii) of the Theorem 2.2. In view of the section
4.1 It is given by the following

Proposition 5.3. Let E0 be an discrete eigenvalue of H of finite multiplicity j ∈ N.
There exists 0 < F ′

0 ≤ F0 such that for 0 < F ≤ F ′
0, the operator Hθ(F ), 0 < |θ| < θ0

has j eigenvalues near E0 converging to E0 as F → 0.

We need first to show the following result. For Imz 6= 0 let K(z) = V0(H0− z)−1

They are compact operators (see e.g. arguments developed in the Section 6). Note
that formally K(z) = Kθ(F = 0, z). We have

Lemma 5.3. Let E < 0, θ = iβ, 0 < β < θ0. Let κ be a compact subset of
ν̃θ ∩ ρ(H0), χ = χ(s) ∈ C∞

0 (R+). Then

(i) limF→0 ‖(H̃0,θ(F )− z)−1ψ − (H0 − z)−1ψ‖ = 0, ψ ∈ L2(Ω),

(ii) limF→0 ‖χ(H̃0,θ(F )− z)−1 − χ(H0 − z)−1‖ = 0,

(iii) limF→0 ‖Kθ(F, z)−K(z)‖ = 0,

uniformly in z ∈ κ.

Proof. By using the arguments of the appendix the operator H0 = Ts+Tu on L
2(Ω)

has a core given by (7.57) i.e. for z ∈ ρ(H0), C
′

= (H0 − z)C is dense in L2(Ω). Let
0 < F ≤ F0 and z ∈ κ. For all ϕ ∈ C, set ψ = (H0 − z)ϕ. The resolvent equation
implies,

(H̃0,θ(F )− z)−1ψ − (H0 − z)−1ψ = (H̃0,θ(F )− z)−1(Ts − Ts,θ − W̃θ(F ))ϕ. (5.40)

Clearly limF→0 ‖W̃θ(F )ϕ‖ = 0. On the other hand we have

‖(Ts − Ts,θ)ϕ‖ ≤ ‖∂sGθ∂sϕ‖+ ‖Rθϕ‖
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Where Gθ and Rθ are defined as in the Section 3. Evidently limF→0 ‖Rθϕ‖ = 0.
Since supp(Gθ) = [ E

F cos(η)
, E+

F cos(η)
] then for such a ϕ, limF→0 ‖∂sGθ∂sϕ‖ = 0. So

that limF→0 ‖(Ts − Ts,θ)ϕ‖ = 0.

In view of the Lemma 4.1, (H̃0,θ(F )− z)−1 has a norm which is uniformly bounded
w.r.t. F . Thus (i) is proved on C

′

, by standard arguments then the strong conver-
gence follows.
Let us show (ii). For z ∈ κ then

χ(H̃0,θ(F )− z)−1 − χ(H0 − z)−1 = χ(H̃0,θ(F )− z)−1Qθ(F ) (5.41)

where Qθ(F ) = (Ts−Ts,θ−W̃θ(F ))(H0−z)
−1. On supp(χ), f = 0 then the following

resolvent identity holds,

χ(H̃0,θ(F )−z)
−1 = (H0−z)

−1χ+(H0−z)
−1([Ts, χ]−χW̃ (F ))(H̃0,θ(F )−z)

−1. (5.42)

In view of (5.41) and (5.42) we have to consider two terms. First

t1(F ) = (H0 − z)−1χQθ(F ) = (H0 − z)−1χW̃ (F ))(H0 − z)−1

which clearly converges in the norm sense to 0B(L2(Ω)) as F → 0 uniformly in z ∈ κ
and

t2(F ) = (H0 − z)−1([Ts, χ]− χW̃ (F ))(H̃0,θ(F )− z)−1Qθ(F ).

Let χ̄ be the characteristic function of supp(χ). We know that the operator (H0 −
z)−1χ̄ is compact (see e.g. the proof of the Lemma 4.2) then to prove that t2(F )
converges in the norm sense to 0B(L2(Ω)) as F → 0 uniformly in z ∈ κ, it is sufficient

to show that ([Ts, χ]−χW̃ (F ))(H̃0,θ(F )− z)−1Qθ(F ) converges strongly to 0B(L2(Ω))

as F → 0 uniformly in z ∈ κ. But considering the proof of (i) it is then sufficient to

prove that the operator ([Ts, χ]− χW̃ (F ))(H̃0,θ(F )− z)−1 is bounded operator and
has a norm which is uniformly bounded w.r.t. F if F is small and z ∈ κ.
Evidently by the Lemma 4.1 this is true for the operator χW̃ (F )(H̃0,θ(F )− z)−1.
We have on L2(Ω),

[Ts, χ](H̃0,θ(F )−z)
−1 = −(χ′g∂s+∂sgχ

′)(H̃0,θ(F )−z)
−1 = −(2χ′g∂s+(gχ′)′)(H̃0,θ(F )−z)

−1.

