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a b s t r a c t

This paper discusses a classical paradox in thermoacoustics when jump conditions are derived for

acoustic waves propagating through a thin flat flame. It shows why volume conservation must be used

for perturbations at zero Mach number (continuity of v 0 ¼ u0A) while mass conservation is used at

non-zero Mach numbers (continuity of m0 ¼ �q0u
0Aþ �u0q0A). First, from the three-dimensional mass

balance equation, a quasi one-dimensional mass balance equation is obtained for surface-averaged

quantities. Then it is demonstrated that the acoustic and entropy disturbances are coupled and need to

be solved together at the flame front because singularities in the entropy profile affect mass conservation.

At non-zero Mach number, the entropy generated in the thin flame is convected by the mean flow: no

singularity occurs and leads to the classical mass conservation at the interface. However, at zero Mach

number, the flow is frozen and entropy spots are not convected downstream: they produce a singularity

at the flame front due to the mean density gradient, which acts as an additional source term in the mass

conservation equation. The proper integration of this source term at zero Mach number leads, not to the

mass, but to the volume flow rate conservation of perturbations. A balance equation for the volume flow

rate has been also derived. This equation couples the volume flow rate and the mean and fluctuating

pressure. This latter equation degenerates naturally toward the volume flow rate conservation at the

flame interface at zero Mach number because of the pressure continuity. This theoretical analysis has

been compared to LEE (Linearized Euler Equation) simulations of stable flames and a good agreement

is found for the entropy fluctuations shape and the conserved quantities.

1. Introduction

Acoustics remains a crucial topic in the development of modern

gas turbines: acoustic waves can propagate in the whole combus-

tion chamber, interacting with the compressor exit, the turbine

stator inlet or the flames, leading to the production of direct

[1–3] and indirect noise [4–8], vibrations and combustion instabilities

[9–13].

Describing the acoustic modes, which can appear in combustion

chambers and finding methods to control them has been the topic

of multiple studies over the last decades [9,11,12,14–20]. The com-

plexity and the cost of performing laboratory-scale experiments

explain why progress in this field has been slow for a long time

since. Recently, new well-instrumented acoustic experiments

[7,14,21,22] have opened the path to investigate flame response

to acoustics [23], direct and indirect noise [7] as well as combus-

tion instabilities [10,14,15,21,22]. In addition, theoretical and

numerical approaches have progressed in different directions: (1)

three-dimensional high fidelity simulations of combustion cham-

bers have been performed [24–27], (2) three-dimensional acoustic

tools have been developed [28–31] and (3) analytical approaches

have been proposed to describe acoustics in simplified configura-

tions at low cost [4,5,8,16,32–35]. In particular, this last approach

allows the investigation of the underlying mechanisms involved

in acoustic phenomena since explicit expressions of acoustic

sources or growth rates of modes are obtained.

These low-order methods for thermoacoustics are usually based

on a one-dimensional formalism in which acoustic waves are prop-

agated in a network. A paradox arises from the fact that acoustic

modeling is usually performed at zero Mach number (�u0 ¼ 0) while
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combustion is a process necessarily place at non zero Mach num-

ber (otherwise reactants are frozen and are never transported to

the reaction zone leading to zero mean heat release Q0 ¼ 0, i.e.

no temperature or density gradients). A common approach is

therefore to consider two ‘‘worlds’’: the first one is the ‘‘acoustic

world’’ at zero Mach number and the second one is a ‘‘convective

world’’ required by the flame to create the density/temperature

gradients at the flame front. Flame Transfer Functions used in

Helmholtz solvers are a typical example of how a convective quan-

tity – the time-delay – is incorporated into the ‘‘acoustic world’’

which assumes a zero Mach number. Low-order models are usually

prone to this paradox when dealing with acoustic jump conditions

required to link fluctuating acoustic quantities at both sides of a

thin flame: for a thin flame located at a section change (Fig. 1) in

the limit of zero Mach number, typical thermoacoustics studies

[11,17,21,30,33,35–40] incorporate a jump condition corresponding

to the continuity of the volume flow rate to express velocity

perturbation u0
1 and u0

2 on both sides of the flame:

u0
1A1 ¼ u0

2A2 ð1Þ

while the intuitive condition would be to write mass conservation:

