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Abstract

We show that kernel-based quadrature rules for computing integrals are a special case
of random feature expansions for positive definite kernels for a particular decomposition
that always exists for such kernels. We provide a theoretical analysis of the number
of required samples for a given approximation error, leading to both upper and lower
bounds that are based solely on the eigenvalues of the associated integral operator and
match up to logarithmic terms. In particular, we show that the upper bound may
be obtained from independent and identically distributed samples from a known non-
uniform distribution, while the lower bound if valid for any set of points. Applying our
results to kernel-based quadrature, while our results are fairly general, we recover known
upper and lower bounds for the special cases of Sobolev spaces. Moreover, our results
extend to the more general problem of full function approximations (beyond simply
computing an integral), with results in L2- and L∞-norm that match known results
for special cases. Applying our results to random features, we show an improvement
of the number of random features needed to preserve the generalization guarantees for
learning with Lipshitz-continuous losses.

1 Introduction

The numerical computation of high-dimensional integrals is one of the core computational
tasks in many areas of machine learning, signal processing and more generally applied math-
ematics, in particular in the context of Bayesian inference (Gelman, 2004), or the study of
complex systems (Robert and Casella, 2005). In this paper, we focus on quadrature rules,
that aim at approximating the integral of a certain function from only the (potentially
noisy) knowledge of the function values at as few as possible well-chosen points. The key
situations that remain active areas of research are problems where the measurable space
where the function is defined on, is either high-dimensional or structured (e.g., presence of
discrete structures, or graphs). For these problems, techniques based on positive definite
kernels have emerged as having the potential to efficiently deal with these situations, and to
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improve over plain Monte-Carlo integration (O’Hagan, 1991; Rasmussen and Ghahramani,
2003; Huszár and Duvenaud, 2012; Oates and Girolami, 2015). In particular, the quadra-
ture problem may be cast as the one of approximating a fixed element, the mean ele-
ment (Smola et al., 2007), of a Hilbert space as a linear combination of well chosen elements,
the goal being to minimize the number of these factors as it corresponds to the required
number of function evaluations.

A seemingly unrelated problem on positive definite kernels have recently emerged, namely
the representation of the corresponding infinite-dimensional feature space from random sets
of features. If a certain positive definite kernel between two points may be represented
as the expectation of the product of two random one-dimensional (typically non-linear)
features computed on these two points, the full kernel (and hence its feature space) may
be approximated by sufficiently many random samples, replacing the expectation by a
sample average (Neal, 1995; Rahimi and Recht, 2007; Huang et al., 2006). When using
these random features, the complexity of a regular kernel method such as the support
vector machine or ridge regression goes from quadratic in the number of observations to
linear in the number of observations, with a constant proportional to the number of random
features, which thus drives the complexity of these methods.

In this paper, we make the following contributions:

– We show in Section 3.2 that these two problems are equivalent; more precisely, kernel-
based quadrature rules are a special case of random features for a particular decompo-
sition that always exists for all positive definite kernels on a measurable space.

– We provide in Section 4 a theoretical analysis of the number of required samples for
a given approximation error, leading to both upper and lower bounds that are based
solely on the eigenvalues of the associated integral operator and match up to logarithmic
terms. In particular, we show that the upper bound may be obtained as independent
and identically distributed samples from a known non-uniform distribution, while the
lower bound if valid for any set of points.

– Applying our results to kernel quadrature, while our results is fairly general, we recover
known upper and lower bounds for the special cases of Sobolev spaces. Moreover, our
results extend to the more general problem of full function approximations (beyond
simply computing an integral), with results in L2- and L∞-norm that match known
results for special cases.

– Applying our results to random feature expansions, we show an improvement of the num-
ber of random features needed for preserving the generalization guarantees for learning
with Lipshitz-continuous losses.

2 Random Feature Expansions of Positive Definite Kernels

Throughout this paper, we consider a topological space X equipped with a Borel probability
measure dρ, which we assume to have full support. This naturally defines the space of
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square-integrable functions1. We consider a continuous positive definite kernel k : X ×X →
R, that is a symmetric function such that for all finite families of points in X , the matrix of
pairwise kernel evaluations is positive semi-definite. This thus defines a reproducing kernel
Hilbert space (RKHS) F of functions from X to R, which we also assume separable. This
RKHS has two important properties (see, e.g., Berlinet and Thomas-Agnan, 2004): (a) for
any x ∈ X , the function k(·, x) : y 7→ k(y, x) is an element of F , and (b) we have the
reproducing property, that is, for all f ∈ F and x ∈ X , f(x) = 〈f, k(·, x)〉F . We always
assume that F is infinite-dimensional.

Moreover, we assume that the function x 7→ k(x, x) is integrable with respect to dρ (which
is weaker than supx∈X k(x, x) < ∞). This implies that F is a subset of L2(dρ); that is,
functions in the RKHS F are all square-integrable.

Integral operator. Let Σ : L2(dρ) → L2(dρ) be defined as (Σf)(x) =

∫

X
f(x)k(x, y)dρ(y).

Since
∫

X k(x, x)dρ(x) is finite, Σ is self-adjoint, positive semi-definite and trace-class. More-

over, Σ1/2 is a surjection from L2(dρ) to F ; more precisely, for any f ∈ F , there exists an
unique g ∈ (Ker Σ)⊥ ⊂ L2(dρ) such that f = Σ1/2g and ‖f‖H = ‖g‖L2(dρ) (Smale and Cucker,

2001). This justifies the notation Σ−1/2f for f ∈ F .

Mercer decomposition. From extensions of Mercer’s theorem (König, 1986), there ex-
ists an orthonormal sequence (em)m>0 of L2(dρ) and a summable non-increasing sequence
of strictly positive eigenvalues (µm)m>0 such that Σem = µmem. For simplicity we assume
that there are no zero eigenvalues, i.e., (em)m>0 is an orthonormal basis, which implies that
F is dense in L2(dρ).

We have the decomposition k(x, y) =
∑

m>0 µmem(x)em(y). For each m > 0, the eigenfunc-

tion em is an element of F and ‖em‖F = µ
−1/2
m ; moreover, (µ

1/2
m em)m>0 is an orthonormal

basis of F . This justifies the view of F as the subspace of functions f ∈ L2(dρ) such that
‖Σ−1/2f‖2L2(dρ)

=
∑

m>0 µ
−1
m 〈f, em〉2L2(dρ)

is finite.

Potential confusion with covariance operator. Note that the operator Σ is an oper-
ator on L2(dρ). It should not ne confused with the (non-centered) covariance operator C,
which is an autoadjoint operator on the RKHS F , defined by 〈g,Cf〉F =

∫

X f(x)g(x)dρ(x).
Given that Σ1/2 is an isometry from L2(dρ) to F , the operator C may also be used to define
an operator on L2(dρ), which happens to be exactly Σ. Thus, the two operators have the
same eigenvalues.

2.1 Kernels as expectations

On top of the generic assumptions made above, we assume that there is another measurable
set V equipped with a probability measure dµ. We consider a function ϕ : V×X → R which

1For simplicity we identify functions and their equivalence classes for the equivalence relationship of being
equal except for a zero-measure (for dρ) subset of X .
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is square-integrable (for the measure dµ⊗dρ), and assume that the kernel k may be written
as, for all x, y ∈ X :

k(x, y) =

∫

V
ϕ(v, x)ϕ(v, y)dµ(v) = 〈ϕ(·, x), ϕ(·, y)〉L2 (dµ). (1)

In other words, for each v ∈ V, we have a one-dimensional feature ϕ(v, ·) which is a function
from X to R, and the kernel between x and y is simply the expectation of the dot-product
for this one-dimensional feature for v following the probability distribution dµ.