Since the functions g and (gχ′)′ are bounded and do not dependent on F , we only

have to consider the operator χ′g1/2∂s(H̃0,θ(F )− z)−1.

Let ϕ ∈ L2(Ω), ‖ϕ‖ = 1 set ψ = (H̃0,θ(F )− z)−1ϕ. Integrating by part, we have

‖χ′g1/2∂sψ‖
2 = (−∂s(χ

′)2g∂sψ, ψ) ≤ (−∂s(χ
′)2g∂sψ, ψ) + (χ′Tuχ

′ψ, ψ).
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By using standard commutation relations, ∂s(χ
′)2g∂s =

1
2
((χ′)2∂sg∂s + ∂sg∂s(χ

′)2 +
∂s(g∂s(χ

′)2)). Since the field f = 0 on supp(χ′) we get,

‖χ′g1/2∂sψ‖
2 ≤ Re((H̃0,θ(F )− z)ψ, (χ′)2ψ)− Re((W̃θ(F )− z)ψ, (χ′)2ψ) +

1

2
(∂s(g∂s(χ

′)2)ψ, ψ)

≤ ‖(χ′)2‖∞‖(H̃0,θ(F )− z)−1‖+
(
‖∂s(g∂s(χ

′)2)‖∞ + (5.43)

‖(χ′)2(W̃θ(F )− z)‖∞
∥∥(H̃0,θ(F )− z)−1‖2.

The Lemma 4.1 implies that the l.h.s. of the last inequality is bounded uniformly
w.r.t. F if F is small and z ∈ κ.

Note that once the strong convergence on C′ is proved, the strong convergence
on L2(Ω) follows by using the fact that

([Ts, χ]− χW̃ (F ))(H̃0,θ(F )− z)−1Qθ(F ) =

([Ts, χ]− χW̃ (F ))
(
(H̃0,θ(F )− z)−1 − (H0 − z)−1

)

is uniformly bounded w.r.t F for F small and z ∈ κ. Hence the proof of (ii) is done.
We have

Kθ(F, z)−K(z) = (V0 +Wθ(F )− W̃θ(F ))(H̃0,θ(F )− z)−1 − V0(H0 − z)−1

= V0((H̃0,θ(F )− z)−1 − (H0 − z)−1)− (Wθ(F )− W̃θ(F ))(H̃0,θ(F )− z)−1.

Clearly in the norm sense (Wθ(F )− W̃θ(F ))(H̃0,θ(F )− z)−1 → 0B(L2(Ω)) as F → 0,

uniformly w.r.t. z ∈ κ. By applying (ii) this is also true for V0((H̃0,θ(F )− z)−1 −
(H0 − z)−1) as F → 0. Then

lim
F→0

‖Kθ(F, z)−K(z)‖ = 0.

uniformly w.r.t. z ∈ κ.

5.1 Proof of the Proposition 5.3

Let E0 be an eigenvalue of the operator H . Recall that λ0 = inf σess(H). Choose

the reference energy, E so that E− = E0 − λ0 = E − δE and δE = |E|
2
.

Let 0 < |θ| < θ0, Imθ = β > 0. Suppose R > 0 is such that the complex disk,
D = {z ∈ C, |z − E0| ≤ R} ⊂ ν̃θ and D ∩ σ(H) = {E0}.
First, we show that for F small enough, z ∈ ∂D, (Hθ(F ) − z)−1 exists. Clearly H
has no spectrum in ∂D then in view of the identity

(H − z)−1 = (H0 − z)−1(IL2(Ω) +K(z))−1, z ∈ ρ(H) ∩ ρ(H0),

the operator (IL2(Ω) + K(z))−1 is well defined on ∂D and its norm is uniformly
bounded w.r.t. z ∈ ∂D.
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We have

IL2(Ω) +Kθ(F, z) =

(
IL2(Ω) + (Kθ(F, z)−K(z))(IL2(Ω) +K(z))−1

)
(IL2(Ω) +K(z)).

