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This paper proposes a method to compute the horn effect for tire with treads. The main feature of the method is that
it can easily get the sound pressure around the horn-like structure which has grooves with small cross sections on
the surfaces. It greatly saves computational costs and gives more physical informations. It is based on the boundary
element method, and divides the computational domain of horn effect into an exterior subdomain of tire and several
interior subdomains of junctions. It needs BEM system matrices and excitation vector, and also the relation of
pressure and velocity between the subdomains ends which can be obtained by analytical or numerical methods.
This method is applied to study some simple examples for which analytical or numerical results are available.
Good agreements between the proposed method and known results can check its efficiency and accuracy. Then
horn effect of tires with treads is computed by this method, and comparisons with smooth tires are made.

1 Introduction
Between the tire and road, there is a horn-like geometry

formed by the surfaces of tire and road. It greatly amplifies
the sound pressure for sound sources. According to the
experimental measurements in [1], the horn effect is
responsible for about 10-20dB increase in noise level.
Numerical calculations using the indirect boundary element
method (BEM) have been carried out by Graf as well. The
BEM results agree well with experiment below 2500 Hz.
However, the BEM results don’t give a physical explanation
for the frequency dependence of the horn amplification. Then
Graf used asymptotic theories to describe the horn effect at
low and high frequencies. Good quantitative predictions and
the physical aspects of the phenomenon were given. In [2]
the sound pressure and sound amplification of horn effect
are calculated in the space around the 3D tire model using
the BEM. The influence of different parameters such as the
position and size of the source are studied. It is shown that
the position of the source has a very important influence,
while its size has negligible influence. The influence of
roads’ absorption properties on the amplification is also
analyzed.

However, the tire in the previous numerical calculations
is represented as a short cylinder with smooth surfaces.
Actually there are treads around the tire surface which
should be taken into account. For the tire with complicated
treads, it is difficult to get the sound pressure near the tire
which is essential to the computation of horn effect. Tire
with treads can be considered as flanged waveguides. In such
systems, the waveguides are formed by the road and tire in
the contact zone and have small cross sections. The BEM
is available, but only for very simple case as BEM needs
fine mesh around the resonant frequency of the waveguide
to get converged solutions. For complicated waveguide, fine
mesh leads to high computational costs, so new methods
should be used. Since the cross sections of waveguides are
neither as small as the arbitrary microscopic holes in many
porous materials nor as big or complicated as the pipes in
the mufflers, it is not suitable to use the same methods to
calculate the sound pressure field of the flanged waveguide.
But the methods for mufflers could give some inspirations.
Mufflers have complicated internal structures. There are
several methods for the analysis of mufflers summarized
in [3]. The multi-domain BEM and BEM with the transfer
matrix could be used for the calculation of the flanged
waveguide, but some changes should be made.

A brief introduction of the applications of multi-
domain BEM can be seen in [4]. It was first used to
analyze the potential problem and elasticity [5]. Then it
was introduced to solve acoustic problems. An important
application of multi-domain BEM to acoustics is the coupled

interior/exterior problems [6]. The multi-domain BEM is
also used to deal with problems with several acoustic media
[7]. Another wide application is the problem about thin
bodies [8] before using the hypersingular integral equation.
Dividing the whole acoustic domain into several subdomains
is the main idea of the multi–domain BEM. Substructuring
can reduce the matrix size and the total computational time
for large structures, but the adjacent subdomains should have
the same interface mesh to match the boundary conditions.

Transfer matrix techniques have been applied to the
analysis of series of connected pipes with many changes
of sectional area in [9]. In [10] a different form of transfer
matrix is used, together with the matrices derived for the
two-dimensional junctions by finite element method, to
describe a complete network. In [11] the transfer matrix is
used to combine the impedance matrix of each substructure
of a silencer. The transfer matrix can easily connect two
substructures and describe the relation of pressure and
particle velocity between them. But an assumption should
be true to get the transfer matrix, which is the plane wave
propagation in the connected part.

Since BEM is advantageous for analyzing problems
with an exterior domain or a complex geometry, in this
paper a substructuring technique based on BEM is proposed
to reduce matrix size of the strcture, and also a modified
transfer matrix is used to connect the subdomains to reduce
the nodes and elements and avoid the identical mesh at the
interface.

First the structure to be analyzed and wave propagation
are introduced. The computational method is described in
the next section. Then comparisons are given to check the
accuracy of the proposed method. Finally tire with treads is
solved with the proposed method.

2 Problem specification
To compute the amplification of horn effect, the sound

pressure around the tire and road should be obtained first.
Tire with treads can be treated as flanged waveguides.
The surfaces of tire and road are the flanges, and the tire
treads and road form the waveguides which could have any
connection pattern : arbitrary network, parallel pipes or a
mixture of them. The waveguides in this paper have small
cross sections.

