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Abstract
Specific networks of interacting neuronal assemblies distributed within and across distinct 

brain regions underlie brain functions. In most cognitive tasks, these interactions are dynamic 

and take place at the millisecond time scale. Among neuroimaging techniques, Magneto/

Electroencephalography -M/EEG- allows for detection of very short-duration events and 

offers the single opportunity to follow, in time, the dynamic properties of cognitive processes

(sub-millisecond temporal resolution). 

In this paper we propose a new algorithm to track the functional brain connectivity 

dynamics. During a picture naming task, this algorithm aims at segmenting high-resolution

EEG signals (hr-EEG) into functional connectivity microstates. The proposed algorithm is 

based on the K-means clustering of the connectivity graphs obtained from the Phase Locking 

Value (PLV) method applied on hr-EEG. Results show that the analyzed evoked responses 

can be divided into six clusters representing distinct networks sequentially involved during 

the cognitive task, from the picture presentation and recognition to the motor response.
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Introduction
There is increasing evidence that cognitive functions arise from the activation of networks 

distributed over distinct and possibly distant brain regions as opposed to isolated focal areas

(Sporns 2010). Hence, efforts focused on the analysis of brain connectivity as a key concept 

to understand brain cognitive functions. Due to its excellent spatial resolution, fMRI has 

become one of the most commonly used noninvasive methods to study cerebral functions 

(Allen, Damaraju et al. 2012).

However, in many cases, the short duration of most cognitive processes (~ 500 ms for picture 

naming, for example) would greatly benefit from the use of techniques that have a much 

higher time resolution (on the order of ms), which is not the case of fMRI (~ 1s). Along this 

line, several studies indicated that the use of electroencephalography (EEG, 1 ms time 

resolution for signals classically sampled at 1 kHz) combined with appropriate signal 

processing techniques can bring relevant information about normal networks during cognitive 

activity (Rodriguez, George et al. 1999) or about altered networks associated with tumors 

(Bartolomei, Bosma et al. 2006) for instance. 

This excellent temporal resolution of the EEG signals allowed us to analyze the dynamic 

properties of cognitive processes, an issue so far addressed in a few studies only. In (Murray, 

Brunet et al. 2008), authors proposed an algorithm based on the amplitude of Event Related 

Potentials (ERPs) to follow time-varying voltage topographic maps. However, these 

algorithms do not account for brain connectivity quantified directly from scalp signals 

(electrode space) or indirectly from reconstructed brain sources (source space). 

Regarding the approaches based on the connectivity analysis, most of reported methods make 

use of a constant time window to track the dynamics of functional connectivity, as estimated 

from EEG recordings. This window is typically chosen either empirically or based on a priori 
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information about the analyzed task (Rodriguez, George et al. 1999). A few attempts have 

been recently reported to avoid this constraint (De Vico Fallani, Astolfi et al. 2008; 

Dimitriadis, Laskaris et al. 2010; Allen, Damaraju et al. 2012). However, most of proposed 

algorithms are not adapted to tracking changes over very short durations (in the order of 500

ms, as in the case of responses evoked by visual stimuli).

In this paper, we propose a novel algorithm to track the dynamics of brain functional 

connectivity at millisecond scale. The proposed algorithm is based on the K-means clustering 

of the connectivity networks obtained by the Phase Locking Value (PLV) method.

Performance evaluation was assessed on high-resolution electroencephalographic (hr-EEG)

signals recorded in subjects during a picture naming task.Materials and Methods 
A. Functional connectivity measure

Functional connectivity is classically defined as the temporal correlation (wide sense) among 

electrophysiological signals generated by distinct neuronal assemblies (Friston 1994). Several 

methods have been proposed to quantify brain functional connectivity. In this study we used a 

method, which belongs to the so-called “phase synchronization” (PS) family.