�q1u
0
1A1 ¼ �q2u

0
2A2 ð2Þ

which includes the mean density values on both sides of the flame

and differs strongly from Eq. (1). Mass conservation is actually used

at non-zero Mach numbers by some authors [18,36,41–43], leading

to some confusion in the community. The question becomes more

complex in network models where Mach number can be zero in cer-

tain parts of the combustion chamber modeled as one-dimensional

tubes and non null in others (Fig. 1). A crucial question is therefore

to prove the consistency between jump conditions at non-null

Mach number (M – 0) and the limit case when the Mach number

goes to zero (M ! 0). Moreover, the differences between Eqs. (1)

and (2) are large because the ratio �q1= �q2 is of the order of 5–10

in most flames. Using Eq. (1) or (2) leads to very different results

in Helmholtz solvers. Therefore, understanding which velocity jump

condition must be used is a critical building block in all Helmholtz

formulations which clearly requires a careful analysis.

The present paper tries to elucidate this paradox by deriving

jump conditions for mass and volume flow rates on a thin flame

front at zero and non-zero Mach number. The first starting point

is to write the mass conservation at non-null Mach number

(Section 2.1). This balance equation is valid but does not degener-

ate simply to the proper equation at zero Mach number where the

volume flow rate is conserved and not the mass flow rate [11].

Another starting point is to write the conservation of total enthalpy

at the interface (Section 2.2), which leads to volume flow rate

conservation (Eq. (1)) for zero Mach numbers. Showing why these

approaches are actually compatible is one goal of the present

paper. To achieve this, jump conditions for both mass

(m̂ ¼ �q0ûAþ q̂�u0A) and volume (v̂ ¼ ûA) flow rate perturbations

are derived in a case corresponding to two tubes connected by a

passive flame and section change (Fig. 1). From the three-dimen-

sional mass balance equation, a quasi-one dimensional mass

balance equation is obtained for surface-averaged quantities in

Section 2. Then the mass flow rate conservation equation is derived

in Section 2.1 for all Mach numbers. This equation couples the

unsteady mass flow rate m̂ and the entropy fluctuations ŝ. In

addition, a conservation equation for the volume flow rate is also

obtained in Section 2.2, which couples the unsteady flow rate v̂

and the fluctuating pressure p̂. The comparison of the mass and

volume flow rate equations in Section 2.3 shows that entropy ŝ

and pressure gradient dp̂
dx

singularities present in these equations

change with the Mach number and explains why mass flow rate

is conserved at non-null Mach numbers (Section 3) and volume

flow rate at zero Mach number (Section 4) demonstrating the con-

sistency between the two formulations.

2. Mass and volume flow rate formulation

The conservation of the fluctuating mass and volume flow rate

through the thin flame front of Fig. 1 is described for a configuration

with a ‘‘steady’’ flame, i.e. no heat release fluctuations ( bQ ¼ 0) and

q1 > q2 due to a different temperature in the fresh mixture

(subscript 1) and the hot mixture (subscript 2). No distinction

between null or non-null Mach number is necessary at this step.

2.1. Mass flow rate (m̂)/entropy (ŝ) coupled equations

The local mass conservation reads:

@q
@t

¼ ÿdivðquÞ ð3Þ

where q and u are instantaneous three-dimensional quantities.

Since the case studied is quasi-one-dimensional, a spatial

averaging over the area A is applied:

F ¼
1
�qA

Z

A

qFdA ð4Þ

where F corresponds to any quantity such as pressure and velocity

and �q ¼ 1
A

R
A
qdA.

Eqs. (3) and (4) lead to a one-dimensional mass balance

equation:

A
@�q
@t

¼ ÿ
@

@x
ð�q�uAÞ ð5Þ

This equation can be linearized around the mean state:

A
@q0

@t
¼ ÿ

@

@x
ðq0�u0Aþ �q0u

0AÞ ð6Þ

where any one-dimensional quantity F is decomposed as F ¼ F0 þ F 0

where F0 is the mean quantity and F 0 is the fluctuating part. The

second-order term q0u0A has been neglected.

Fig. 1. Configuration (left) with the corresponding one-dimensional model (right) and the control volume (---): two tubes connected by a flame and an abrupt change of

section from A1 to A2.