2.1 Wave propagation
Fig.1a represents three dimensional network with

arbitrary flange. Put a point source S near the flange. The
acoustic wave at point R includes three parts (see Fig.1a) :
wave directly from the source, wave reflected from the



flanged without network (see Fig.1b) and wave radiating
from the network with flange (see Fig.1c). The wave from
the source arrives at pipes ends and then propagates in the
network. The straight parts of the network are very thin
compared with the wave length to be analyzed. So there is
only plane wave motion in the straight parts. The wave in
the junction of the network has higher order modes, but it
doesn’t propagate in the straight parts. In Fig.1b, we use
imaginary pipes ends instead of the real ends. The imaginary
ends are inside the network but close to the real ones. The
imaginary surfaces S imag are perpendicular to pipes walls.
Thus, at S imag the wave is uniform, which is useful in the
method proposed in this paper. However, it is not uniform at
the real ends, even if the real ends are perpendicular to the
network walls, because the cross sections change suddenly.

(a) (b)

(c)

Figure 1 – (a) Total pressure ; (b) Pressure directly from
source and reflected by flange ; (c) Pressure radiating from

network

2.2 Boundary condition
The boundary condition of flange and waveguide walls

could be the pressure, the normal derivative of the pressure,
the impedance, the surface velocity, or a mixture of them.
There should be a small transition zone between different
boundary conditions.

3 Computational method
The calculation of the total acoustic pressure ptot at a

point R in the exterior domain in Fig.1a is the first step of
the computation of horn effect.

3.1 The total pressure
The waveguide to be analyzed consists of cylindrical or

rectangular pipes with small cross sections. For very simple
waveguides one can get the total pressure easily by running
BEM once. However, around the resonant frequency of
the waveguide it needs fine mesh to get converged results
by BEM. So the computational costs are very high. For
complicated networks, fine mesh leads to memory problem
of computer. To avoid this problem, a multi-domain BEM
combined with transfer matrix technique is proposed.

In boundary element methods, for a problem with a
bounded domain, the integral equation to be solved is given
by

ce(x)p(x) =

∫
Γ

p(y)
∂G
∂ny

(x, y)dy −
∫

Γ

∂p
∂ny

(y)G(x, y)dy

+pinc(x)
(1)

Γ is the surface of a bounded domain. pinc(x) is the
incident pressure from the source without the structure. G
is the Green function. n is the unit normal vector pointing
into the domain. To get the total pressure ptot in the exterior
domain, let ce(x) = 1. Γ includes the flange and the
imaginary network ends (see Fig.1b). Substitute pressure

p(y) and its derivative
∂p
∂ny

on the surface Γ into Eq. (1) and

solve it, one has ptot. These values should be calculated first.

3.2 Unknowns on surface Γ

Divide the problem in Fig.1a into an exterior subdomain
of flange and several interior subdomains of junctions. Solve
each subdomain by BEM to get BEM system matrices
and excitation vector, and then connect the subdomains by
transfer matrices. Finally solve the overall equation system,

and one has p(y) and
∂p
∂ny

on surface Γ. The process is

described in detail in the following.

3.2.1 Subdomains

In Eq. (1), for a point x on Γ, ce(x) equals 1/2 if the
surface Γ is regular at this point. The discretization of Eq. (1)
is obtained from a mesh of the surface of the domain. Then
a linear system (2) can be obtained whose solution gives
an approximation of the solution on the surface Γ. More
information can be found in [12].

AP + BQ = Pinc (2)

P, Q and Pinc are vectors of pressure, derivative of
pressure and incident pressure, respectively. A and B are
BEM system matrices.

For the exterior subdomain in Fig.1b, divide the vectors in
Eq. (2) into vectors of imaginary ends and vectors of flange.
One has

AE

[
Pep

P f

]
+ BE

[
Qep
Q f

]
=

[
Pep

inc
P f

inc

]
(3)

The subscripts and superscripts ep and f mean the
imaginary ends of straight pipes and the flange, respectively.
Matrices AE and BE can be obtained by solving the problem
in Fig.1b with BEM software. In the BEM software, using
the rigid boundary condition on the surface Γ, one can get
AE . Using the soft boundary condition, one can get BE . The
incident pressure pinc can be obtained in either of the two
computations above.

For the network in Fig.1c we create imaginary surfaces
for its junctions. These surfaces should be perpendicular to
the network walls. One can see the interior subdomain of
a junction in Fig.1c. The normal direction of surface S jun

points inward. Since for the junction subdomain there is
no source, the incident pressure equals zero. The equations
system for the junction is



AI

[
Pe j

Pw

]
+ BI

[
Qe j
Qw

]
=

[
0
0

]
(4)

The subscripts and superscripts e j and w mean the
imaginary ends and the walls of junction. Matrices AI and
BI can be obtained by running the BEM software in the
same way as before.

