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Tire/road contact modeling for the in-vehicle noise prediction
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1 Université Paris-Est, Laboratoire Navier (CNRS-ENPC-IFSTTAR), France
2 PSA Peugeot Citröen, France

ABSTRACT
A numerical model for the contact between a wheel-air-tire system and a road surface is presented. The forces
calculated at the center of wheel are to be used in a full numerical model of a vehicle for the in-vehicle noise
prediction. The tire/road contact modeling is a difficult task because of the complex structure of the tire and
the roughness of the road surface. Two numerical approachesare compared to each other in the present study:
the first one solves directly the dynamic equation and the second one uses the static contact force to calculate
the vibration of the tire. The numerical results of the forces at the wheel center have been compared to those
of measurements conducted by PSA Peugeot Citroën. The comparison shows good agreement in the low
frequency range up to 230Hz.
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1. INTRODUCTION
The tire/road contact is one of the main sources of the in-vehicle noise for passenger cars in the low

frequency range (1). However the experiments on tire/road contact are expensive and a full dynamic numerical
modeling is time consuming. Recently a multi-asperity approach has been developped (2, 3) and the contact
pressure calculated by this approach is strongly correlated with the rolling noise (4, 5). In the present study,
two numerical approaches are compared to each other: the first one solves directly the dynamic equation and
the second one uses the static contact force to calculate thevibration of the tire. The numerical results of
the forces at the wheel center will then be compared to those of measurements conducted by PSA Peugeot
Citroën before concluding remarks.

2. NUMERICAL MODELING OF THE TIRE/ROAD CONTACT
2.1 Displacement superposition

For a wheel rolling on a smooth road, we suppose that the motion of the wheel and tire is governed by the
following equation

g(us) = Fs (1)

whereus the displacement vector,Fs the contact force between the tire and the smooth road,g is a function
which links them.

The problem of rolling contact between a smooth tire and a smooth road can be solved by using Abaqus.
Figure 1 shows an example of the force calculated at the wheelcenter.

In order to study the contact between the tire and a rough road, one can add a small oscillationu to us,
then equation (1) becomes:

g(us +u) = Fc (2)

whereFc is the contact pressure between the tire and a rough road surface. The last equation can be linearized
in the following way :

g(us)+
∂ g
∂ u

(us)u = Fc (3)
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Figure 1 – Vertical force calculated at the wheel center.

The tangent stiffness matrix is defined by the following equation:

∂ g
∂ u

(us) = K (4)

From the last four equations one deduces
Ku = Fc −Fs (5)

2.2 Full dynamic model
By adding the mass and damping terms, the dynamic motion equation of a wheel-air-tire system can be

obtained,

Mü+Cu̇+Ku = Fc −Fs (6)

where the matricesM, K andC are the mass matrix, stiffness matrix and damping matrix respectively. Their
components are extracted from Abaqus. The following contact conditions are to be satisfied in the tire/road
contact zone,

uXi = 0, uYi = 0, uZi = froad(Xi,Yi)−Zi(Xi,Yi) and Fν
c > 0 (7)

whereXi,Yi represent the longitudinal and lateral positions in the moving reference of the car. In the contact
zone, the tangential displacement is neglected (uXi = uYi = 0). The functionfroad(Xi,Yi) andZi(Xi,Yi) rep-
resent the road surface and the tire height respectively. The normal displacement continuity is satisfied and
compress normal forceFν

c is supposed to be positive.
By using Newmark method, one solves the following equation instead of equation (1),

Kd u = Fh +Fc −Fs (8)

whereKd is the dynamic stiffness matrix defined by Newmark method andFh the historic force.
The last equation has been solved by using Matlab for a tire rolling on a cleat as shown in figure 2.

The longitudinal and normal forces at the wheel center have been calculated and their spectrums are shown
in figure 3 by the blue curve. The red and black curves show the measurements on two different tires. The
numerical results agree qualitatively well with the experimental results. However the computation lasted more
than one day which is too long for industrial applications.

2.3 Two-step static-dynamic model
The contact force in static conditions can be calculated by solving the following equation.

Ku = Fc −Fs (9)
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Figure 2 – Tire rolling on a cleat.
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Figure 3 – Spectrums of the longitudinal (left) and vertical(right) forces, red and black curves showing the
measured results for two different tires, the blue one showing the numerical results.

For low frequencies, the static and dynamic contact forces are supposed to be close to each other. At
constant speedV , the longitudinal position isX(t) = Vt, then the static contact pressure and the displacement
are transformed into time functions

Fc(Vt,Y (t)) = fc(t), Uc(Vt,Y (t)) = uc(t) (10)

The spectrums of the displacementuc and the forcefc at one point are shown in Figures 4 and 5.
The dynamic response of the tire to the excitations calculated in static conditions is the solution of the

following equation :
{

Mü+Cu̇+Ku = fc(t)
uimp = uc(t)

(11)

This equation has been solved by using the method of Lagrangemultipliers for frequencies from 0 to
400Hz with a frequency resolution of one Hertz. The calculation lasted 4000 secondes (1.1 hours) which is
to be compared to 30 hours for the full dynamic calculation. The spectrums of the longitudinal and vertical
forces calculated at the wheel center by using the two methods are compared in figure 6. The red and black
curves show the results of the full dynamic method and two step static-dynamic method respectively. The
curves are close to each other in the frequency range from 0 to230 Hz.

3. CONCLUSIONS
A numerical model for the contact between a wheel-air-tire system and a road is presented. The forces

calculated at the center of wheel would be used in a full numerical model of a vehicle for the in-vehicle noise
prediction. Two numerical approaches are compared to each other in the present study: the first one solves

Inter-noise 2014 Page 3 of5



Page 4 of5 Inter-noise 2014

0 50 100 150 200 250 300 350 400
10

15

20

25

30

35

Frequency (Hz)

Im
po

se
d 

di
sp

la
ce

m
en

t (
dB

) 
(m

m
)

Figure 4 – Spectrum of the displacement imposed at one point.
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Figure 5 – Spectrum of the force imposed at one point.

Figure 6 – Longitudinal (left) and vertical (right) forces calculated at the wheel center by using the full
dynamic model (red curves) and two step static-dynamic model (black curves).
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directly the dynamic equation and the second one uses the static contact force to calculate the vibration of the
tire. The two models are applied to the problem of a tire rolling on a cleat and they give similar results of the
forces at the wheel center but the two step static-dynamic model is much less time consuming. Finally the
numerical results have been compared with those of measurements conducted by PSA Peugeot Citroën. The
comparison shows good agreement in the low frequency range up to 230Hz. The application to real rough
road surfaces is in progress.
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