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Abstract. Within different techniques for texture modelling and recog-
nition, local binary patterns and its variants have received much interest
in recent years thanks to their low computational cost and high discrim-
ination power. We propose a new texture description approach, whose
principle is to extend the LBP representation from the local gray level to
the regional distribution level. The region is represented by pre-defined
structuring element, while the distribution is approximated using the
two first statistical moments. Experimental results on four large texture
databases, including Outex, KTH-TIPS 2b, CUReT and UIUC show that
our approach significantly improves the performance of texture represen-
tation and classification with respect to comparable methods.

1 Introduction

Texture analysis is an active research topic in computer vision and image pro-
cessing. It has a significant role in many applications, such as medical image
analysis, remote sensing, document vectorisation, or content-based image re-
trieval. Thus, texture classification has received considerable attention over the
two last decades, and many novel methods have been proposed [1–15].

The representation of texture features is a key factor for the performance of
texture classification systems. Numerous powerful descriptors were recently pro-
posed: modified SIFT (scale invariant feature transform) and intensity domain
SPIN images [4], MR8 [16], the rotation invariant basic image features (BIF) [11],
(sorted) random projections over small patches [15]. Most earlier works focused
on filter banks and the statistical distributions of their responses. Among the
popular descriptors in these approaches are Gabor filters [17], MR8 [16], Leung
and Malik’s [18] filters, or wavelets [19]. Filter bank approaches are attractive by
being expressive and flexible, but they may be hard to work out by being compu-
tationally expensive and application dependent. Varma and Zisserman [16] have
shown that local intensities or differences in a small patch can produce better
performance than filter banks with large spatial support.

Local Binary Patterns (LBP) emerged ten years ago when Ojala et al. [3]
showed that simple relations in small pixel neighborhoods can represent texture
with high discrimination. They used a binary code to represent the signs of dif-
ference between the values of a pixel and its neighbours. Since then, due to its
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great computational efficiency and good texture characterisation performance,
the LBPs have been applied in many applications of computer vision and a large
number of LBP variants [8,9,14,20] have been introduced. They have been intro-
duced to remedy several limitations of basic LBP including small spatial support
region, loss of local textural information, rotation and noise sensitivities. Instead
of using central pixel as threshold, several authors used the median [21] or the
mean [22, 23] value of neighbouring pixels. Similarly, Liao et al. [24] considered
LBP on mean values of local blocks. Local variance was used as a complemen-
tary contrast measure [3, 12]. Gabor filters [25] are widely used for capturing
more global information. Guo et al. [9] included both the magnitudes of local
differences and the pixel intensity itself in order to improve the discrimination
capability. Dominant LBPs (DLBP) [8] have been proposed to deal with the
most frequent patterns instead of uniform patterns. Zhao et al. [26] combined
with covariance matrix to improve the performance.

We address a new efficient schema to exploit variance information in this
paper. Unlike typical methods that considered the joint distribution of LBP
codes and local contrast measure (LBP/VAR) [3] or integrated directly vari-
ance information into LBP model [12], we capture the local relationships within
images corresponding to local mean and variance. We show that this approach
is more efficient to exploit the complementary contrast information. Our de-
scriptor enhances the expressiveness of the classic LBP texture representation
while providing high discrimination, as we show in a comparative evaluation on
several classic texture data sets. It has limited computational complexity and
doesn’t need neither multiscale processing nor magnitude complementary in-
formation (CLBP M) to obtain state-of-the-art results: CLBP [9], CLBC [14],
CRLBP [23], NI/RD/CI [27].

The remaining of the paper is organised as follows. Section 2 presents in more
details the other works most directly related to our method. Section 3 elaborates
the proposed approach. Experimental results are presented in Section 4 and
conclusions are finally drawn in Section 5.

2 Related work

2.1 Rotation invariant uniform LBP

Ojala et al. [28] supposed that texture has locally two complementary aspects:
a spatial structure and its contrast. Therefore, LBP was proposed as a binary
version of the texture unit to represent the spatial structure. The original version
works in a block of 3x3 pixels. The pixels in the block are coded based on a
thresholding by the value of center pixel and its neighbors. A chain code of 8
bit is then obtained to label the center pixel. Hence, there are totally 28 = 256
different labels to describe the spatial relation of the center pixel. These labels
define local textural patterns.