3.2.2 Transfer matrix

The straight pipe between the flange and the junction or
two junctions in Fig.1c, whose central axis is labelled as z,
is thin compared to the wavelength to be analyzed. There is
only plane wave. Pressure p and its derivative q are constant
on a plane perpendicular to z. The wave equation is

∂2 p
∂z2 =

1
c2

∂2 p
∂t2 (5)

c is the sound speed. Suppose that the solution of Eq. (5)
is

p(z) = a cos kz + b sin kz (6)

k is the wave number. The convention e−iωt is adopted,
where i2 = −1, ρ is the density of air and ω is the angular
frequency. The velocity is given as

v(z) =
1

iρω
∂p
∂z

(7)

Surfaces S r and S l in Fig.1c have different normal
directions. Substitute z = zr and z = zl into Eqs. (6) and (7),
then one can get the relation of p and q between one node
on S r and another node on S l. Since p can be expressed as
the mean value because the pressure is constant at each pipe
end, q at any node i on S r and S l becomes

[
qri

qli

]
=

[
t11 t12
t21 t22

]


1
nr

j=nr∑
j=1

pr j

1
nl

j=nl∑
j=1

pl j


(8)

Here nr and nl are node numbers at each end. Thus, the
relation between p vector Pe and q vector Qe at the two ends
can be written as

Qe = SPe (9)

3.2.3 Solving simultaneous equations

For the whole problem of flanged waveguide in Fig.1a,
one has the Eqs. (3), (4) and (9) of each couple of ends,
so the overall system can be assembled. After applying the
boundary condition in section 2.2 to the flange and tube walls
and solving the overall system, the values of p and q for each
node on the surfaces Γ and S jun can be obtained.

4 Comparison with known solutions
For simple waveguides and flanges, there are analytical

solutions and the BEM works. We calculate the pressure at
imaginary ends of the waveguide and the total pressure at
a point outside the flange and then compare with the method

proposed to check its accuracy. The first example is a straight
pipe. The seconde one is a T pipe.

(a) (b)

Figure 2 – (a) One pipe with cylindrical flange ; (b) T pipe
with rectangular flange.

4.1 Straight pipe
The flange in this example is a cylinder. There is a thin

pipe at the center (see Fig.2a). The flange and pipe wall are
rigid. The radius of the pipe and the flange is 0.005m and
0.6m respectively. The pipe length is 0.1m. The source S is at
(0, 0,−0.1). We create imaginary ends for the pipe to ensure
that the pressure is uniform at these ends. The coordinates of
the imaginary ends are z = 0.005 and z = 0.095 (see Fig.2a).

4.1.1 Analytical method

The total pressure can be calculated by

ptot = prad + pinc (10)

pinc in this part is the incident pressure at point R
(0.1, 0.1,−0.1) from the source and reflected by the flange
without waveguide. prad is the pressure radiating from the
waveguide.

The first step to get prad is calculating the pressure pend

and particle velocity vend at the imaginary ends analytically.
Since the pipe is straight and thin, there is only plane wave.
One has Eq. (5) and its solution Eqs. (6) and (7). Substitute
z = 0 and z = l into them, one gets the expressions of
pressure prt, plt and velocity vrt, vlt at the real ends of the
pipe. At the two real ends the pressure and velocity include
two parts : radiating part and incident part. Substitute them
into the expressions of pressure and velocity obtained before,
one has

prr cos kl + iρcvrr sin kl − plr = −pri cos kl − iρcvri sin kl + pli

(11)

prr sin kl−iρcvrr cos kl+iρcvlr = −pri sin kl+iρcvri cos kl−iρcvli

(12)
prr and vrr are values of wave radiating from the right real

end, and plr and vlr are from the left real end. pri and vri are
values of incident wave at the right real end, and pli and vli

are at the left real end. The pressure and velocity radiating
from the pipe satisfy

prr

vrr
= −Zr (13)

plr

vlr
= Zr (14)



Zr is the radiation impedance. Since the flange is
big compared to the pipe and the source is close to the
pipe, the flange can be considered as infinite. One has

Zr = ρc(
1
2

(kr)2 − i(0.8216kr)), where r is the pipe radius.
From Eqs. (11)-(14) one can obtain a system of linear

equations. In this system, pri, vri, pli and vli should be given.
In Fig.2a if we close the real ends of the pipe and then put
rigid boundary condition on the whole surface, these values
can be obtained by BEM, and so is the incident pressure pinc

at receiver R in the exterior domain. After substituting them
into the system and solving, one can get the pressures prr, plr

and velocities vrr, vlr at the two ends for a given frequency.
Then one can get a and b from the expressions of

pressure and velocity. Substitute them in Eq. (6), one obtains
the pressure pend and vend at the imaginary ends. With pend,
the pressure prad radiating for the pipe can be obtained by
BEM. Closing the pipe at imaginary ends in Fig.2a, putting
pend on the end surfaces and rigid boundary condition on the
other part of surface, removing the source, and solving this
problem by BEM, one has prad at R. Then the total pressure
at the point R can be obtained by Eq. (10).