(5.44)
Since by the Lemma 5.3 (iii), ‖Kθ(F, z) − K(z)‖ → 0 as F → 0 uniformly for
z ∈ ∂D, then for F small enough and z ∈ ∂D

‖(IL2(Ω) +K(z))−1(Kθ(F, z)−K(z))‖ < 1.

and IL2(Ω) + (Kθ(F, z) − K(z))(IL2(Ω) + K(z))−1 is invertible. Hence for F small
enough IL2(Ω) +Kθ(F, z) is invertible for z ∈ ∂D and from (4.37), (Hθ(F )− z)−1 is
well defined on the contour ∂D. We define the spectral projector associated with
Hθ(F ),

Pθ(F ) =
1

2iπ

∮

∂D
(Hθ(F )− z)−1 dz. (5.45)

The algebraic multiplicity of the eigenvalues of Hθ(F ) inside D is just the dimension
of Pθ(F ). In the same way let

P =
1

2iπ

∮

∂D
(H − z)−1 dz

be the spectral projector associated with H . Thus to prove the first part of the
proposition, it is sufficient to show that for F small enough, ‖Pθ(F )− P‖ < 1. We
have

(Hθ(F )− z)−1 = (H̃0,θ(F )− z)−1(IL2(Ω) +Kθ(F, z))
−1 (5.46)

= (H̃0,θ(F )− z)−1 − (H̃0,θ(F )− z)−1Kθ(F, z)(IL2(Ω) +Kθ(F, z))
−1

and similarly

(H − z)−1 = (H0 − z)−1 − (H0 − z)−1K(z)(IL2(Ω) +K(z))−1.

By the Lemma 4.1 the operator H̃0,θ(F ) has no spectrum inside D this is also true
for H0 then

∮
∂D(H0 − z)−1 dz =

∮
∂D(H̃0,θ(F )− z)−1 dz = 0. Hence, we get

Pθ(F )− P = 1
2iπ

∮
∂D((H0 − z)−1K(z)(IL2(Ω) +K(z))−1 − (5.47)

H̃0,θ(F )− z)−1Kθ(F, z)(I+Kθ(F, z))
−1 dz.

Set ∆K = K(z) − Kθ(F, z), ∆R = (H0 − z)−1 − (H̃0,θ(F ) − z)−1, we have the
following identity,

(H0 − z)−1K(z)(IL2(Ω) +K(z))−1 − (H̃0,θ(F )− z)−1Kθ(F, z)(IL2(Ω) +Kθ(F, z))
−1 =

∆RK(z)(IL2(Ω) +K(z))−1 + (H̃0,θ(F )− z)−1(IL2(Ω) +Kθ(F, z))
−1∆K(IL2(Ω) +K(z))−1.
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By applying the Lemma 5.3 then in the norm operator sense ∆RK(z)→0B(L2(Ω))

and ∆K→0B(L2(Ω)) as F → 0 uniformly in z ∈ ∂D. Moreover the operators (IL2(Ω)+

K(z))−1, (IL2(Ω) + Kθ(F, z))
−1 and (H̃0,θ(F ) − z)−1 are uniformly bounded w.r.t.

z ∈ ∂D and F for F small. This implies

lim
F→0

‖Pθ(F )− P‖ = 0. (5.48)

The second part of the proposition follows from the fact that the radius of D can be
chosen arbitrarily small, this shows that the eigenvalues of Hθ(F ) inside D converge
to E0 as F → 0.

6 Exponential estimates

In this section we show that the width of resonances given in the Proposition 5.3
decays exponentially when the intensity of the field F → 0. Hence we prove the
Theorem 2.3.

Let E0 be an simple eigenvalue of H . For 0 < F ≤ F ′
0, let Z0 be an eigenvalue of

the operator Hθ(F ) in a small complex neighborhood of E0 given by the Proposition
5.3. Then

Proposition 6.4. Under conditions of the Theorem 5.3, there exists 0 < F ′′
0 ≤ F ′

0

and two constants 0 < c1, c2 such that for 0 < F ≤ F ′′
0 ,

|ImZ0| ≤ c1e
− c2

F

First we need to prove the following lemma.