Using the Fourier transform of the fluctuation parts F 0ðx; tÞ ¼
bFðxÞeÿjxt and integrating Eq. (6) over the control volume of width

Xx (Fig. 1) yields:

ÿjx
Z

Xx

Aq̂dx ¼ ÿ

Z

Xx

d

dx
ðq̂�u0Aþ �q0ûAÞdx

¼ ÿ

Z

@Xx

q̂�u0Adxÿ

Z

@Xx

�q0ûAdx ð7Þ

where @Xx is the boundary of the integration line Xx.

The left-hand-side term of the above equation can be recast

using the entropy and pressure fluctuations variable knowing that:

q̂ ¼
p̂

�c20
ÿ

�q0

Cp

ŝ ð8Þ

where �c0 ¼
ffiffiffiffiffiffiffiffiffiffi
crT0

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�p0=�q0

p
is the mean sound speed and Cp is

the heat capacity at constant pressure.

The left-hand term of Eq. (7) then becomes:

ÿjx
Z

Xx

Aq̂dx ¼ ÿjx
Z

Xx

Ap̂

�c20
dxþ jx

Z

Xx

A�q0ŝ

Cp

dx ð9Þ

Finally, injecting Eq. (9) into Eq. (7) and taking the limit Xx ! 0

leads to:

lim
Xx!0

ÿ jx
Z

Xx

A�q0 ŝ

Cp

dx ¼ ½q̂�u0A�
2
1 þ ½�q0ûA�

2
1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fluctuating mass flux m̂

¼ ½m̂�
2
1 ð10Þ

where ½F�21 ¼ F2 ÿ F1 stands for the jump of the quantity F at the

flame location x ¼ xf between 1 and 2 (Fig. 1). Note that the acoustic

pressure being bounded,1 the first term of the right-hand side of Eq.

(9) goes to zero with Xx. This equation couples the jump of fluctuat-

ing mass flow rate ½m̂�
2
1 and the fluctuating entropy ŝ at the flame

front as already suggested by Dowling [36]. It shows that the

unsteady mass flow rate m̂ is not necessarily conserved through

the flame: it depends on the entropy ŝ (or density) variation through

the flame front, showing that an additional equation for entropy var-

iation is needed (Section 3) to obtain the final jump condition.

2.2. Volume flow rate (v̂)/pressure (p̂) formulation

A useful alternative to the mass flow rate conservation equation

(Eq. (10)), which involves the fluctuating mass flux m̂ ¼ q̂�u0Aþ
�q0ûA, is to write an equation for the fluctuating volume flow rate

v̂ ¼ ûA. This volume jump condition is obtained from the linear-

ized mass balance equation (Eq. (6)) and therefore is equivalent

to the previous mass jump condition. However, different source

terms appear in both formulations and allow to understand which

quantity is conserved depending on the Mach number.

Differentiating over time Eq. (8) gives for complex amplitudes:

ÿjxq̂ ¼ ÿjx
p̂

�c20
þ jx

�q0

Cp

ŝ ð11Þ

The entropy fluctuations are obtained from the convection of

entropy, which reads in linearized form:

ÿjxŝþ �u0
dŝ

dx
þ û

d�s0
dx

¼ 0 ð12Þ

where there is no unsteady entropy source term because a steady

flame is considered here.2

Injecting the expression of jxŝ from Eq. (12) into Eq. (11) leads

to:

ÿjxq̂ ¼ ÿjx
p̂
�c20

þ
�q0�u0

Cp

dŝ

dx
þ

�q0û

Cp

d�s0
dx

ð13Þ

Multiplying Eq. (13) by the area A and injecting the mass

balance equation ÿjxq̂A ¼ ÿ d
dx
ð�q0ûAþ q̂�u0AÞ (see Eq. (6)) yields:

ÿ
d

dx
ð�q0ûAþ q̂�u0AÞ ¼ ÿj

xA

�c20
p̂þ

�q0�u0A

Cp

dŝ

dx
þ

�q0ûA

Cp

d�s0
dx

ð14Þ

The mean entropy gradient d�s0
dx

is related to the mean pressure

and density gradients by differentiating �s0 ¼ ÿCp lnð�q0=q0Þþ

Cv lnð�p0=p0Þ where q0 and p0 are constant reference quantities.