The generalised LBP descriptor, proposed by Ojala et al. [3], encodes the
spatial relations in images. Let f be a discrete image, modelled as a mapping
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from Z
2 to R. The original LBP encoding of f is defined as the following mapping

from Z
2 to {0, 1}P :

LBPP,R(f)(z) = (s(f(yp)− f(z)))0≤p<P
, (1)

with s(x) =

{

1, x ≥ 0

0, otherwise.

Here yp (0 ≤ p < P ) are the P neighbours of z, whose values are evenly measured
(or interpolated) on the circle of radius R centred on z.

The uniformity measure of an LBP is defined as follows:

U(LBPP,R) =

P
∑

p=1

|LBPp
P,R − LBPp−1

P,R |, (2)

where LBPp
P,R is the p-th bit of LBPP,R, and LBPP

P,R = LBP0
P,R. An LBP is

called uniform if U(LBPP,R) ≤ 2. Ojala et al. observed that, on natural texture
images, most patterns are uniform. Finally the rotation invariant uniform LBP
is defined as follows:

LBPriu2
P,R =















P−1
∑

p=0

LBPp
P,R, if U(LBPP,R) ≤ 2

P + 1, otherwise.

(3)

LBPriu2 proved [3] a very efficient local texture descriptor and then has been in-
tensively used in texture classification. Uniform patterns are considered as more
reliable and more statistically significant. Furthermore, ignoring non-uniform
patterns considerably reduces the length of the descriptor, with only P + 2 dis-
tinct LBP riu2

P,R compared to 2P distinct LBPP,R.

2.2 Complementary information

Local contrast Aside from the classic LBP, different authors have addressed
the complementary information in order to improve the performance of texture
classification. In the first work about LBP [28], a local contrast measure, defined
between each block 3× 3, has been used in combination with LBP codes. Then,
it has been replaced in [3] by local variance (VAR) measured in a circular spatial
support just like the LBP:

VARP,R =
1

P

P−1
∑

p=0

(gp − µ)2 (4)

where µ = 1
P

P−1
∑

p=0

gp
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Because variance measure has a continuous value, in order to construct a joint
distribution of LBP and local variance (LBP/VAR), a quantization of variance
measure is needed. The efficiency of quantization step depends on the number of
bins and also the cut values of the bins of the histogram, hence a training stage
is applied to determine such parameters. In [12], Guo et al. addressed a different
way that avoids this stage by incorporating variance measure (VAR) into LBP
model. It was used as an adaptive weight for adjusting the contribution of LBP
code in construction of histogram.

Magnitude information Guo et al [9] presented a state-of-the-art variant
by regarding the local differences as two complementary components, signs:
sp = s(f(yp) − f(z)) and magnitudes: mp = |f(yp) − f(z)|. They proposed
two operators, called CLBP-Sign (CLBP S) and CLBP-Magnitude (CLBP M)
to code these two components. The first operator is identical to the LBP. The
second one which measures the local variance of magnitude is defined as follows:

CLBP MP,R(f)(z) = (s(mp − m̃))0≤p<P
, (5)

where m̃ is the mean value of mp for the whole image. In addition, Guo et
al. observed that the local value itself carries important information. Therefore,
they defined the operator CLBP-Center (CLBP C) as follows:

CLBP C(f)(z) = s(f(z)− f̃), (6)

where f̃ is set as the mean gray level of the whole image. Because these oper-
ators are complementary, their combination leads to a significant improvement
in texture classification, then this variant is also considered as a reference LBP
method.

3 Texture representation using Statistical Binary

Patterns

The Statistical Binary Pattern (SBP) representation aims at enhancing the ex-
pressiveness and discrimination power of LBPs for texture modelling and recog-
nition, while reducing their sensitivity to unsignificant variations (e.g. noise).
The principle consists in applying rotation invariant uniform LBP to a set of
images corresponding to local statistical moments associated to a spatial sup-
port. The resulting code forms the Statistical Binary Patterns (SBP). Then a
texture is represented by joint distributions of SBPs. The classification can then
be performed using nearest neighbour criterion on classical histogram metrics
like χ2. We now detail those different steps.