Such additional structure allows to give an explicit characterization of the RKHS F in terms
of the features ϕ. Indeed, as shown by Bach (2014, App. A), a function f ∈ L2(dρ) is in F
if and only if it may be written as ∀x ∈ X , f(x) =

∫

V
g(v)ϕ(v, x)dµ(v) = 〈g, ϕ(·, x)〉L2(dµ),

for a certain function g : V → R such that ‖g‖2L2(dµ)
is finite, with a norm ‖f‖2F equal to

the minimum (which is always attained) of ‖g‖2L2(dµ)
, over all possible decompositions of f .

2.2 Examples

In this section, we provide examples of kernels and usual decompositions. We first start by
decompositions that always exist, then focus on specific kernels based on Fourier compo-
nents.

Mercer decompositions. From k(x, y) =
∑

m>0

µm
tr Σ

[

(

tr Σ)1/2em(x)
]

·
[

(

tr Σ)1/2em(x)
]

,

we obtain an expectation with V = N. In Section 3.2, we provide another generic decom-
position with V = X .

Periodic kernels on [0, 1]. We consider X = [0, 1] and translation-invariant kernels
k(x, y) of the form k(x, y) = t(x − y), where t is a square-integrable 1-periodic function.
These kernels are positive definite if and only if the Fourier series of t is non-negative, that is,
k(x, y) may be written as k(x, y) =

∑∞
m=0 µm cos 2πm(x−y) = ∑∞

m=0 µm
[

cos 2πmx cos 2πmy+
sin 2πmx sin 2πmy

]

, with µm > 0, which can be put trivially as an expectation with V = Z.
These are the usual Fourier features (Rahimi and Recht, 2007). Moreover, the random
Fourier features correspond to the Mercer decomposition above for the uniform distribution
on [0, 1].

Among these, the sequence µ0 = 1 and µm = 1
m2s leads to k(x, y) = 1+ (−1)s−1(2π)2s

2(2s)! B2s({x−
y}) where {x− y} denotes the fractional part of x− y (Wahba, 1990), and we recover the
traditional Sobolev space with parameter s > 1 (Adams and Fournier, 2003). For µn = rn,

we have k(x, y) = 1−r cos 2π(x−y)
1−2r cos 2π(x−y)+r2

, with a geometric decay of eigenvalues.

Translation invariant kernels on R. We consider X = R and translation-invariant
kernels k(x, y) of the form k(x, y) = t(x − y), where t is an integrable function from R to
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R. It is known that these kernels are positive definite if and only if the Fourier transform
of t is always a non-negative real number. More precisely, if t̂(ω) =

∫

R
t(x)e−iωxdx ∈ R+,

then k(x, y) = 1
2π

∫

R
t̂(ω)eiω(x−y)dω = 1

2π

∫

R
t̂(ω)

[

cosωx cosωy + sinωx sinωy
]

dω, which is
another form of random Fourier features with V = R and distribution with density t̂(ω) (this
can be seen by splitting R into a positive part for the cosines and a negative part for the
sines). For these kernels, the decay of eigenvalues has been well-studied by Widom (1963),
who relate the decay of eigenvalues to the tails of the distribution dρ and the decay of the
Fourier transform of t. For example, for the Gaussian kernel on sub-Gaussian distributions,
the decay of eigenvalues is geometric, and for kernels leading to Sobolev spaces, the decay
is of the form m−2s. See also examples by Birman and Solomyak (1977).

Extensions to [0, 1]d and R
d. In order to extend to d > 1, we may consider several

extensions as described by Oates and Girolami (2015). We may first use the tensor product
of the d individual Hilbert spaces, for which the kernel is simply the product of individual
kernels. If each of the kernel leads to eigenvalues that are decaying as m−2s, then the
resulting eigenvalues decay as (logm)d−1m−2s (see Appendix A), and thus up to logarithmic
terms at the same speed as d = 1. For Sobolev spaces of order s for each dimension, this
corresponds to functions which have square-integrable partial derivatives with all individual
orders less than s. This is to be contrasted with the usual multi-dimensional Sobolev space
which is composed of functions which have square-integrable partial derivatives with orders
with sum less than s. This last kernel leads to eigenvalues decaying as m−2s/d, which is
much slower (see Appendix A). Note that in terms of computation, there are extensions to
avoid linear complexity in d (Le et al., 2013).

2.3 Approximation from randomly sampled features

Given the formulation of k as an expectation in Eq. (1), it is natural to consider sampling
n elements v1, . . . , vn ∈ V from the distribution dµ and define the kernel approximation
k̂(x, y) = 1

n

∑n
i=1 ϕ(vi, x)ϕ(vi, y), which defines a finite-dimensional RKHS F̂ .

From the strong law of large numbers—which can be applied because we have the finite

expectation E|ϕ(v, x)ϕ(v, y)| 6
(

E|ϕ(v, x)|2E|ϕ(v, y)|2
)1/2

, when n tends to infinity, k̂(x, y)
tends to k(x, y) almost surely, and thus we get as tight as desired approximations of the
kernel k, for a given pair (x, y) ∈ X×X . Rahimi and Recht (2007) show that for translation-
invariant kernels on a Euclidean space, then the convergence is uniform over a compact
subset of X , with the traditional rate of convergence of 1/

√
n.

In this paper, we rather consider approximations of functions in F by functions in F̂ , the
RKHS associated with k̂. A key difficulty is that in general F̂ is not even included in F ,
and therefore, we cannot use the norm in F to characterize approximations. In this paper,
we choose the L2-norm associated with the probability measure dρ on X to characterize the
approximation. Given f ∈ F with norm ‖f‖F less than one, we look for a function f̂ ∈ F̂
of the smallest possible norm and so that ‖f − f̂‖L2(dρ) is as small as possible.
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Computation of error. Given the definition of the Hilbert space F in terms of ϕ, given
g ∈ L2(dµ) with ‖g‖L2(dµ) 6 1, we aim at finding α ∈ R

n such that f̂ =
∑n

i=1 αiϕ(vi, ·)
with norm ‖f̂‖2F̂ 6 n‖α‖22 6 1 as small as possible and with a small approximation error:

‖f̂ − f‖L2(dρ) =

∥

∥

∥

∥

n
∑

i=1

αiϕ(vi, ·) −
∫

V
g(v)ϕ(v, ·)dµ(v)

∥

∥

∥

∥

L2(dρ)

. (2)

Note that with αi = 1
ng(vi) and vi sampled from dµ, then, E(‖α‖22) 6

1
n and E(‖f −

f̂‖2L2(dρ)
) 6 1

n supv∈V ‖ϕ(v, ·)‖2L2(dρ)
; our goal is to obtain an error rate with a better scaling

in n, by (a) choosing a better distribution than dµ for the points v1, . . . , vn and (b) by
finding the best possible weights α ∈ R

n (that may depend on the function g but not on f).