Lemma 6.4. Let ϕ0 be the eigenvector of H associated with the eigenvalue E0 i.e.
Hϕ0 = E0ϕ0. Then there exist a > 0 such that ea|s|ϕ0 ∈ L2(Ω).

Proof. Here we use the standard Combes-Thomas argument (see e.g. [24]). Consider
the following unitary transformation on L2(Ω). Let a ∈ R, for all ϕ ∈ L2(Ω), set

Wa(ϕ)(s, u) = e−iasϕ(s, u).

We have
Ha =WaHW

−1
a = H − ia(∂sg + g∂s) + ga2.

The family of operators {Ha, a ∈ C} is an entire family of type A. Indeed it is easy to
check thatD(Ha) = D(H), ∀a ∈ C. This follows from the fact that ∀z ∈ C, Imz 6= 0,

‖g1/2∂s(H − z)−1‖ ≤ ‖(H − z)−1‖+ (‖V0‖∞ + |z|)‖(H − z)−1‖2.
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Thus, for a suitable choice of z, the r.h.s of this last inequality is arbitrarily small.
This implies ∂sg + g∂s is H-bounded with zero relative bound.

Further let Rea = 0. Denote by H0,a = H0− ia(∂sg+ g∂s)+ ga
2. For ϕ ∈ D(H),

we have

Re(H0,aϕ, ϕ) = H0 − g(Ima)2 ≥ λ0 − g∞(Ima)2; g∞ = ‖g‖∞. (6.49)

Then for z /∈ Σa = {z ∈ C,Rez ≥ λ0 − g∞(Ima)2}, ‖(H0,a − z)−1‖ ≤ dist−1(z,Σa)
[20]. Thus if we show that V0(H0,a−z)

−1 is compact, then by using usual arguments
of the perturbation theory (see e.g; the proof of the Proposition 4.2) the operator
Ha has only discrete spectrum in C \Σa this will imply that the essential spectrum
of Ha, σess(Ha) ⊂ Σa.

Let h0 = −∂2s ⊗ IL2(0,d) + IL2(R) ⊗ Tu be the operator introduced in the proof of
the Lemma 4.2 and G = g − 1 we have

V0(H0,a−z)
−1 = V0(h0−z)

−1−V0(h0−z)
−1
(
∂sG∂s+ia(∂sg+g∂s)−ga

2
)
(H0,a−z)

−1.

We know that V0(h0 − z)−1 is compact (see the proof of the Lemma 4.2), so we are
left to show that

(
∂sG∂s + ia(∂sg + g∂s)− ga2

)
(H0,a − z)−1 is a bounded operator.

We have

∂sG∂s(H0,a−z)
−1 = ∂sG∂s(H0−z)

−1+∂sG∂s(H0−z)
−1(ia(∂sg+g∂s)−ga

2)(H0,a−z)
−1.

since D(H0) ⊂ H2
loc(Ω̄) ∩ H1

0(Ω), by the closed graph theorem ∂sG∂s(H0 − z)−1

is bounded. By using similar arguments as in the proof of the Lemma 5.3 (ii),
(ia(∂sg + g∂s)− ga2)(H0,a − z)−1 is also a bounded operator.

We now conclude the proof of the lemma by using usual arguments [24]. If
g∞(Ima)2 < λ0 − E0, E0 remains an discrete eigenvalue of Ha and eImasϕ ∈ L2(Ω).

6.1 Proof of the Proposition 6.4

Let E0 be a simple eigenvalue of H , as above we denote by ϕ0 the associated eigen-
vector and P = (., ϕ0)ϕ0.
Let χ1 = χ1(s) be a C∞ characteristic function of the interval [−τ

F
, τ
F
], τ > 0, s.t.

χ1(s) = 1 if s ∈ [−τ
2F
, τ
2F

]. Introduce the following operator on L2(Ω),

H1(F ) := H + χ1W (F ).