3.1 Moment images

A real valued 2d discrete image f is modelled as a mapping from Z
2 to R. The

spatial support used to calculate the local moments is modelled as B ⊂ Z
2, such

that O ∈ B, where O is the origin of Z2.
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The r-order moment 1 image associated to f and B is also a mapping from
Z
2 to R, defined as:

mr
(f,B)(z) =

1

|B|

∑

b∈B

(f(z+ b))
r

(7)

where |B| is the cardinality of B. Accordingly, the r-order centred moment
image (r > 1) is defined as:

µr
(f,B)(z) =

1

|B|

∑

b∈B

(

f(z+ b)−m1
(f,B)(z)

)r

(8)

From now on, we shall use also the notation mr, µr to indicate r-order
moment and r-order centred moment respectively.

3.2 Statistical Binary Patterns

Let R and P denote respectively the radius of the neighbourhood circle and
the number of values sampled on the circle. For each moment image M , one
statistical binary pattern is formed as follows:

– one (P + 2)-valued pattern corresponding to the rotation invariant uniform
LBP coding of M :

SBPP,R(M)(z) = LBPriu2
P,R (M)(z) (9)

– one binary value corresponding to the comparison of the centre value with
the mean value of M :

SBPC(M)(z) = s(M(z)− M̃) (10)

Where s denote the sign function already defined, and M̃ the mean value of the
moment M on the whole image. SBPP,R(M) then represents the structure of
moment M with respect to a local reference (the centre pixel), and SBPC(M)
complements the information with the relative value of the centre pixel with
respect to a global reference (M̃). As a result of this first step, a 2(P +2)-valued
scalar descriptor is then computed for every pixel of each moment image.

3.3 Texture Descriptor

Principles Let {Mi}1≤i≤nM
be the set of nM computed moment images. SBP{Mi}

is defined as a vector valued image, with nM components such that for every
z ∈ Z

2, and for every i, SBP{Mi}(z)i is a value between 0 and 2(P + 2).
If the image f contains a texture, the descriptor associated to f is made by

the histogram of values of SBP{Mi}. The joint histogram H is defined as follows:

H : [[0 ; 2(P + 2)[[nM→ N

H(v) = |{z; SBP{Mi}(z) = v}|

The texture descriptor is formed by H and its length is [2(P + 2)]
nM .

1 Note that a moment image corresponds to a local filter defined by a statistical
moment, and should not be confused with the concept of “image moment”.
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Implementation In this paper, we focus on SBPm1µ2

P,R , i.e. the SBP patterns
obtained with the mean m1 and the variance µ2. Using two orders of moments,
the size of the joint histogram in the texture descriptor remains reasonable.
Figure 1 illustrates the calculation of the texture descriptor using m1 and µ2

images. The local spatial structure on each image are captured using LBPriu2
P,R .

In addition, two binary images are computed by thresholding the moment images
with respect to their average values. For each moment, the local pattern may
then have 2(P + 2) distinct values. Finally, the joint histogram of the two local
descriptors is used as the texture feature and is denoted SBPm1µ2 . Therefore,
the feature vector length is 4(P +2)2. As we can see in Figure 1, alongside of the
pics corresponding to non-uniform bin, the local structures of the 2D histogram
clearly highlight the correlation between the uniform patterns of the two LBP
images.
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Bi-level
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Fig. 1. Texture representation based on a combination of two first order moments. In
LBP images, red pixels correspond to non-uniform patterns. The structuring element
used here is {(1, 5), (2, 8)} (see Section 3.3) while LBPriu2

24,3 is applied.

Properties Several remarks can be made on the properties of SBPm1µ2 and its
relation with existing works.

– Robustness to noise: m1 and µ2 act like a pre-processing step which reduces
small local variations and then enhances the significance of the binary pat-
tern with respect to the raw images.

– Rotation invariance: Isotropic structuring elements should be used in order
to keep the rotation invariance property of the local descriptor.

– Information richness: LBPs on moment images capture an information which
is less local, and the two orders of moments provide complementary infor-
mation on the spatial structure.

There are links between SBPm1µ2 and the CLBP descriptors of Guo et al [9]
(see Sec. 2). First, the binary images used in SBP correspond to CLBP C op-
erator. Second, the respective role of m1 and µ2 are somewhat similar to the
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CLBP S and CLBP M operators. However in CLBP and its variants, CLBC [14]
and CRLBP [23], the magnitude component (CLBP M) is more a contrast infor-
mation complementing CLBP S, whereas SBPµ2 represents the local structure
of a contrast map, and can be considered independently on SBPm1 .