Goals. We thus aim at sampling n points v1, . . . , vn ∈ V from a distribution with den-
sity q with respect to dµ. Then the kernel approximation using importance weights is
equal to k̂(x, y) = 1

n

∑n
i=1

1
q(vi)

ϕ(vi, x)ϕ(vi, y) (so that the law of large numbers leads to

an approximation converging to k), and we thus aim to minimize
∥

∥

∑n
i=1

βi

q(vi)1/2
ϕ(vi, ·) −

∫

V g(v)ϕ(v, ·)dµ(v)
∥

∥

L2(dρ)
, with n‖β‖22 (which represents the norm of the approximation in

F̂) as small as possible.

3 Quadrature in RKHSs

Given a square-integrable (with respect to dρ) function g : X → R, we aim at approxi-
mating, for all h ∈ F , integrals

∫

X h(x)g(x)dρ(x) by linear combinations
∑n

i=1 αih(xi) of
evaluations h(x1), . . . , h(xn) of the function h at well-chosen points x1, . . . , xn ∈ X . Of
course, coefficients α ∈ R

n are allowed to depend on g (they will in linear fashion in the
next section), but not on h.

3.1 Approximation of the mean element

Using the properties of RKHSs, the error is

n
∑

i=1

αih(xi)−
∫

X
h(x)g(x)dρ(x) =

〈

h,

n
∑

i=1

αik(·, xi)−
∫

X
k(·, x)g(x)dρ(x)

〉

F
,

and by Cauchy-Schwarz inequality its supremum over ‖h‖F 6 1 is equal to

∥

∥

∥

∥

n
∑

i=1

αik(·, xi)−
∫

X
k(·, x)g(x)dρ(x)

∥

∥

∥

∥

F
. (3)

The goal of quadrature rules formulated in a RKHS is thus to find points x1, . . . , xn ∈ X
and weights α ∈ R

n so that the quantity in Eq. (3) is as small as possible (Smola et al.,
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2007). For g = 1, the function
∫

X k(·, x)dρ(x) is referred to as the mean element of the
distribution dρ.

The standard Monte-Carlo solution is to consider x1, . . . , xn sampled i.i.d. from dρ and the
weights αi = g(xi)/n, which leads to a decrease of the error in 1/

√
n, with E‖α‖22 6

1
n and

an expected squared error which is less than 1
n supx∈X k(x, x) (Smola et al., 2007). Note

that when g = 1, Eq. (3) corresponds to particular metric between the distribution dρ and
its corresponding empirical distribution (Sriperumbudur et al., 2010).

In this paper, we explore sampling points xi from a probability distribution on X with
density q with respect to dρ. Note that when g is a constant function, it is sometimes
required that the coefficients α are positive and sum to a fixed constant (so that constant
functions are well integrated). We will not pursue this here as our theoretical results do not
accommodate such constraints.

Tolerance to noisy function values. In practice, independent (but not necessarily
identically distributed) noise may be present with variance σ2(xi). Then, the worst (with
respect to ‖h‖F 6 1) expected (with respect to the noise) squared error is

∥

∥

∑n
i=1 αik(·, xi)−

∫

X k(·, x)g(x)dρ(x)
∥

∥

2

F +
∑n

i=1 α
2
i σ

2(xi), and thus in order to be robust to noise, having a
small weighted ℓ2-norm for the coefficients α ∈ R

n is important.

3.2 Reformulation as random features

For any x ∈ X , we denote by ψ(·, x) the unique element of (Ker Σ)⊥ ⊂ L2(dρ) such that
Σ1/2ψ(·, x) = k(·, x). Given the Mercer decomposition k(x, y) =

∑

m>0 µmem(x)em(y), we

have the expansion ψ(x, y) =
∑

m>0 µ
1/2
m em(x)em(y) (with convergence in the L2-norm for

the measure dρ ⊗ dρ), and thus we may consider ψ as a symmetric function. Note that ψ
many not be easy to compute in many practical cases (except for periodic kernels on [0, 1]).

We thus have for (x, y) ∈ X × X :

k(x, y) = 〈k(·, x), k(·, y)〉F = 〈ψ(·, x), ψ(·, y)〉L2 (dρ) =

∫

X
ψ(v, x)ψ(v, y)dρ(v).

That is, k may always be written as an expectation. Moreover, we have

∥

∥

∥

∥

n
∑

i=1

αik(·, xi)−
∫

X
k(·, x)g(x)dρ(x)

∥

∥

∥

∥

F
=

∥

∥

∥

∥

n
∑

i=1

αiΣ
1/2ψ(xi, ·) −

∫

X
Σ1/2ψ(x, ·)g(x)dρ(x)

∥

∥

∥

∥

F

=

∥

∥

∥

∥

n
∑

i=1

αiψ(xi, ·)−
∫

X
ψ(x, ·)g(x)dρ(x)

∥

∥

∥

∥

L2(dρ)

,

which is exactly an instance of the approximation result in Eq. (2) with V = X and ϕ = ψ.
Thus, the quadrature problem is a subcase of the random feature problem for a specific
expansion. Note that this random decomposition is always possible (although not in closed
form in general).
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Goals. In order to be able to make the parallel with random feature approximation, we
consider importance-weighted coefficients βi = αiq(xi)

1/2, and we thus aim at minimizing
the approximation error

∥

∥

∑n
i=1 βiq(xi)

−1/2k(·, xi) −
∫

X k(·, x)g(x)dρ(x)
∥

∥

F . We consider
potential independent noise with variance σ2(xi) 6 τ2q(xi) for all xi, so that the tolerance
to noise is characterized by the ℓ2-norm ‖β‖2.

3.3 Related work on quadrature

Many methods have been designed for the computation of integrals of a function given
evaluations at certain well-chosen points, in most cases when g is constant equal to one.
We review some of these below.

Uni-dimensional integrals. When the underlying set X is a compact interval of the
real line, several methods exists, such as the trapezoidal or Simpson’s rules, which are
based on interpolation between the sample points, and for which the error decays as
O(1/n2) and O(1/n4) for functions with uniformly bounded second or fourth derivatives
(Cruz-Uribe and Neugebauer, 2002).

Gaussian quadrature is another class of methods for one-dimensional integrals: it is based
on a basis of orthogonal polynomials for L2(dρ) where dρ is a probability measure supported
in an interval, and their zeros (Hildebrand, 1987, Chap. 8). This leads to quadrature rules
which are exact for polynomials of degree 2n−1 but error bounds for non-polynomials rely on
high-order derivatives, although the empirical performance on functions of a Sobolev space
is as good as optimal quadrature schemes (see Appendix B); depending on the orthogonal
polynomials, we get various quadrature rules, such as Gauss-Legendre quadrature for the
Lebesgue measure on [0, 1].

Quasi Monte-carlo methods employ a sequence of points with low discrepancy with uni-
form weights (Morokoff and Caflisch, 1994), leading to approximation errors of O(1/n) for
univariate functions with bounded variation, but typically with no adaptation to smoother
functions.

Higher-dimensional integrals. All of the methods above may be generalized for prod-
ucts of intervals [0, 1]d, typically with d small. For larger problems, Bayes-Hermite quadra-
ture (O’Hagan, 1991) is essentially equivalent to the quadrature rules we study in this
paper.