Assuming constant heat capacities:

d�s0
dx

¼ ÿ
Cp

�q0

d�q0

dx
þ

Cp

�c20 �q0

d�p0

dx
ð15Þ

Since the mean entropy gradient d�s0
dx

is known (Eq. (15)), extract-

ing the volume flow rate v̂ ¼ ûA using d
dx
ð�q0ûAÞ ¼ �q0

dv̂
dx
þ v̂

d�q0

dx
gives

one local equation for the volume flow rate v̂:

1

�c20

d�p0

dx
þ �q0

d

dx

� �
v̂ ¼ j

xA

�c20
p̂ÿ

�q0�u0A

Cp

dŝ

dx
ÿ

d

dx
ðq̂�u0AÞ ð16Þ

where �q0�u0A is the mean mass flow rate so that this quantity is

independent of the axial coordinate x.

The above equation can be simplified combining the two RHS

fluxes and using the equation defining the entropy in Eq. (8):

�q0�u0A

Cp

dŝ

dx
þ

d

dx
ðq̂�u0AÞ ¼

d

dx

�q0�u0A

Cp

ŝþ q̂�u0A

� �

¼
d

dx
�q0�u0A

p̂

c�p0

� �
¼ �q0�u0A

d

dx

p̂

c�p0

� �
ð17Þ

Therefore, the expression of the local equation of the volume

flow rate conservation (Eq. (16)) reads:

ÿjxA
p̂

c�p0

þ �v0
d

dx

p̂

c�p0

� �
þ

v̂

c�p0

d�p0

dx
¼ ÿ

dv̂

dx
ð18Þ

where �v0 ¼ �u0A is the mean volume flow rate.

Finally, integrating over the line Xx and taking the limit Xx ! 0

leads to:

lim
Xx!0

Z

Xx

�v0
d

dx

p̂

c�p0

� �
dxþ lim

Xx!0

Z

Xx

v̂

c�p0

d�p0

dx
dx ¼ ÿ½ûA�

2
1 ¼ ÿ v̂½ �

2
1

ð19Þ

Note that the acoustic pressure being bounded, the first LHS term of

Eq. (18) goes to zero in Eq. (19). Compared to the mass flow rate

conservation equation, which couples the mass flow rate m̂ and

the entropy ŝ, now, the volume flow rate v̂ conservation is linked

to the mean d�p0
dx

and fluctuating dp̂
dx
pressure gradients as summarized

in Table 1.

Table 1

Summary of the mass and volume flow rate conservation equations obtained in Eqs.

(10) and (19).

Jump Expression

Mass flow rate (m̂ ¼ q̂�u0Aþ �q0ûA) limXx!0 ÿ jx
R
Xx

A�q0 ŝ
Cp

dx ¼ ½q̂�u0Aþ �q0ûA�
2
1

Volume flow rate (v̂ ¼ ûA) ÿlimXx!0

R
Xx

�v0
d
dx

p̂
c�p0

� �
dx

ÿlimXx!0

R
Xx

v̂

c�p0
d�p0
dx dx ¼ ½ûA�

2
1

1 A quantity F is bounded if there is a finite positive number MF where kFk 6 MF . It

implies that k
R
Xx

FðxÞdxk 6
R
Xx

kFðxÞkdx 6
R
Xx

MFdx 6 MFkXxk goes to zero when

Xx ! 0. Note that a bounded quantity F does not necessarily imply that F is

continuous. For instance, the fluctuating pressure amplitude p̂ at non-null Mach

number is discontinuous but is however bounded.
2 Results with an unsteady flame can be obtained in the same manner by adding a

source term q̂s linked to the unsteady heat release on the right-hand side of this

equation. This will not change the conclusions of the paper and this term is omitted

here for simplicity.



2.3. Singularities and source terms of conservation equations

Eqs. (10) and (19) are valid for all Mach numbers. They corre-

spond to balance equations coupling the acoustic (p̂ or û) and the

entropy (ŝ or q̂) disturbances as suggested by Dowling [36]. They

involve integrated LHS source terms, which are not necessarily null

and control the jump in mass and volume flow rates.