Since n1 = ‖χ1W (F )‖∞ < ∞ then H1(F ) is a selfadjoint operator on D(H). Note
that n1 = O(τ) + O(F ).
By using standard perturbation theory, we can choose R > 0 such that the complex
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disk D = {z ∈ C, |z − E0| ≤ R} such that D ∩ σ(H) = {E0} and has a boundary
∂D ⊂ ρ(H1(F ) for τ and F small enough. Then

P1 = P1(F ) =
1

2iπ

∮

∂D
(H1(F )− z)−1 dz. (6.50)

is an spectral projector for H1(F ) satisfying

lim
τ→0,F→0

‖P1 − P‖ → 0. (6.51)

Hence for τ and F small enough, the operator H1(F ) has one eigenvalues near E0,
e0(F ) and |E0 − e0(F )| = O(τ) + O(F ). Denote by ψ0 the associated eigenvector.
Evidently P1ψ0 = ψ0.

Let us show that as a consequence of the Lemma 6.4, if F and τ are small enough
then ea|s|ψ0 ∈ L2(Ω) and

‖ea|s|ψ0‖ ≤ C (6.52)

where the constant C > 0 and it is independent of F .
Introduce the family of operators H1,a = Ha + χ1W (F ), where Ha is defined as in
the previous section. Then {H1,a, a ∈ C} is an entire family of type A. In the other
hand the spectrum of H1,a satisfies, σ(H1,a) ⊂ {z ∈ C, dist(z, σ(Ha) ≤ n1}.

We have

(ϕ0, ψ0)e
asψ0 =

1

2iπ

∮

∂D
eas(H1(F )− z)−1e−aseasϕ0 dz. (6.53)

For τ and F small enough, the resolvent (H1,a(F ) − z)−1 is well defined for any
z ∈ ∂D. Further, the resolvent identity

(H1,a(F )− z)−1 = (Ha − z)−1 − (Ha − z)−1χ1W (F )(H1,a(F )− z)−1

and the fact that ‖(Ha−z)
−1‖ is uniformly bounded in z ∈ ∂D imply that ‖(H1,a(F )−

z)−1‖ is uniformly bounded in z ∈ ∂D w.r.t. τ and F .
Moreover by using standard arguments, in the bounded operator sense (H1,a(F )−
z)−1 = eas(H1(F ) − z)−1e−as for z ∈ ∂D. In the other hand we can check that
|(ϕ0, ψ0)| ≥

1
2
if F and τ are chosen small enough. Hence by using the Lemma 6.4

and (6.53), there exists C > 0 independent of τ and F such that

‖easψ0‖ ≤ C‖easϕ0‖ <∞.

The same arguments can be applied with a changing in −a, proving our claim.
From now, we fix τ > 0 and we choose 0 < F < F0 where F0 is small enough such
that (6.52) also holds.
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Let θ = iβ, 0 < β < θ0. As in previous section P1 = P1(F ), Pθ = Pθ(F ) are
the spectral projectors of H1 = H1(F ), Hθ = Hθ(F ) associated respectively to the
eigenvalue e0, Z0. We have

(Z0 − e0)(Pθψ0, P1ψ0) = ((Hθ −H1)Pθψ0, P1ψ0) =

((θF cos(η)f + (1− χ1)W (F ) + ∆TPθψ0, P1ψ0)

where ∆T = Ts,θ − Ts. Hence we will use the estimate,

|ImZ0| ≤
1

(|Pθψ0, P1ψ0)|
|(θF cos(η)f + (1− χ1)W (F ) + ∆TPθψ0, P1ψ0)| (6.54)

By using (5.48), (6.51), for F and τ small enough, the l.h.s. of (6.54) is estimated
as,

|(Pθψ0, P1ψ0)| ≥
1

2
,

and from (6.52), the two first terms of the r.h.s. of (6.54) satisfy

|(θF cos(η)fPθψ0, Pψ0)| ≤ |θ|‖Φψ0‖ = O(e−
c
F )

and
|(1− χ1)W (F )Pθψ0, Pψ0)| ≤ ‖(1− χ1)W (F )ψ0‖ = O(e−

c
F ),

for some constant c > 0. Let χ be a characteristic function of supp(f ′). Then (see
e.g (3.17) and (3.19)),

|(∆TPθψ0, Pψ0)| = |(∆TPθψ0, χPψ0)| ≤ ‖χψ0‖‖∆TPθψ0‖.

Since for F small enough, ‖χψ0‖ = O(e−
c
F ). Then to prove the theorem we need to

show that funder our conditions, ‖∆TPθϕ0‖ and then by (5.45) that ‖∆T (Hθ(F )−
z)−1‖, z ∈ ∂D is uniformly bounded w.r.t. F .