Some of the quadrature rules are constrained to have positive weights with unit sum (so
that the positivity properties of integrals are preserved and constants are exactly inegrated).
The quadrature rules we present do not satisfy these constraints. If these constraints are
required, kernel herding (Chen et al., 2010; Bach et al., 2012) provides a novel way to select
a sequence of points based on the conditional gradient algorithm, but with currently no
convergence guarantees improving over O(1/

√
n) for infinite-dimensional spaces.
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Theoretical results. The best possible error for a quadrature rule with n points has been
well-studied in several settings; see Novak (1988) for a comprehensive review. For example,
for X = [0, 1] and the space of Sobolev functions, which are RKHSs with eigenvalues of their
integral operator decreasing as m−2s, Novak (1988, Prop. 2 and 3, page 38) shows that the
best possible quadrature rule for the uniform distribution and g = 1 leads to an error rate of
n−s, as well as for any squared-integrable function g. The proof of these results (both upper
and lower bounds) relies on detailed properties of Sobolev spaces. In this paper, we recover
these results using only the decay of eigenvalues of the associated integral operator Σ, thus
allowing straightforward extensions to many situations, like Sobolev spaces on manifolds
such as hyperspheres (Hesse, 2006).

Moreover, Novak (1988, page 17) shows that adaptive quadrature rules where points are
selected sequentially with the knowledge of the function values at previous points cannot
improve the worst-case guarantees. Our results do not recover this lower bound result for
adaptivity.

From quadrature to function approximation and optimization. The problem of
quadrature, uniformly over all functions g ∈ L2(dρ) that define the integral, is in fact
equivalent to the full approximation of a function h given values at n points, where the
approximation error is characterized in L2-norm. Novak (1988) considers the approxima-
tion problem in L∞-norm and shows that for Sobolev spaces, going from L2- to L∞-norms
incurs a loss of performance of

√
n. We recover partially these results in Section 5 from

a more general perspective. When optimizing the points at which the function is evalu-
ated (adaptively or not), the approximation problem is often referred to as experimental
design (Cochran and Cox, 1957; Chaloner and Verdinelli, 1995).

Finally, a third problem is of interest (and outside of the scope of this paper), namely the
problem of finding the minimum of a function given (potentially noisy) function evaluations.
For noiseless problems, Novak (1988, page 26) shows that the approximation and optimiza-
tion problems have the same worst-case guarantees (with no influence of adaptivity); this
optimization problem has also been studied in the bandit setting (Srinivas et al., 2012) and
in the framework of “Bayesian optimization” (see, e.g. Bull, 2011).

4 Theoretical Analysis

In this section, we provide approximation bounds for the random feature problem outlined
in Section 2.3 (and thus the quadrature problem in Section 3). In Section 4.1, we provide
generic upper bounds, which depend on the eigenvalues of the integral operator Σ and
present matching lower bounds (up to logarithmic terms) in Section 4.2. We then consider
consequences of these results on quadrature (Section 4.3) and random feature expansions
(Section 4.4).

4.1 Upper bound

We have the following proposition (see proof in Appendix C.1):
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Proposition 1 For λ > 0, we denote by dmax(q, λ) = supv∈V
1

q(v)〈ϕ(v, ·), (Σ+λI)−1ϕ(v, ·)〉L2(dρ).
Let v1, . . . , vn be sampled i.i.d. from the distribution with positive density q with respect to

dµ, then for any δ > 0, if n > 4 + 6dmax(q, λ) log
4dmax(q, λ)

δ
, with probability greater than

1− δ, we have

sup
‖f‖F61

inf
‖β‖226 4

n

∥

∥

∥

∥

f −
n
∑

i=1

βiq(vi)
−1/2ϕ(vi, ·)

∥

∥

∥

∥

2

L2(dρ)

6 4λ.

The proof technique relies on computing an explicit candidate β ∈ R
n obtained from min-

imizing a regularized least-squares formulation, leading to an approximation of f equal to
f̂ = (Σ̂ + λI)−1Σ̂f , where Σ̂ is a properly defined empirical integral operator and λ > 0.
Then, Bernstein concentration inequalities for operators (Minsker, 2011) can be used in a
way similar to the work of Bach (2013); El Alaoui and Mahoney (2014) on column sampling.

Optimized distribution. We may now consider a specific distribution, namely

q(v) =
〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ)

∫

V〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ)dµ(v)
=

〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ)

tr Σ(Σ + λI)−1
,

for which dmax(q, λ) = d(λ) = trΣ(Σ+λI)−1. We thus need to have n > 4+6d(λ) log 4d(λ)
δ

with d(λ) = trΣ(Σ + λI)−1 is the degrees of freedom, a traditional quantity in the analysis
of least-squares regression (Hastie and Tibshirani, 1990), which is always smaller dmax(1, λ)
and can be upper-bounded explicitly for many examples as we now explain. The compu-
tation of dmax(1, λ) in the operator setting (for which we may use q = 1), a quantity often
referred to as the maximal leverage score (Mahoney, 2011), remains an open problem.

Eigenvalues and degrees of freedom. In order to relate more directly to the eigen-
values of Σ, we notice that d(λ) = trΣ(Σ + λI)−1 =

∑

m>0
µm

µm+λ >
∑

µm>λ
µm

µm+λ >

1
2max({m, µm > λ}). Moreover, d(λ) =

∑

µm>λ
µm

µm+λ +
∑

µm<λ
µm

µm+λ 6 max({m, µm >

λ}) + 1
λ

∑

µm<λ µm.

We now make the assumption that there exists γ > 0 such that

∀j > 1,
∞
∑

m=j

µm 6 γjµj . (4)

This assumption essentially states that the eigenvalues decay sufficiently homogeneously
and is satisfied by µm ∝ m−2α with γ = (2α − 1)−1, µm ∝ rm with γ = (1 − r)−1 and
also for all examples in Section 2.2. It allows us to relate the degrees of freedom directly to
eigenvalue decays.

Indeed, this implies that 1
λ

∑

µm<λ µm 6 γmax({m, µm > λ}) for all λ < µ0 and thus

10



1
2max({m, µm > λ}) 6 d 6

[

1 + γ
]

max({m, µm > λ}).

From Prop. 1, we thus need to have, up to logarithmic terms, n > max({m, µm > λ})
random samples. For example, for polynomial decays of eigenvalues of the form µm =
O(m−2s), we get errors proportional to n−s for n samples, while for geometric decays, we
get geometric errors.

4.2 Lower bound

We have the following lower bound (see proof in Appendix C.3):

Proposition 2 For δ ∈ (0, 1), if we have a family ψ1, . . . , ψn ∈ L2(dρ) such that

1

n

n
∑

i=1

‖ψi‖2L2(dρ)
6 4 tr Σ/δ, and sup

‖f‖F61
inf

‖β‖226 4
n

∥

∥

∥

∥

f −
n
∑

i=1

βiψi

∥

∥

∥

∥

2

L2(dρ)

6 4λ,

then n >
max({m, µm > 144λ})

4 log 2 tr Σ
λδ

.

We can make the following observations:

– The proof technique not surprisingly borrows tools from minimax estimation over ellip-
soids, namely the Varshamov-Gilbert’s lemma.

– We obtain matching upper and lower bounds up to logarithmic terms, using only the
decay of eigenvalues (µm) of the integral operator Σ.

– In order to obtain such a bound, we need to constrain either ‖β‖2 or the norms of the
vectors ψi, which corresponds to bounded features for the random feature interpretation
and tolerance to noise for the quadrature interpretation. We choose our scaling to match
the constraints we have in Prop. 1, in particular the bound shown in Eq. (7) in the proof
of Prop. 1 in Appendix C.1, for which the parameter δ ends up entering the lower bound
logarithmically.