Parameter settings We describe now the different parameters that can be
adjusted in the framework, and the different settings we have chosen to evaluate.
Two main parameters have to be set in the calculation of the SBP:

– the spatial support B for calculating the local moments, also referred to as
structuring element.

– the spatial support {P,R} for calculating the LBP.

Although those two parameters are relatively independent, it can be said that
B has to be sufficiently large to be statistically relevant, and that its size should
be smaller or equal than the typical period of the texture. Regarding {P,R},
it is supposed to be very local, to represent micro-structures of the (moment)
images.

As mentioned earlier, for rotation invariance purposes, we shall use isotropic
structuring elements. To be compliant with the LBP representation, we have
chosen to define the structuring elements as unions of discrete circles: B =
{{Pi, Ri}}i∈I , such that (Pi)i (resp. (Ri)i) is an increasing series of neighbour
numbers (resp. radii). As an example, Figure 2 shows the filtered images using
a structuring element B = {(1, 4), (2, 8)}.

Input B Mean (m1) Variance (µ2)

Fig. 2. Computation of moment images using structuring element B = {(1, 4), (2, 8)}.

3.4 Texture Classification

Two texture images being characterised by their respective histogram (descrip-
tor) F and G, their texture dissimilarity metrics is calculated using the classical
χ2 distance between distributions:

χ2(F,G) =

d
∑

i=1

(Fi −Gi)
2

Fi +Gi
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where d is the number of bins (dimension of the descriptors). Our classifi-
cation is then based on a nearest neighbour criterion. Every texture class with
label λ is characterised by a prototype descriptor Kλ, with λ ∈ Λ. For an un-
known texture image f , its descriptor Df is calculated, and the texture label is
attributed as follows:

l(f) = argmin
λ∈Λ

χ2(Df ,Kλ)

4 Experimentations

We present hereafter a comparative evaluation of our proposed descriptor.

4.1 Databases and Experimental Protocols

The effectiveness of the proposed method is assessed by a series of experiments on
four large and representative databases: Outex [29], CUReT (Columbia-Utrecht
Reflection and Texture) [30], UIUC [4] and KTH-TIPS2b [31].

The Outex database (examples are shown in Figure 5) contains textural
images captured from a wide variety of real materials. We consider the two com-
monly used test suites, Outex TC 00010 (TC10) and Outex TC 00012 (TC12),
containing 24 classes of textures which were collected under three different illu-
minations (“horizon”, “inca”, and “t184”) and nine different rotation angles (0◦,
5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦). Each class contains 20 non-overlapping
128×128 texture samples.

The CUReT database contains 61 texture classes, each having 205 images
acquired at different viewpoints and illumination orientations. There are 118
images shot from a viewing angle of less than 60◦. From these 118 images, as
in [7, 9], we selected 92 images, from which a sufficiently large region could
be cropped (200×200) across all texture classes. All the cropped regions are
converted to grey scale (examples are shown in Figure 3).

Fig. 3. CUReT dataset. Fig. 4. UIUC dataset.
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Fig. 5. Example of texture images from Outex dataset.

Fig. 6. Example of texture images from KTH-TIPS 2 dataset.

The UIUC texture database includes 25 classes with 40 images in each class.
The resolution of each image is 640×480. The database contains materials im-
aged under significant viewpoint variations (examples are shown in Figure 4).

The KTH-TIPS2b database contains images of 11 materials. Each material
contains 4 physical samples taken at 9 different scales, 3 viewing angles and 4
illuminants, producing 432 images per class (see [31] for more detailed informa-
tion). Figure 6 illustrates an example of the 11 materials. All the images are
cropped to 200 × 200 pixels and converted to grey scale. This database is con-
sidered more challenging than the previous version KTH-TIPS. In addition, it is
more completed than KTH-TIPS2a where several samples have only 72 images.

4.2 Results on the Outex Database

Two common test suites TC10 and TC12 are used for evaluated our method.
Following [29], the 24×20 samples with illumination condition “inca” and rota-
tion angle 0◦ were adopted as the training data. Table 1 reports the experimental
results of SBPm1µ2

P,R in comparison with different methods.

From Table 1, we can get several interesting findings:

– The proposed descriptor largely improves the results on the two test suites
TC10 and TC12 in comparison with state-of-the-art methods in all configu-
rations and with all structuring elements. Related with the most significant
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LBP-based variant (CLBP S/M/C), the average improvement on three ex-
prements (TC10, TC12t and TC12h) can reach 3.5% in all configurations of
(P,R).