The LHS terms of Eqs. (10) and (19) depend on integral terms

written as limXx!0

R
Xx

FðxÞdx. Such terms are zero if the quantity

FðxÞ is bounded (but can be discontinuous) on Xx: for instance

the Heaviside function FðxÞ ¼ HðxÞ would lead to a null source

term while a dirac function FðxÞ ¼ dðxÞ would generate a source

term because limXx!0

R
Xx

dðxÞdx ¼ 1.

d-singularities are present in the two conservation equations

Eqs. (10) and (19). Table 2 reveals the reason of the apparent par-

adox discussed in this paper: different jump conditions are

obtained at zero and non-zero Mach numbers because the mathe-

matical nature of these singularities3 changes with the Mach num-

ber. For instance, the presence of an entropy source term in the mass

conservation equation shows that an entropy singularity is induced

in the flow, which can be smoothed and convected downstream only

in the presence of a mean flow. A quiescent flow however prevents

this singularity to leave the domain and creates an additional source

term to the mass conservation equation as already shown by Nicoud

and Wieczorek [44] using Euler simulations of flames at several

Mach numbers (Fig. 2).

Consequently the resolutions at non-null (M > 0, Section 3) and

null (M ¼ 0, Section 4) Mach number have to be performed sepa-

rately. It will be shown that the mass flow rate conservation at

non-null Mach number and the volume flow rate conservation at

zero Mach number are consistent and directly linked to the

entropy ŝ and pressure gradients d�p0
dx

and dp̂
dx

behaviors as shown in

Table 2 and Fig. 2.

3. Jump condition at non-null Mach number (M > 0)

At non-null Mach number, the mean pressure �p0 and fluctuating

pressure p̂ are discontinuous (Fig. 2) because of the mean velocity

as shown by the integrated mean and unsteady momentum

balance equations (Eqs. (20) and (21)) [44]:

½�p0 þ �q0�u0�u0�
2
1 ¼ 0 ðMean momentumÞ ð20Þ

½p̂þ 2�q0�u0ûþ q̂�u0�u0�
2
1 ¼ 0 ðLinearized unsteady momentumÞ

ð21Þ

Consequently, according to Table 2, additional source terms are

present due to the singular pressure gradients in the volume flow

rate equation (Eq. (19)) and the volume flow rate v̂ ¼ ûA is not con-

served though the interface.

Thus this section will focus on the mass flow rate Eq. (10),

which couples the mass flow rate m̂ and the entropy ŝ: the mass

flow rate conservation equation (Eq. (10)) and the entropy convec-

tion equation (Eq. (12)) have to be solved together as indicated by

Dowling [36]. Equation (12) is required to fix the LHS entropy term

ŝ in Eq. (10). This equation for entropy is a first order differential

equation with a source term due to acoustics û. Its solution is

ŝðxÞ ¼ ŝHðxÞ þ ŝPðxÞ where ŝH is the solution of Eq. (12) without

source term (called the homogeneous equation) and ŝP is one par-

ticular solution of Eq. (12).

3.1. The homogeneous solution ŝH

ŝH is the solution of the homogeneous equation:

ÿjxŝþ �u0

dŝ

dx
¼ 0 ð22Þ

where �u0 is a known non-null function of the axial coordinate x:

�u0ðxÞ ¼ �u0;1 if x 6 xf
�u0ðxÞ ¼ �u0;2 ¼ b�u0;1 if x > xf

�
ð23Þ

where b ¼
�q0;1A1
�q0;2A2

is obtained from the mean mass conservation

½�q0�u0A�
2
1 ¼ 0.

The solution ŝH of the homogeneous Eq. (22) reads:

ŝHðxÞ ¼ ase
jx
R

dx
�u0 ðxÞ ð24Þ

where as is a constant to be determined from boundary conditions.

Eq. (24) is valid only at non-null Mach number since it involves

the characteristic convection time scðxÞ ¼
R

dx
�uðxÞ

, which explains the

special behavior of the zero Mach number case (where sc ! 1,

Section 4). At non-null Mach number, the characteristic convection

time can be expressed explicitly using Eq. (23) and noting that

1=�u0ðxÞ is also constant by parts (1=�u0;1 for x < xf and 1=�u0;2 for

x > xf ):

Table 2

LHS source terms in mass (m̂ ¼ �q0ûAþ q̂�u0A, top) and volume flow rate (v̂ ¼ ûA, bottom) conservation equations (Eqs.