4.3 Quadrature

We may specialize the results above to the quadrature case, namely give a formulation
where the features ϕ do not appear (or equivalently using ψ defined in Section 3.2). All
detailed computations are given in Appendix C.2.

If the points x1, . . . , xn are sampled from the distribution with density q with respect to dρ,
then the quadrature rule becomes:

n
∑

i=1

βih(xi)

q(xi)1/2
=

〈

g,Σ1/2Σ̂(Σ̂ + λI)−1Σ−1/2h
〉

L2(dρ)
,
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which can be put in the form 〈ĥ, g〉L2(dρ) with the approximation ĥ = Σ1/2Σ̂(Σ̂+λI)−1Σ−1/2h
of the function h ∈ F . Having a bound for all functions g such that ‖g‖L2(dρ) 6 1 is equiv-

alent to having a bound on ‖h − ĥ‖L2(dρ). In Section 5, we consider extensions, where we

consider other norms than the L2-norm for characterizing the approximation error ĥ − h.
Moreover, we consider cases, where h belongs to a strict subspace of F (with improved
results).

Finally, the density q may be expressed as q(x) =
∑

m>0
µm

µm+λem(x)2. A weakness of our
result is that our optimized distribution q(x) = qλ(x) depends on λ and thus on the num-
ber of samples. In some cases with symmetries (i.e., uniform distribution on [0, 1] or the
hypersphere), qλ happens to be constant for all λ. Note also that typically qλ converges to
a certain distribution when λ tends to zero (see an example in Appendix B).

Recovering lower and upper bounds. For Sobolev spaces with parameters α in [0, 1]d

(for which we assume d < 2α), the decay of eigenvalues is of the form m−2α/d and thus the
error after n samples is n−α/d, which recovers the upper and lower bounds of Novak (1988,
pages 37 and 38).

Algorithms. The quadrature weights αmay be obtained by minimizing ‖∑n
i=1 αik(·, xi)−

∫

X g(x)k(·, x)dρ(x)‖2F , that is, minimizing 1
2α

⊤Kα−µ⊤α, where K is the kernel matrix and
µ ∈ R

n the vector such that µi =
∫

X g(x)k(xi, x)dρ(x). Given these, which can be computed
in closed form for several triplet (k, g, dρ) (see, e.g., Smola et al., 2007; Oates and Girolami,
2015), we need to invert a linear system. Note that when adding points sequentially (in
particular for kernels for which the distribution qλ is independent of λ, such as Sobolev
spaces on [0, 1]), one may update the solution so that after n steps, the overall complexity
is O(n3).

4.4 Learning with random features

We consider supervised learning with m i.i.d. samples from a distribution on inputs/outputs
(x, y), and a uniformly G-Lipschitz-continuous loss function ℓ(y, ·). We consider the em-
pirical risk L̂(f) = 1

m

∑m
i=1 ℓ(yi, f(xi)) and the expected risk L(f) = Eℓ(y, f(x)), with x

with marginal distribution dρ. We assume that Ek(x, x) = trΣ = R2. We have the usual
generalization bound for the minimizer f̂ of L̂(f) with respect to ‖f‖F 6 F , based on
Rademacher complexity (see, e.g., Shalev-Shwartz and Ben-David, 2014):

E
[

L(f̂)
]

6 inf
‖f‖F6F

L(f) + 2E
[

sup
‖f‖F61

|L(f)− L̂(f)|
]

6 inf
‖f‖F6F

L(f) +
4FGR√

m
. (5)

We now consider learning by sampling n features, leading to a function parameterized by
β ∈ R

n, that is ĝβ =
∑n

i=1 βiq(vi)
−1/2ϕ(vi, ·) ∈ L2(dρ). We assume that n is large enough

to have an expected squared error 8λ as in the end of the proof of Prop. 1 (Appendix C.1),

that is, n > 4 + 6d(λ) log R2d(λ)
λ (if we consider the optimized distribution q). We consider

a minimizer β̂ of L̂(ĝβ) over ‖β‖2 6 2F/
√
n. We obtain the following upper-bound on
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E
[

L(ĝβ̂)
]

(for simplicity in expectation with respect to the data and the random features)
for the learned function ĝβ̂ based on random features:

E
[

L(ĝβ̂)
]

6 inf
‖f‖F6F

L(f) +E sup
‖f‖F6F

inf
‖β‖262F/

√
n
|L(f)−L(gβ)|+2E sup

‖β‖F62F/
√
n

|L(ĝβ)− L̂(ĝβ)|.

Because of the G-Lipschitz-continuity of the loss, the second term is less than GF
√
8λ. Fol-

lowing standard results for Rademacher complexities of ℓ2-balls (Bartlett and Mendelson,

2003, Lemma 22), the third term is less than 4FG
m
√
n
E
(
∑m

i=1

∑n
j=1

ϕ(vi,xj)
2

q(vi)

)1/2
6

4FG
m
√
n
(nm tr Σ)1/2 =

4FGR√
m

. Overall, we obtain

E
[

L(ĝβ̂)
]

6 inf
‖f‖F6F

L(f) + 3GF
√
λ+

4FGR√
m

.

The bound thus requires that we have λ = R2/m and thus n > 4+6d(R2/m) log
[

md(R2/m)
]

in order to lose only a constant factor compared to Eq. (5).

In the worst case, we have d(λ) 6 λ−1 tr Σ = R2/λ, and thus n > 4 + 6m logm, and we
lose a logarithmic factor compared to Rahimi and Recht (2009). However, when we have
eigenvalue decays as R2i−2s, we get (up to constants) d(λ) 6 (R2/λ)1/(2s), and thus n >

m1/(2s) logm, which is a significant improvement (regardless of the value of F ). Moreover,
if the decay is geometric as ri, then we get d(λ) 6 log(R2/λ), and thus n > (logm)2, which
is even more significant.

5 Quadrature-related Extensions

In Section 4.3, we have built an approximation ĥ = Σ1/2Σ̂(Σ̂ + λI)−1Σ−1/2h of a function
h ∈ F , which is based on n function evaluations h(x1), . . . , h(xn). We have presented a
convergence rate for the L2-norm ‖ĥ− h‖L2(dρ) for functions h with less than unit F-norm
‖h‖F 6 1.

Robustness to noise. We have seen that if the noise in the function evaluations h(xi) has
a variance less than q(xi)τ

2, then the error ‖h− ĥ‖2L2(dρ)
has an additional term τ2‖β‖22 6

4τ2

n . Hence, the amount of noise has to be less than nµn in order to incur no loss in
performance (a bound which decreases with n).