– The structuring elements having single circular neighborhood give good re-
sults for test suite TC10.

– The structuring elements having two circular neighborhoods lead to good re-
sults for the two test suites TC10 and TC12. It could be explained that their
multiscale structure makes the descriptors more robust against illumination
changes addressed in TC12 test suite.

From now on, the structuring element {(1, 5), (2, 8)} will be chosen by default
due to its good results.

Table 1. Results obtained by different methods: LBPriu2 [3], LTP [32], DLBP [8],
DLBP NGF [8], CLBP S M/C [9], CLBC [14], CRLBP [23] on Outex dataset.

Method (P,R)=(8,1) (P,R)=(16,2) (P,R)=(24,3)
TC10 TC12 t TC12 h Mean TC10 TC12 t TC12 h Mean TC10 TC12 t TC12 h Mean

LBPriu2 84.81 65.46 63.68 71.31 89.40 82.26 75.20 82.28 95.07 85.04 80.78 86.96
LTP 94.14 75.88 73.96 81.33 96.95 90.16 86.94 91.35 98.20 93.59 89.42 93.74
DLBP 97.70 92.10 88.70 92.83 98.10 91.60 87.40 92.37
DLBP NGF 99.10 93.20 90.40 94.20 98.20 91.60 87.40 92.40
CLBP 96.56 90.30 92.29 93.05 98.72 93.54 93.91 95.39 98.93 95.32 94.53 96.26
CLBC 97.16 89.79 92.92 93.29 98.54 93.26 94.07 95.29 98.78 94.00 93.24 95.67
CRLBP 96.54 91.16 92.06 93.25 98.85 96.67 96.97 97.50 99.48 97.57 97.34 98.14

Our proposed descriptor: SBP2=SBPm1µ2

Structuring (P,R)=(1,8) (P,R)=(2,16) (P,R)=(3,24)
element TC10 TC12 t TC12 h Mean TC10 TC12 t TC12 h Mean TC10 TC12 t TC12 h Mean
{(1,6)} 99.06 93.79 95.81 95.55 99.77 96.64 97.80 98.07 99.66 96.78 97.01 96.82
{(1,8)} 98.96 93.66 93.79 95.47 99.61 96.30 97.64 97.85 99.53 96.69 97.27 97.83
{(1,4),(2,8)} 97.60 92.36 95.14 95.03 99.58 97.20 98.91 98.56 99.66 97.68 99.02 98.79
{(1,5),(2,6)} 97.97 92.27 95.02 95.09 99.40 96.74 98.17 98.10 99.56 97.41 98.26 98.41
{(1,5),(2,8)} 98.25 93.45 96.83 96.18 99.61 97.57 99.24 98.81 99.71 97.68 99.07 98.82

{(1,5),(2,10)} 99.03 93.70 96.94 96.56 99.66 97.57 99.10 98.78 99.74 97.66 98.96 98.79
{(1,6),(2,10)} 98.83 93.80 96.97 96.53 99.69 97.27 98.77 98.58 99.74 97.64 98.93 98.77
{(1,6),(2,12)} 99.09 93.61 97.06 96.59 99.63 97.38 98.96 98.66 99.69 97.50 98.89 98.69

4.3 Results on the CUReT database

Following [4, 9], in order to get statistically significant experimental results, N
training images were randomly chosen from each class while the remaining 92−N

images per class were used as the test set. Table 2 shows an experiment of our
method on CUReT database from which we can make the following remarks.

– SBP works well in all configurations of (P,R).
– SBP is comparable to VZ MR8 and it outperforms other LBP-based de-

scriptors.

2 The results are obtained with a multi-scale approach: (P,R) ∈ {(8, 1), (8, 3), (8, 5)}
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Table 2. Results obtained on CURET dataset.