Note that following the proof of the Proposition 5.3, (see e.g. (5.44) and (5.46))
then for F small enough, the norm ‖(Hθ(F )− z)−1‖, z ∈ ∂D is uniformly bounded
in F . Evidently this is also true for ‖(H − z)−1‖. The second resolvent equation
implies for F small and z ∈ ∂D,

∆T (Hθ(F )− z)−1 = (6.55)

∆T (H − z)−1 −∆T (H − z)−1
(
∆T +Wθ(F )

)
(Hθ(F )− z)−1.

By the closed graph theorem the operator ∆T (H− z)−1, z ∈ ∂D is bounded and
if F is assumed small enough ‖ ∆T (H − z)−1‖ < 1

2
uniformly in z ∈ ∂D (see e.g.
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the proof of the Theorem 3.1). In view of

∆T (H − z)−1Wθ(F )(Hθ(F )− z)−1 = (6.56)

∆T (Fs+ i)(H − z)−1Wθ(F )
Fs+i

(Hθ(F )− z)−1 +

F∆T (H − z)−1(g∂s + ∂sg)(H − z)−1Wθ(F )
Fs+i

(Hθ(F )− z)−1,

the same arguments already used in the Section 3, then imply that there exists a
constant C > 0 such that for F small enough ‖∆T (H−z)−1Wθ(F )(Hθ(F )−z)

−1‖ ≤
C for z ∈ ∂D. Therefore, by (6.55), we get for z ∈ ∂D,

‖∆T (Hθ(F )− z)−1‖(1− ‖∆T (H − z)−1‖) ≤ ‖∆T (H − z)−1‖+

‖∆T (H − z)−1Wθ(F )(Hθ(F )− z)−1‖,

hence we get
‖∆T (Hθ(F )− z)−1‖ ≤ 1 + 2C.

7 Appendix: Self-adjointness

In this section we prove the Theorem 2.1. Our proof is mainly based on the com-
mutator theory [23, 25]. First we note that it is sufficient to show the theorem for
the operator h = h(F ) = H0 + w(F ) defined on L2(Ω) where w(F ) is defined in
(3.18). Choose a, b ∈ R+ such that w(F, s) + as2 + b > 1 and consider the positive
symmetric operator in L2(Ω),

N = H0 + w(F ) + 2as2 + b.

The operator N admits a (Friedrichs) self-adjoint extension since it is associated
with a positive quadratic form, we denote its self-adjoint extension by the same
symbol [20]. Moreover N has compact resolvent and then only discrete spectrum
(see section 7.1 below). So N is essentially self-adjoint on

C = {ϕ = ψ|Ω : ψ ∈ S(R2), ψ(s, 0) = ψ(s, d) = 0 for all s ∈ R} (7.57)

where S(R2) denotes the Schwartz class. In fact C contains a complete set of eigen-
vectors of N . Indeed some standard arguments (see e.g. [3, 13, 24]) show that
the corresponding eigenfunctions and their derivatives are smooth on Ω̄ and super-
exponentially decay in the longitudinal direction. From [23, X.5] we have to check
that there exist c, d > 0 such that for all ϕ ∈ C, ‖ϕ‖ = 1,

c‖Nϕ‖ ≥ ‖hϕ‖ (7.58)
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and
d‖N

1
2ϕ‖2 ≥ |(hϕ,Nϕ)− (Nϕ, hϕ)|. (7.59)

In the quadratic forms sense on C,

N2 = (h+ b)2 + 4asNs+ [[h, s], s]. (7.60)

But in the form sense on C, [[h, s], s] = −2g and g is bounded function. Therefore,

‖Nϕ‖ + 2‖g‖∞ ≥ ‖(h+ b)ϕ‖

and then since N ≥ 1 this last inequality implies (7.58). Similarly,

±i[h,N ] = ±i[h−N,N ] = ±i2a[s2, Ts]

= ∓i4a(∂sgs+ sg∂s),

this gives that for all ϕ ∈ C, ‖ϕ‖ = 1,

|(hϕ,Nϕ)− (Nϕ, hϕ)| ≤ 2a(‖g
1
2∂sϕ‖

2 + ‖sg
1
2ϕ‖2). (7.61)