It is well known that the respective phases of two oscillators may synchronize even if their 

amplitudes stay uncorrelated. The general principle of PS methods is to detect the existence of 

a phase locking between two systems defined as:

( ) ( ) ( )xy x yt t t C

where x (t) and y (t) are the unwrapped phases of the signals (x and y) representative of the 

two systems at time t and C a constant. The first step for estimating the phase synchronization 

is to extract the instantaneous phase of each signal. In this study, we used the method based 
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on Hilbert transform. The second step is the definition of an appropriate index to measure the 

degree of synchronization between estimated instantaneous phases. To proceed, we used the 

phase locking value (PLV) (Lachaux, Rodriguez et al. 1999), as illustrated in figure 1-B. For 

each channel pair, x and y, at time t (t = t1,. ., tT where T= D * fs; D and fs denote the signal 

length  relative to the onset and the sampling frequency, respectively) for the N trials and for 

subject j (j = 1...M, where M denotes the number of subjects), PLV is defined as:

1

1PLV ( ) ( ) ( )
x y

N
j

x y
n

t t t
N

                      (1)

To reduce the effect of correlations between near electrodes, we apply a normalization 

procedure (z-score) so that the PLV values were compared with the 200 ms baseline 

preceding the presentation of the image. Let xy and xy are the mean and standard deviation 

computed from a 200 ms pre-stimulus baseline. The normalized PLVs are then defined

as PLV ( ) (PLV ( ) - ) /
j j j j
xy xy xy xyt t . A thresholding procedure is then applied on the functional 

connectivity values in order to retain the strongest functional connections. The connectivity 

measure was computed in the low gamma frequency band (30 Hz - 45 Hz). More precisely, 

the phases were estimated for each frequency and the average phase at 30-45 Hz was used.

Indeed, this frequency band was shown to be highly relevant in the context of the cognitive 

task performed by subjects, as reported in (Rodriguez, George et al. 1999).

The PLVs were then averaged over subjects:

                                            j

1

1PLV ( ) PLV ( )
xy

M

xy
j

t t
M

(2)

Where PLV ( )xy t represents the general term of the average adjacency matrix PLV( )t  which 

defines a functional connectivity graph G at each time t, ( ),  1,..,G G t t T , computed for 

the V pairs of x and y channels, where V is equal to (Nc.(Nc-1)/2)) and Nc is the number of 
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channels in the hr-EEG montage. According to equations 1 and 2, T adjacency matrices are 

obtained.

B. Segmentation algorithm

The objective of this algorithm is to identify clusters among the T graphs G (t). As illustrated 

in figure 1-C, the proposed algorithm is based on three main steps:

Step 1: Initialization

To start with, K graphs kG , 1, ,..,k k
KG G k t t , are selected where k=tl and l is randomly 

chosen in  (K varies from 3 to 12 and k varies from 1 to K) with the restriction of rejecting the 

K graphs if the time interval between two tl is less than 30 ms.

Step 2: Assignment 

The spatial correlation ( )ksC t between G (t) and kG is then computed as follows:

1

2 2

1 1

. ( )
sC ( )

. ( )

V
k
i i

k i
V V

k
i i

i i

G G t
t

G G t
                                                             (3)

where i denotes the ith edge in G(t) and kG . As depicted in eq.3, sC is normalized by the 

variance of graphs G and Gk. Thus, sC ranges from 0 to 1 High values denote graph with high 

similarity. Conversely, low values are indicative of low similarity between graphs.
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Figure 1: Structure of the investigation: A- Dense EEGs with 256 electrodes were used to record brain electrical activity. Participants 

were shown about 74 stimuli from different categories. B- Functional connectivity was computed between electrodes over all trials using 

the phase locking value method; the resultant connectivity matrix at a given instant (300ms for instance) was derived. This connectivity 

matrix was then projected on 2D scalp to provide a connectivity graph. C- Illustration of flowchart of the proposed segmentation 

algorithm: three main steps were realized: the initialization, the assignment and the update steps.
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Each graph G(t) is then assigned to the cluster for which the spatial correlation was the 

highest. The assigned clusters are defined as ˆ kG  :

                       
'

'( ), ( ),

ˆ { ( ) :  1 ' }
k k

k kG t G G t G

kG G t sC sC k K                                          (4)