Robustness to functions not in the RKHS. If the function h happens to be smoother
than elements of the RKHS F , that is, if ‖Σ−sh‖L2(dρ) 6 1, where s > 1/2, then we have
the error, w.h.p.,

‖ĥ− h‖L2(dρ) = λ
∥

∥Σ1/2(Σ̂ + λI)−1Σ−1/2+sΣ−sh
∥

∥

L2(dρ)

6 λ
∥

∥Σ1/2(Σ̂ + λI)−1/2
∥

∥

op

∥

∥(Σ̂ + λI)−1/2Σ−1/2+s
∥

∥

op
‖Σ−sh‖L2(dρ)

6 λ · 2 · λs−1
∥

∥(Σ̂ + λI)1/2−sΣ−1/2+s
∥

∥

op
6 4λs.
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The norm h 7→ ‖Σ−sh‖L2(dρ) is an RKHS norm with kernel
∑

m>0 µ
2s
mem(x)em(y), with

corresponding eigenvalues equal to (µm)2s. From Prop. 1 and 2, the optimal number
of quadrature points to reach a squared error less than ε is proportional to the number
max({m, µ2sm > ε}), while using the quadrature points from s = 1/2, leads to a number
max({m, µm > ε1/(2s)}), which is equal. Thus if the RKHS used to compute the quadrature
weights is a bit too large (but not too large, see experiments in Appendix B), then we still
get the optimal rate. Note that this robustness is only shown for the regularized estimation
of the quadrature coefficients (in our simulations, the non-regularized ones also exhibit the
same behavior).

Other norms. We may consider characterizing the difference ĥ− h with different norms
than ‖ · ‖L2(dρ), in particular norms ‖Σ−r(ĥ− h)‖L2(dρ), with r ∈ [0, 1/2]. We have:

‖Σ−r(ĥ− h)‖L2(dρ) = λ
∥

∥Σ1/2−r(Σ̂ + λI)−1Σ−1/2h
∥

∥

L2(dρ)

6 λ1/2−r
∥

∥Σ1/2−r(Σ̂ + λI)r−1/2
∥

∥

op
‖Σ−1/2h‖L2(dρ) 6 2λ1/2−r.

When r = 1/2, we get a result in the RKHS norm, but with no decay to zero; the RKHS
norm ‖ · ‖F would allow a control in L∞-norm, but as noticed by Steinwart et al. (2009);
Mendelson and Neeman (2010), such a control may be obtained in practice with r much
smaller. For example, when the eigenfunctions em are uniformly bounded in L∞-norm by a
constant C (as is the case for periodic kernels in [0, 1] with the uniform distribution), then,
for any x ∈ X , we have for t > 1,

f(x)2 6
∞
∑

m=0

(m+ 1)t〈f, em〉2L2(dρ)

∞
∑

m=0

em(x)2(m+ 1)−t
6

∞
∑

m=0

(m+ 1)t〈f, em〉2L2(dρ)

C2

t− 1
.

If for simplicity, we assume that µm = (m + 1)−2s (like for Sobolev spaces), we have
‖Σ−rf‖2L2(dρ)

=
∑∞

m=1(m + 1)t〈f, em〉2L2(dρ)
with r = t/4s. If λ 6 O(n−2s) (as suggested

by Prop. 1), then we obtain a squared error equal to 1
t−1λ

1−2r = O
(

1
t−1n

−2s(1−t/2s)
)

=

O
(

nt

t−1n
−2s

)

. With t = 1+ 1
logn , we get O

(n logn
n−2s

)

, and thus a degradation compared to the

non-squared L2-loss of n1/2 (plus additional logarithmic terms), which corresponds to the
(non-improvable) result of Novak (1988, page 36).

6 Conclusion

In this paper, we have shown that kernel-based quadrature rules are a special case of random
feature expansions for positive definite kernels and derived upper and lower bounds on
approximations, that match up to logarithmic terms. For quadrature, this leads to widely
applicable results while for random features this allows a significantly improved guarantee
within a supervised learning framework.

The present work could be extended in a variety of ways, for example towards bandit opti-
mization rather than quadrature (Srinivas et al., 2012), the use of quasi-random sampling
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within our framework in the spirit of Yang et al. (2014); Oates and Girolami (2015), a sim-
ilar analysis for kernel herding (Chen et al., 2010; Bach et al., 2012), an extension to fast
rates for non-parametric least-squares regression (Hsu et al., 2014) but with an improved
computational complexity, and a study of the consequences of our improved approximation
result for online learning and stochastic approximation, in the spirit of Dai et al. (2014);
Dieuleveut and Bach (2014).
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A Eigenvalues for tensor products

Given a kernel k on the set X , with eigenvalues (µm)m>0 with respect to the measure dρ,
there are mainly three ways to define a kernel K on X = (x1, . . . , xd) ∈ X d with the product
probability distribution (dρ)⊗d:

– Sum: K(X,Y ) =
∑d

j=1 k(xj , yj). Its eigenvalues are µm, m > 0, each with multiplicity

d. Thus, if µm ∝ m−2s, we have a number of eigenvalues of K greater than λ equivalent
to dλ−1/(2s).

– Product: K(X,Y ) =
∏d

j=1 k(xj , yj). Its eigenvalues are µm1×· · ·×µmd
, m1, . . . ,md >

0. Thus, if µm ∝ m−2s, we have a number of eigenvalues of K greater than λ equivalent
to the number of multi-indices such that m1 × · · · ×md less than λ−1/(2s), which can
easily be upper bounded by λ−1/(2s)(log λ−1)d−1.

– Harmonic means of eigenvalues. If
∑

m>0 µ
1/d
m is finite, we may define

K(X,Y ) =
∑

m1,...,md>0

d
∑d

j=1 µ
−1
mj

d
∏

j=1

emj (xj)emj (yj),

with eigenvalues d∑d
j=1 µ

−1
mj

6
(
∏d

j=1 µmj

)1/d
(and hence summable). For F a Sobolev

space in 1 dimension, we obtain the regular Sobolev space in d dimensions. That is, for
2s > d, if µm ∝ m−2s, we have a number of eigenvalues of K greater than λ equivalent
to the number of multi-indices such that ‖m‖2s 6 (λ/d)−1/(2s), which can easily be
upper bounded by a constant times λ−d/(2s).

B Simulations

In this section, we consider simple illustrative quadrature experiments with X = [0, 1] and
kernels k(x, y) = 1 +

∑∞
m=1

1
m2s cos 2πm(x − y), with various values of s and distributions

dρ which are Beta random variable with the two parameters equal to a = b.
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Uniform distribution. For b = 1, we have the uniform distribution on [0, 1] for which the
cosine/sine basis is orthonormal, and the optimized distribution qλ is also uniform. More-
over, we have

∫ 1
0 k(x, y)dρ(x) = 1. We report results comparing different Sobolev spaces for

testing functions to integrate (parameterized by s) and learning quadrature weights (pa-
rameterized by t) in Figure 1, where we compute errors averaged over 1000 draws. We did
not use regularization to compute weights α. We can make the following observations:

– The exponents in the convergence rates for s = t (matching RKHSs) are close to 2s
as expected.

– When the functions to integrate are less smooth than the ones used for learning (that
is t > s), then the quadrature performance does not necessarily decay with the number
of samples.

– On the contrary, when s > t, then we have convergence and the rate is potentially
worse than the optimal one (attained for s = t), and equal when t > s/2.

In Figure 2, we compare several quadrature rules on [0, 1], namely Simpson’s rule with
uniformly spread points, Gauss-Legendre quadrature and the Sobol sequence with uniform
weights. For s = 1, all squared errors decay as n−2 with a worse constant for our kernel-
based rule (which is the only one with such a general applicability), while for s = 2, the
Sobol sequence is not adaptive.