Method (P,R)=(8,1) (P,R)=(16,3) (P,R)=(24,5)
46 23 12 6 46 23 t 12 6 46 23 12 6

LBPriu2/VARP,R [3] 93.87 88.76 81.59 71.03 94.20 89.12 81.64 71.81 91.87 85.58 77.13 66.04
CLBP S/M [9] 93.52 88.67 81.95 72.30 94.45 90.40 84.17 75.39 93.63 89.14 82.47 73.26
CLBP S/M/C [9] 95.59 91.35 84.92 74.80 95.86 92.13 86.15 77.04 94.74 90.33 83.82 74.46

N=46 N=23 N=12 N=6

dis(S + M)riN,R [33] 2 98.3 96.5 91.9 83.0

VZ MR8 [34] 97.8 95.0 90.5 82.9
VZ Joint [34] 97.7 94.6 89.4 81.1

Our proposed descriptor
Structuring (P,R)=(8,1) (P,R)=(16,3) (P,R)=(24,5)
element 46 23 12 6 46 23 12 6 46 23 12 6
{(1,5),(2,8)} 97.32 93.49 88.23 78.37 98.01 94.91 90.60 81.98 96.89 92.95 88.37 78.29

4.4 Results on the UIUC database

As in [4], to eliminate the dependence of the results on the particular training
images used, N training images were randomly chosen from each class while the
remaining 40−N images per class were used as test set. Table 3 shows the results
obtained by our approach on UIUC dataset in comparison with other state-of-
the-art methods. As can be seen from this table, our proposed descriptor largely
outperforms CLBP.

Table 3. Experimentation on UIUC dataset.

Method (P,R)=(8,1) (P,R)=(16,2) (P,R)=(24,3)
20 15 10 5 20 15 10 5 20 15 10 5

CLBP S/M [9] 81.80 78.55 74.8 64.84 87.87 85.07 80.59 71.64 89.18 87.42 81.95 72.53
CLBP S/M/C [9] 87.64 85.70 82.65 75.05 91.04 89.42 86.29 78.57 91.19 89.21 85.95 78.05

Our proposed descriptor
Structuring (P,R)=(8,1) (P,R)=(16,2) (P,R)=(24,3)
element 20 15 10 5 20 15 10 5 20 15 10 5
{(1,5),(2,8)} 91.31 89.56 85.97 78.19 95.52 94.34 91.87 85.69 96.55 95.40 93.07 87.11

4.5 Experiment on KTH-TIPS 2b dataset

At the moment, KTH-TIPS 2b can be seen as the most challenging dataset for
texture recognition. For the experiments on this dataset, we follow the training
and testing scheme used in [31]. We perform experiments training on one, two,
or three samples; testing is always conducted only on un-seen samples. Table 4.5
details our results on this dataset.

5 Conclusions and Discussions

We have presented a new approach for texture representation called Statistical
Binary Patterns (SBP). Its principle is to extend the LBP representation from
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Table 4. Classification rates obtained on the KTH-TIPS 2b database.

(P,R) (8,1) (16,2) (24,3)

Ntrain 1 2 3 1 2 3 1 2 3

LBP [3] 48.1 54.2 52.6 50.5 55.8 59.1 49.9 54.6 57.8

NI/RD/CI [27] 56.6 61.9 64.8 57.7 62.5 65.1 52.4 57.5 61.7

(P,R) (8,1)+(16,2) (16,2)+(24,3) (8,1)+(16,2)+(24,3)

NI/RD/CI [27] 58.1 62.9 66.0 55.9 61.0 64.2 56.7 61.7 65.0

Our proposed descriptors

Structuring (P,R)=(8,1) (P,R)=(16,2) (P,R)=(24,3)
element 1 2 3 1 2 3 1 2 3

{(1,5),(2,8)} 57.68 63.24 66.03 59.03 64.91 68.60 59.04 65.20 68.81

the local gray level to the regional distribution level. In this work, we have used
single region, represented by pre-defined structuring element and we have limited
the representation of the distribution to the two first statistical moments. While
this representation is sufficient for single mode distributions such as Gaussian, it
won’t be convenient for more complex distributions. Hence, investigating higher
order moments in SBP would be highly desirable. The proposed approach has
been experimented on different large databases to validate its interest. It must
be mentioned that the complementary information of magnitude (CLBP M),
which is the principal factor for boosting classification performance in many
other descriptors in the literature, has not been used in our approach.

Our method also opens several perspectives that will be addressed in our
future works.

– Can we apply efficiently our descriptor in other domains of computer vision
such as face recognition, dynamic texture, . . . ?

– Can we still improve the performance by integrating other complementary
information such as magnitude (CLBP M), multi-scale approach, . . . or com-
bining with other LBP variants?
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