4.1.2 Comparison

One can solve this problem by the multi-domain BEM
(M-BEM) introduced in section 3. There is no junction, so
only the Eqs. (3) and (9) are needed.

Figure 3 – Pressure at right imaginary end of straight pipe

Figure 4 – Pressure at point R near flange

Fig.3 and 4 are the pressures at the right imaginary end
of the straight pipe and at point R(0.1, 0.1,−0.1) calculated
by three methods. Good agreement can be seen in these
figures. The error of pressure between two different methods
can be calculated by error = |p1 − p2|/|p1|. At point R, the
maximum error between M-BEM and BEM is 2.6%, and the
maximum error between M-BEM and analytical method is

7.5%. In the analytical method, the assumption of uniform
pressure at the real pipe ends is used. Actually it is not plane
wave at the real ends, for the pipe radius changes suddenly.
This assumption brings error. Its influence on pressure in the
exterior domain is smaller than at the imaginary ends.

4.2 T pipe
The flange in this example is a hexahedron. There is a

T pipe at the center (see Fig.2b). The flange and pipe wall
are rigid. The cross section of the pipe and the flange is
0.02 × 0.02m and 0.3 × 0.3m respectively. The pipe length
is 0.1m and the branch length is 0.14m. The source S is
at (0, 0,−0.1). We create imaginary ends S imag,p for the T
pipe to ensure that the pressure is uniform at these ends. The
distance between imaginary ends and real ends is 0.005m(see
Fig.2b). Then we create imaginary surfaces S imag, j for the
junction. The distance between S imag,p and S imag, j is 0.005m.

In multi-domain BEM, assemble and solve Eqs. (3), (4)
and (9) of each couple of imaginary surfaces S imag,p and
S imag, j, one can get the solution. By Eq. (1) one has the
sound pressure field. Fig.5 and Fig. 6 are the pressures at the
imaginary end (z = 0.005m) and at point R(−0.1, 0.1,−0.1)
calculated by two methods. In Fig.6 there is good agreement.
The maximum error of pressure at point R between M-BEM
and BEM is 1.4%.

Figure 5 – Pressure at the imaginary end of straight pipe

Figure 6 – Pressure at point R near flange

In Fig.5, one can see good agreement between these
two methods as well. There are small differences around
the resonant frequency which is about 1600Hz. The reason
may be that the assumption of plane wave in M-BEM is
not perfect for this rectangular cross section pipe around
1600Hz.



5 Horn effect of tire with treads
The sound pressure P around a horn-like structure

between tire and road can be computed with the proposed
method. Then it is easy to get the amplification of horn effect
with the following formula.

A = 20log(
P

Pre f
) (15)

Pre f is the sound pressure without road.
In this section, the amplification of horn effect for a tire

with treads is computed and compared with smooth tire.
The tire in Fig.7a is flat in the contact zone. The road and
tire is rigid. There are three grooves around the tire and
one transversal groove. The cross section of the grooves is
0.005 × 0.005m except the circular groove in the middle
which has the cross section 0.005 × 0.01m. The radius and
width of tire are 0.27m and 0.15m, respectively. The contact
zone is 0.1m in length. The source S is at (0.1, 0, 0.005), and
the receiver R is at (1, 0, 0.265). S 2 − S 6 are the surfaces of
network ends. Fig.8 is the mesh of tire with treads, and it is
used to compute the pressure Pre f around tire without road.

(a) (b)

Figure 7 – (a) Horn-like structure between tire and road ; (b)
Network in the contact zone

Figure 8 – Half of a tire with treads

Fig.9 shows the pressure at network ends. We can see
peaks around 1250Hz, and it is due to the air resonance
in the network. So in Fig.10 there are big differences of
amplification of horn effect between the tire with treads
and smooth tire around this frequency. Therefore, the treads
should be taken into account in the computation of horn
effect.

6 Conclusion
The multi-domain BEM proposed in this paper makes

it possible to calculate the horn effect of tire with treads.

Figure 9 – Pressure at network ends

Figure 10 – Comparison of amplification of horn effect

It uses substructuring and transfer matrix techniques to
reduce nodes, elements and the BEM matrix size and to save
computational memory. Only the tire surfaces and network
junctions need to be modeled. It combines the advantages
of boundary element method and transfer matrix technique
together. The method has good accuracy. The influences
of treads on the horn effect of tire/road are big, and the
optimizations of treads should be done in the future to
reduce the amplification of horn effect.
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