Non-uniform distribution. In order to compute the weights and the error from points
x1, . . . , xn, we need to compute for all y ∈ [0, 1],

∫ 1
0 k(x, y)p(x)dx. In order to compute the

optimal density q(x) from Eq. (8), we may take a set of y1, . . . , ym uniformly spread in [0, 1],
for m large, and compute

〈k(·, x),Σ−1k(·, yi)〉L2(dρ) = k(x, yi)

〈k(·, yi), k(·, yj)〉L2(dρ) =

∫ 1

0
k(x, yj)k(x, yi)dρ(x),

to estimate coordinates of the approximation of the operator Σ−1 on the large independent
set {k(·, y1), . . . , k(·, ym)}.
All of these are computed by Gauss-Chebyshef quadrature with 10000 points. In Figure 3,
we compare several distributions q(x). The distribution a = b = .25 happens to be the limit
of qλ as λ tends to zero. All distributions achieve the optimal rate O(n−2) except the one
with a = b = 2, illustrating the fact that wrong distributions may have an adverse impact.

C Proofs

C.1 Proof of Prop. 1

Any f ∈ F with F-norm less than one, may be represented as f =
∫

V g(v)ϕ(v, ·)dµ(v),
for a certain g ∈ L2(dµ) with L2(dµ)-norm less than one. We do not solve the problem
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t=1 : 2.0
t=2 : 2.2
t=3 : 3.2
t=4 : 5.1

t=1 : 3.8
t=2 : 3.8
t=3 : 3.8
t=4 : 4.9

t=1 : 4.2
t=2 : 5.6
t=3 : 5.6
t=4 : 5.6

t=1 : 4.2
t=2 : 7.0
t=3 : 7.2
t=4 : 7.1

Figure 1: Quadrature for functions in a Sobolev space with parameter s (four possible
values) for the uniform distribution on [0, 1], with quadrature rules obtained from different
Sobolev spaces with parameters t (same four possible values). We compute affine fits in
log-log-space to estimate convergence rates of the form C/nu and report the value of u.
Best seen in color.
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Figure 2: Quadrature for functions in a Sobolev space with parameters s = 1 (left) and
s = 2 (right), for the uniform distribution on [0, 1], with various quadrature rules. We
compute affine fits in log-log-space to estimate convergence rates of the form C/nu and
report the value of u. Best seen in color.
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a=b=.25 : 2.0
a=b= .5 : 2.0
a=b=.75 : 2.0
a=b=  1 : 1.9
a=b=  2 : 1.0

Figure 3: Quadrature for functions in a Sobolev space with parameter s = 1 for the Beta
distribution on [0, 1] with parameters a = b = 1/2, with quadrature rules obtained from
sampling from different Beta distributions with equal parameters a = b. We compute affine
fits in log-log-space to estimate convergence rates of the form C/nu and report the value of
u. Best seen in color.
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in β exactly, but use a properly chosen Lagrange multiplier λ and consider the following
minimization problem:

∥

∥

∥

∥

n
∑

i=1

βiq(vi)
−1/2ϕ(vi, ·)−

∫

X
ϕ(v, ·)g(v)dµ(v)

∥

∥

∥

∥

2

L2(dρ)

+ nλ‖β‖22.

By introducing the notation Φ which is a matrix with infinitely many rows and i-th column
equal to q(vi)

−1/2ϕ(vi, ·) ∈ L2(dρ), we need to minimize the familiar least-squares problem:

∥

∥f −Φβ
∥

∥

2

L2(dρ)
+ nλ‖β‖22,

with solution from the usual normal equations and the matrix inversion lemma:

β = (Φ⊤Φ+ nλI)−1Φ⊤h =
1

n
Φ⊤(

1

n
ΦΦ⊤ + λI)−1f. (6)

We consider the operator Σ̂ : L2(dρ) → L2(dρ), defined as

Σ̂ =
1

n
ΦΦ⊤ =

1

n

n
∑

i=1

1

q(vi)
ϕ(vi, ·)⊗L2(dρ) ϕ(vi, ·),

that is, for a, b ∈ L2(dρ), 〈a, Σ̂b〉L2(dρ) =

n
∑

i=1

〈a, ϕ(vi, ·)〉L2(dρ)〈b, ϕ(vi, ·)〉L2(dρ)

q(vi)
.

This operator Σ̂ allows us to make more formal the heuristic computations above.

The value of ‖f −Φβ‖2L2(dρ)
is equal to λ2

〈

f, (Σ̂+λI)−2f
〉

L2(dρ)
6 λ

〈

f, (Σ̂+λI)−1f
〉

L2(dρ)
.

Finally, we have, with β = 1
nΦ

⊤(Σ̂ + λI)−1f , and

‖β‖22 =
〈

(Σ̂ + λI)−1f, Σ̂(Σ̂ + λI)−1f
〉

L2(dρ)
6

〈

f, (Σ̂ + λI)−1f
〉

L2(dρ)
.

By construction, we have E(Σ̂) = Σ. Moreover, we have, by Cauchy-Schwarz inequality:

〈a, (f ⊗L2(dρ) f)a〉L2(dρ)=

(
∫

X
a(x)f(x)dρ(x)

)2

=

(
∫

X

∫

V
a(x)g(v)ϕ(v, x)dµ(v)dρ(x)

)2

6

(
∫

V
g(v)2dµ(v)

)2∫

V

(
∫

X
a(x)ϕ(v, x)dρ(x)

)2

dµ(v) 6 〈a,Σa〉L2(dρ).

Thus f ⊗L2(dρ) f 4 Σ (with the classical partial order between self-adjoint operators), and
we may thus define 〈f,Σ−1f〉L2(dρ), which is less than one.

Overall we aim to study 〈f, (Σ̂ + λI)−1f〉L2(dρ), for 〈f,Σ−1f〉L2(dρ) 6 1, to control both the
norm ‖β‖22 and the approximation error. We have, following a similar argument than the
one of Bach (2013); El Alaoui and Mahoney (2014) for column sampling:

〈f, (Σ̂ + λI)−1f〉L2(dρ)

= 〈f, (Σ + λI + Σ̂− Σ)−1f〉L2(dρ)

= 〈(Σ + λI)−1/2f,
[

I + (Σ + λI)−1/2(Σ̂− Σ)(Σ + λI)−1/2
]−1

(Σ + λI)−1/2f〉L2(dρ).
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Thus, if (Σ + λI)−1/2(Σ̂ − Σ)(Σ + λI)−1/2 < −tI, with t ∈ (0, 1), we have

〈h, (Σ̂ + λI)−1f〉L2(dρ) 6 (1− t)−1〈f, (Σ + λI)−1f〉L2(dρ)

6 (1− t)−1〈f,Σ−1h〉L2(dρ) 6 (1− t)−1.

Thus, the performance depends on having (Σ + λI)−1/2(Σ − Σ̂)(Σ + λI)−1/2 4 tI. We
consider the self-adjoint operators Xi =

1
n(Σ+λI)−1Σ− 1

n
1

q(vi)

[

(Σ+λI)−1/2ϕ(vi, ·)
]

⊗L2(dρ)
[

(Σ+λI)−1/2ϕ(vi, ·)
]

, so that our goal is to provide an upperbound on the probability that

‖
∑n

i=1Xi‖op > t. We denote by d = trΣ(Σ+λI)−1 =
∫

V
〈ϕ(v,·),(Σ+λI)−1ϕ(v,·)〉L2(dρ)

q(v) q(v)dµ(v) 6

dmax. We have EXi = 0, ‖Xi‖op 6
dmax
n and

n
∑

i=1

E(X2
i ) 4

1

n

(

E

[〈ϕ(v, ·), (Σ + λI)−1ϕ(v, ·)〉L2(dρ)

q(v)2

·
[

(Σ + λI)−1/2ϕ(v, ·)
]

⊗
[

(Σ + λI)−1/2ϕ(v, ·)
]

]

4
dmax

n
(Σ + λI)−1Σ,

with a maximal eigenvalue less than
dmax

n
and a trace less than

dmax

n
tr Σ(Σ + λI)−1 =

d dmax

n
.