(10) and (19)) with the analytical expressions of the singularities depending on the Mach number. d-singularities act

like additional source terms and are colored in gray.

3 The entropy singularity is detailed in Sections 3 and 4. Pressure gradient

singularities are not detailed but obtained here assuming a pressure constant by parts

or using for non null Mach number cases jxû ¼ 1
�q0

dp̂
dx.



scðxÞ ¼
Z

dx
�uðxÞ

¼
x=�u0;1 if x 6 xf
1

�u0;1
½xf þ ðxÿ xf Þ=b� if x > xf

(
ð25Þ

Finally, the entropy fluctuation ŝHðx; tÞ is:

ŝHðxÞ ¼ ase
jxsc ðxÞ ð26Þ

3.2. One particular solution ŝP

To obtain one particular solution of Eq. (12), the method of var-

iation of constants for inhomogeneous linear ordinary differential

equations is applied: the solution ŝP is sought as:

ŝPðxÞ ¼ csðxÞe
jxscðxÞ ð27Þ

For the particular solution, the source term in Eq. (12) is

retained. This term involves the mean entropy gradient, which is

due to mean density and pressure gradients (Eq. (15)) at the flame

front x ¼ xf . Because of the abrupt jump of mean density and pres-

sure through the flame front, themean entropy gradient is singular:

d�s0
dx

¼ Ksdðxÿ xf Þ ð28Þ

Using Eqs. (12) and (27) and the expression of the mean density

gradient (Eq. (28)) leads to the following equation for csðxÞ:

dcsðxÞ
dx

¼ ÿKs

ûðxÞ
�u0ðxÞ

eÿjxscðxÞdðxÿ xf Þ ð29Þ

whose solutions are:

csðxÞ ¼ ÿKs
û
�u0

� ��

x¼xf

eÿjxscðxf ÞHðxÿ xf Þ ð30Þ

where ½f �
�
x¼xf

is the value of the regularized function f at x ¼ xf , i.e.
1
2
ðf ðx ¼ xþf Þ þ f ðx ¼ xÿf ÞÞ.

The final expression for the particular solution ŝPðxÞ is:

ŝPðxÞ ¼ ÿKs

û
�u0

� ��

x¼xf

e jx½scðxÞÿscðxf Þ�Hðxÿ xf Þ ð31Þ

3.3. Solution of the convection equation for the entropy fluctuations

and mass conservation at non-null Mach number (M > 0)

The solution of the full convective Eq. (12) is thus the sum of the

homogeneous and particular solutions (Eqs. (26) and (31)):

ŝðxÞ ¼ ŝHðxÞ þ ŝPðxÞ ¼ ase
jxscðxÞ ÿ Ks

û
�u0

� ��

x¼xf

e jx½scðxÞÿscðxf Þ�Hðxÿ xf Þ

ð32Þ

Fig. 2. The Normalized pressure (top) and entropy (bottom) modulus (left) and phase (right) obtained by Nicoud and Wieczorek [44] for several Mach numbers in a straight

tube of constant cross section: —:M = 0 (thickened entropy spot at x ¼ xf ¼ 0:5 m and continuous pressure), -- -:M = 0.05 (entropy convected downstream and discontinuous

pressure) and - �- �: M = 0.11 (entropy convected downstream and discontinuous pressure).



Assuming zero entropy fluctuations coming from the upstream

end of the configuration (x ¼ 0) leads to as ¼ 0 and finally:

ŝðxÞ ¼ ÿKs
û
�u0

� ��

x¼xf

e jx sc ðxÞÿscðxf Þ½ �Hðxÿ xf Þ ð33Þ

In other words, this result shows (Appendix A) that a flame

excited by acoustic waves û – 0 at non-null Mach number (�u0 > 0)

generates entropy fluctuations, which are convected downstream.