Clearly we have N ≥ Ts + as2 on C. Then from (7.61) there exists a constant d > 0
such that

|(hϕ,Nϕ)− (Nϕ, hϕ)| ≤ d(Nϕ, ϕ)

proving (7.59).
We now show (ii). Let E ∈ R. We denote by Ẽ1 the first eigenvalue of the

operator Tu + F sin(η)u and χ̃1 the associated normalized eigenvector,

(Tu + F sin(η)u)χ̃1(u) = Ẽ1χ̃1(u). (7.62)

Set λ = E − Ẽ1 and ϕ be the solution of the Airy equation

−ϕ′′(s) + F cos(η)sϕ(s) = λϕ(s) λ ∈ R. (7.63)

It is known (see e.g. [1] ) that ϕ(s) = (λ − F cos(η)s)−1/4e−i
2

3F cos(η)
(λ−F cos(η)s)3/2 +

o((λ−F cos(η)s)−1/4) and ϕ′(s) = (λ−F cos(η)s)1/4e−i
2

3F cos(η)
(λ−F cos(η)s)3/2 + o((λ−

F cos(η)s)1/4) as s→ −∞.
Let ξ be a C∞ characteristic function of (−1, 1) and s ∈ R → ξn(s) = ξ( s

nα + n),
1
2
< α < 1, n ∈ N∗. Set

ψn = ψ̃n

‖ψ̃n‖
where ψ̃n(s, u) = χ̃1(u)ϕ(s)ξn(s), then for n large enough, ‖ψ̃n‖ =

‖ϕξn‖ ≥ c nα/2−1/4 for some constant c > 0. Since g = 1 if n is large, we have

(H(F )− E)ψn =
(
− 2χ1(u)ϕ

′(s)ξ′n(s)− χ1(u)ϕ(s)ξ
′′
n(s)

) 1

‖ψ̃n‖
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and then

‖(H(F )− E)ψn‖L2(Ω) ≤
1

‖ψ̃n‖

(
2‖ϕ′ξ′n‖L2(R) + ‖ϕξ′′n‖L2(R)

)
. (7.64)

For n large enough ‖ϕ′ξ′n‖
2
L2(R) = o(n−α/2+1/4) and ‖ϕξ′′n‖L2(R) = o(n−3α/2−1/4).

Thus,
lim
n→∞

‖(H(F )− E)ψn‖L2(Ω) = 0.

This completes the proof.

7.1 The operator (N + 1)−1

Consider first the positive self-adjoint operator on L2(Ω)

N0 = (−∂2s + v(s))⊗ IL(0,d) + IL(R) ⊗ Tu

where v(s) = w(F, s) + 2as2 + b and w is defined in (3.18). It is known that the
operator −∂2s + v(s) is essentially self-adjoint on L2(R) and has a compact resolvent
[23, 24]. By the min-max principle we can verify that the eigenvalues of this operator
satisfy, there exists c1, c2 > 0 such that for large n ∈ N

c1n ≤ en ≤ c2n.

Then (N0 + 1)−1 is an Hilbert-Schmidt operator. By using the second resolvent
equation we have

(N + 1)−1 = (N0 + 1)−1 + (N0 + 1)−1∂sG∂s(N + 1)−1

where G is defined in the proof of the Lemma 4.2. Therefore, the statement follows
if we show that ∂sG∂s(N + 1)−1 is a bounded operator.

We have

∂sG∂s(N + 1)−1 = ∂sG∂s(H0 + 1)−1 − ∂sG∂s(H0 + 1)−1v(N + 1)−1.

Since D(H0) ⊂ H2
loc(Ω̄)∩H1

0(Ω), by the closed graph theorem ∂sG∂s(H0+1)−1 and
∂sG∂ss(H0 + 1)−1 are bounded. Standard commutation relations then imply,

∂sG∂s(H0 + 1)−1v(N + 1)−1 = ∂sG∂s(s+ i)(H0 + 1)−1 v
s+i

(N + 1)−1 +

∂sG∂s(H0 + 1)−12∂s(H0 + 1)−1 v
s+i

(N + 1)−1.

We know that the domain D(N) ⊂ D(|v|1/2) so v
s+i

(N + 1)−1 is bounded, then it
follows by using the same arguments as above that ∂sG∂s(H0 + 1)−1v(N + 1)−1 is
also bounded.
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for the hydrogen atom Stark hamiltonian, Asymptot. Anal., 79, no. 1-2, 17
(2012).

[19] W. Hunziker: Distortion analyticity and molecular resonance curve, Ann.
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