Following Hsu et al. (2014), we use a matrix Bernstein inequality which is independent of
the underlying dimension (which is here infinite). We consider the bound of Minsker (2011,
Theorem 2.1), which improves on the earlier result of Hsu et al. (2012, Theorem 4), that is:

P

(
∥

∥

∥

∥

n
∑

i=1

Xi

∥

∥

∥

∥

op

> t

)

6 2d

(

1 +
6d2max

n2 log2(1 + t)

)

exp

(

− nt2

2dmax(1 + 3t)

)

.

We now consider t = 3
4 , δ ∈ (0, 1), and n > 4 + 6dmax log

4dmax

δ
> 10dmax. This implies

that

exp

(

− nt2

2dmax(1 + 3t)

)

6
δ

4dmax
6

δ

4d
, and

(

1+
6d2max

n2 log2(1 + t)

)

6

(

1+
6

100 log2(7/4)

)

6 2.

Thus the probability is less than δ. We can make the following extra observations regarding
the proof:

– It may be possible to derive a similar result with a thresholding of eigenvalues in
the spirit of Zwald et al. (2004), but this would require Bernstein-type concentration
inequalities for the projections on principal subspaces.

– Note that A 4 B does not imply in A2 4 B2 (Bhatia, 2009, page 9) and that in
general we do not have (Σ̂ + λI)−2 4 C(Σ + λI)−2 for any constant C (which would
allow an improvement in the error by replacing λ by λ2, and violate the lower bound
of Prop. 2).
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– We may also obtain a result in expectation, by using δ = 4λ/ tr Σ (which is assumed
to be less than 1), leading to a squared error with expectation less than 8λ as soon as

n > 4 + 6dmax(λ) log
(tr Σ)dmax(λ)

λ . We use this result in Section 4.4.

– We have E tr Σ̂ = trΣ =
∫

X k(x, x)dρ(x), and thus, by Markov’s inequality, with
probability 1− δ,

tr Σ̂ 6
1

δ
tr Σ. (7)

By taking δ/2 instead of δ in the control of ‖∑n
i=1Xi‖op > t, we have a control over

‖β‖22, tr Σ̂ and the approximation error. This will be useful for the lower bound of
Prop. 2.

C.2 Application to quadrature

In this section, we specialize the results from the section above to the quadrature subcase,
namely we give a formulation where the features ϕ do not appear (or equivalently using ψ
defined in Section 3.2).

We assume that points x1, . . . , xn are sampled from the distribution with density q with re-
spect to dρ. We aim to write f ∈ F as f =

∫

X ψ(x, ·)g(x)dρ(x) = Σ−1/2
∫

X k(x, ·)g(x)dρ(x) =
Σ1/2g. Moreover, we have

Σ̂ =
1

n

n
∑

i=1

1

q(vi)
ψ(xi, ·)⊗L2(dµ) ψ(xi, ·) = Σ−1/2

(

1

n

n
∑

i=1

1

q(vi)
k(xi, ·)⊗L2(dµ) k(xi, ·)

)

Σ−1/2.

and we have

〈f,Σ1/2Σ̂Σ1/2g〉L2(dρ) =

n
∑

i=1

1

q(xi)

(
∫

X
k(xi, y)f(y)dρ(y)

)(
∫

X
k(xi, y)g(y)dρ(y)

)

.

We have from Eq. (6) βi =
1

nq(xi)1/2
〈k(·, xi),Σ−1/2(Σ̂ + λI)−1Σ1/2g〉L2(dρ), and the quadra-

ture rule becomes:
n
∑

i=1

βih(xi)

q(xi)1/2
=

n
∑

i=1

βi

q(xi)1/2
〈h,Σ−1k(·, xi)〉L2(dρ)

=

〈

h,
1

n

n
∑

i=1

Σ−1 1

q(xi)

[

k(xi, ·)⊗L2(dµ) k(xi, ·)
]

Σ−1/2(Σ̂ + λI)−1Σ1/2g

〉

L2(dρ)

=
〈

h,Σ−1/2Σ̂(Σ̂ + λI)−1Σ1/2g
〉

L2(dρ)
=

〈

g,Σ1/2Σ̂(Σ̂ + λI)−1Σ−1/2h
〉

L2(dρ)
,

which can be put in the form 〈ĥ, g〉L2(dρ) with the approximation ĥ = Σ1/2Σ̂(Σ̂+λI)−1Σ−1/2h.

Finally, the density q may be expressed as

q(x) ∝ 〈k(·, x),Σ−1/2(Σ + λI)−1Σ−1/2k(·, x)〉L2(dρ) =
∑

i∈I

µi
µi + λ

ei(x)
2.

An alternative expression that can be used to compute q in practise is

q(x) ∝ 〈k(·, x), (I + λΣ−1)−1k(·, x)〉L2(dρ). (8)
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C.3 Proof of Prop. 2

We first use the Varshamov-Gilbert’s lemma (see, e.g., Massart, 2003, Lemma 4.7). That
is, for an integer s, there exists a family (θj)j∈J of at most |J | > es/8 distinct elements of
{0, 1}s, such that for j 6= j′ ∈ J , ‖θj − θj′‖22 > s

4 .

For each θ ∈ {0, 1}s, we define an element of F with norm less than one, as f(θ) =√
µs√
s

∑s
i=1 θiei, where (ei, µi), i = 1, . . . , s are the eigenvector/eigenvalue pairs associated

with the s largest eigenvalues of Σ. We indeed have

‖f(θ)‖2F =
µs
s

s
∑

i=1

θ2i µ
−1
i 6 1.

Moreover, for any j 6= j′ ∈ J , we have ‖f(θj)− f(θj′)‖2L2(dρ)
= µs

s ‖θj − θj′‖22 > µs

4 .

Thus, if
√
4λ 6

√

µs

4 /3, then there exists a family (βj)j∈J of elements of Rn, with squared

ℓ2-norm less than 4
n , and for which for any j 6= j′ ∈ J , we have

∥

∥

∑n
i=1(βj −βj′)iψi

∥

∥

L2(dρ)
>

√

µs

4 /3. This implies n(4δ−1 tr Σ)‖βj − βj′‖22 > (βj − βj′)
⊤Ψ⊤Ψ(βj − βj′) >

µs

36 , that is

‖βj − βj′‖2 >

√

δµs

144n tr Σ = ∆. Thus, es/8 is less than the packing number of the sphere

of radius r = 2/
√
n, which is itself less than (r/∆)n(2 + ∆/r)n (see, e.g., Massart, 2003,

Lemma 4.14). Since ∆/r 6 1/24, we have

s

8
6 n

(

1

2
log

36 tr Σ

δµs
+ log(2 + 1/24)

)

.

This implies n >
s

4 log trΣ
δµs

+21
. Given that we have to choose µs > 144λ for the result to hold,

this implies the desired result.
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