From these spatial correlation values, the Global Explained Variance (GEV) is calculated as 

defined in (Murray, Brunet et al. 2008):

                       
1

K
k

k
GEV GEV                                                                                  (5)

                      
ˆ1 ( )2
ˆˆ ˆ 0 ( )( ), ( ),( ),

1
( ) . where

k

kk kk

T
if G t Gk
if G t GG t G G t GG t G

t
GEV sC                (6)

Step 3: Update

At each iteration, the new centroids kG are updated by averaging all the graphs yielding to the 

same cluster 

       
ˆ'

1 'ˆ k

k
k

G G

G G
G                           (7)

For each K, steps 2 and 3 were repeated 500 times. The set of centroids leading to the highest 

GEV was retained. When the algorithm converges (reaching the highest GEV), K+1 graphs 

G are then selected randomly and the entire above procedure (from step 2 to step 3) is 

repeated until K=12.

To choose the optimal number of clusters, we used a method based on the Cross Validation 

(CV) criterion (Murray, Brunet et al. 2008) which is a ratio between the GEV and the degrees 

of freedom for a given set of graphs. As reported, the global minimum of this criterion gives 
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the optimal number of segments. Note that in the same segment, the graphs can have different 

SC values with the same cluster and therefore two consecutive graphs (in time) can be 

classified in two distinct clusters. To overcome this, the decision that is made is to choosing 

the ‘most dominant’ Cluster inside each segment.

Finally, the above-described method is a group-averaged approach means that this method 

was based on the computation of the spatial correlation between graphs on averaged PLV(t)

adjacency matrices obtained from all subjects. Nevertheless, the algorithm does not ignore the 

inter-subject variability. To analyze the single subject contribution, the same type of 

calculation (mainly step 2) can be performed between single-subject PLV ( )j t and clusters

that were obtained by the clustering algorithm applied to PLV(t) . Again, each time point was 

labeled according to the graph with which it was best correlated, yielding a measure of graph 

existence. This procedure was particularly helpful to analyze, extract, and identify the 

spatiotemporal behaviors that are common across subjects.

C.  Data 

Six subjects were shown pictures on a screen using E-Prime 2.0 software (Psychology 

Software Tools, Pittsburgh, PA). They were requested to name the displayed pictures. The 

148 images were selected from a database of 400 pictures standardized for French (Alario and 

Ferrand 1999) and were used during two sessions (about eight minutes each) of 74 stimuli. 

Brain activity was recorded using hr-EEG system (EGI, Electrical Geodesic Inc.). EEG 

signals were collected with a 1 kHz sampling frequency and band-pass filtered between 3 and 

45Hz. Each trial was visually inspected, and epochs contaminated by eye blinking, 

movements or any other noise source were rejected and excluded from the analysis. This 

study was approved by the National Ethics Committee for the Protection of Persons (CPP), 
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(conneXion study, agreement number 2012-A01227-36, promoter: Rennes University 

Hospital). We excluded the electrodes located on the face as well as the few electrodes 

showing too high impedance. All participants provided a written informed consent to 

participate in this study. 

Results
The algorithm described above was applied on the adjacency matrix averaged over 6 subjects

who performed the picture recognition and naming task. The segmentation algorithm, applied 

to the recorded EEG signals, led to a number of clusters equal to 6. Results are shown in 

figure 2A. The first cluster corresponded to the period ranging from t=0 (Stimulus onset: 

presentation of the picture) to t=116 ms. In this cluster, a network located in the occipital lobe 

could be observed. A shorter graph was then observed between t=117 ms and t=153 ms with 

strong connections at the occipital lobe as well. The 3rd cluster corresponded to the time 

interval 154-190 ms where connections appeared mainly in the temporal and parietal lobes. A 

network was then identified in the cluster 191-316 ms with the presence of connections

mainly located in the frontal lobe, followed by a cluster (317-480 ms) with two separate 

networks in frontal and occipital lobes. The last cluster (481-620 ms) was then associated with 

a denser network in left temporal and bilateral frontal lobes with predominance of the right 

frontal lobe.

Figure 2B shows the results obtained regarding the inter-subject variability. The graph 

existence percentages were computed for all the subjects. The figure shows that graphs (T3, 

T6) have the highest graph existence (73% and 78% respectively). In contrast, the lowest 

values (30.99%, 22.33%) were obtained for graph T1 and T4 respectively. The graphs T2 and 

T5 showed nearly similar graph existence with 41.17% and 38.33% respectively. Results also 

showed that the first (T1) and the fifth (T5) graphs have the lowest variability across subjects 
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(±16% and ±22% respectively) while the second graph (T2) has the highest variability 

(±38%).

Figure 2: Results of the segmentation process A-: Event related potentials for the picture naming task and distribution of the functional 

connectivity graphs revealed by the proposed spatiotemporal segmentation algorithm. The results are shown from 0 ms (the Onset when the 

visual stimuli were presented) to 620 ms when the naming process starts. B- Graph existence is computed over the six subjects for the six 

identified networks. 
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Discussion and conclusion
A challenge of cognitive neuroscience is to temporally follow, over very short time duration, 

the sequence of brain processes involved in a considered task.

In this communication, a novel algorithm was presented to track the dynamics of functional 

connectivity. The proposed algorithm is based on the clustering of connectivity matrices 

computed from the phase locking value method applied on scalp dense EEG signals. It is 

exemplified in the well-known picture naming task which duration is about of 500 ms. By 

taking advantage of the excellent temporal resolution of the EEG signals and the use of PLV, 

the main originality of the proposed algorithm is its capacity to track connectivity dynamics 

over very short time periods. The proposed algorithm showed high performance to reveal the 

stability of the brain networks over short periods of time and to segment the cognitive process 

into functional connectivity microstates.

Another algorithm was recently proposed by Allen et al. (Allen, Damaraju et al. 2012) and

applied to track brain networks during resting state. The basic principle of this algorithm was 

based on the independent component analysis and the k-means. However the proposed 

algorithm was adapted to fMRI data by taking a large time window (about 3s) to compute the 

functional connectivity and therefore does not allow tracking cognitive tasks with short time 

duration. Therefore, it is likely that accurate tracking of the picture naming could not be 

achieved with the above mentioned proposed algorithm.

Very interestingly, results were qualitatively consistent, in term of involved brain regions,

with already-reported results regarding the analyzed task, most of them being however based 

on other neuroimaging modalities (mainly functional magnetic resonance-fMRI- and Positron 

Emission Tomography –PET-). Networks were identified in the occipital lobe during the first 

200 ms (including the P150) which likely correspond to the visual processing of the presented 

picture during the recognition phase (Schendan, Ganis et al. 1998). Another network is then 
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identified in the following 200 ms where a left occipito-parieto-temporal network was

identified which is compatible with brain regions involved in the access to semantics content

of the presented picture (Salmelin, Hari et al. 1994). Finally, at the last 200 ms, dense 

networks appear in the temporo-frontal regions. It is well established that this network is 

strongly involved in decision making during the naming phase (Salmelin, Hari et al. 1994).

Regarding the EEG connectivity studies, our results seem to agree with studies reported the 

dynamic (time-varying) behavior of functional connectivity graphs during visual tasks 

(Babiloni, Cincotti et al. 2005; De Vico Fallani, Astolfi et al. 2008). These studies and others 

showed how the brain networks properties modify during visual tasks with relatively short 

duration.

The proposed method was applied to networks obtained at the level of scalp EEG electrodes. 

These networks suffer from the low spatial resolution and the effect of the of field spread. Our 

further objective is to apply this algorithm on EEG source connectivity graphs to identify the 

dynamics of brain networks at cortical source level as described in (Hassan, Dufor et al. 

2014). The algorithm will be used also to compare the brain connectivity dynamics at 

different conditions such as the difference between networks related to different type of 

stimulus (animals vs. tools for instance).

More generally, the proposed algorithm can be broadly applicable to disciplines where 

network dynamics is crucial in the understanding of system performance.
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