Eq. (33) shows that at non-null Mach number (M > 0) the

entropy fluctuations are bounded although discontinuous at

x ¼ xf . It follows that the LHS term in Eq. (10) goes to zero when

the volume XxS tends to zero:

lim
Xx!0

ÿ jx
Z

Xx

A�q0 ŝ

Cp

dx ¼ 0 ð34Þ

which leads directly to the mass conservation through the flame at

non-null Mach number:

½q̂�u0A�
2
1 þ ½�q0ûA�

2
1 ¼ ½m̂�

2
1 ¼ 0 ð35Þ

4. Analysis of the mass and volume conservation at zero Mach

number (M ¼ 0)

A well known paradox arises from Eq. (35) when considering an

infinitely thin flame at zero Mach number (M ¼ 0). Indeed, using

Eq. (35) and enforcing �u0 ¼ 0 does not yield the proper equation

of volume flow rate conservation [36]. The derivation of Eq. (32)

in Section 3 requires divisions by �u0 and therefore cannot be

extended to cases at zero Mach number. For these cases, an

alternative solution is to start from the total enthalpy

mH ¼ quA CpT þ 1
2
u2

ÿ �
conservation, which reads [44]:

CpT0 þ
1

2
�u2
0

� �
ð�q0ûþ q̂�u0ÞAþ �q0�u0A Cp

bT þ �u0û
� �� �2

1

¼ bQ ð36Þ

where ½F�21 corresponds to the jump of any quantity F: ½F�21 ¼ F2 ÿ F1

and bQ ¼ 0 since here a steady flame is considered for the sake of

simplicity (this does not change the result of this demonstration).

When the mean velocity goes to zero (i.e. �u0 ¼ 0), this relation

goes naturally to the volume flow rate conservation:

CpT0�q0ûA
� �2

1
¼ 0 () ûA½ �

2
1 ¼ 0 ð37Þ

since the flame is an isobaric element at zero Mach number so that
�p0 ¼ R�q0T0 is conserved.

This result can also be obtained using the volume flow rate con-

servation equation (Eq. (19)), which couples the unsteady volume

v̂ and pressure p̂. At null Mach number, the mean and fluctuating

pressure are continuous:

½�p0�
2
1 ¼ 0 and ½p̂�

2
1 ¼ 0 ð38Þ

Thus, the two source terms present in the volume flow rate

equation (Eq. (19)) are null (Fig. 2): the volume flow rate conserva-

tion at zero Mach number results from the pressure continuity at

the interface. It also appears from the volume flow rate equation

(Eq. (19)) or the total entropy equation (Eq. (36)) that formulations,

which already incorporate the entropy equation will degenerate

naturally toward the volume flow rate conservation at zero Mach

number.

The problem is therefore not to prove the volume flow rate con-

servation (Eq. (37)) at zero Mach number but to demonstrate its

consistency with the mass flow rate conservation (Eq. (35)) at

non-null Mach number and to highlight its intrinsic links with sin-

gularities of the entropy fluctuations as depicted in the previous

section.

Considering the mass balance equation at zero Mach number,

Eq. (10) still holds but Eq. (35) does not because the entropy

fluctuations ŝ in Eq. (10) are not bounded anymore. At zero Mach

number, the mathematical nature of the entropy equation (Eq.

(12)) changes and now reads:

ÿjxŝþ û
d�s0
dx

¼ 0 ð39Þ

where d�s0
dx

¼ ÿ
Cp

�q0

d�q0

dx
¼ ÿCp

d lnð�q0Þ
dx

¼ ÿCp ln
�q0;2

�q0;1

� �
dðxÿ xf Þ for an

isobaric transformation with a mean density constant by parts:

�q0;1 for x < xf and �q0;2 for x > xf . The solution of Eq. (38) is:

ŝ ¼ j
Cpû

x�q0

d �q0

dx
¼ j

Cp

x
ln

�q0;2

�q0;1

� �
ûdðxÿ xf Þ ð40Þ

Eq. (40) proves that, at zero Mach number, the entropy fluctuation ŝ

is a d-singularity located at the flame position x ¼ xf , also observed

in [44] (— in Fig. 2): the left-hand term of Eq. (10) does not go to

zero and the mass balance equation does not degenerate toward

the mass conservation at the interface: ½m̂�
2
1 – 0.

To demonstrate the consistency between the two formulations

(m̂ÿ ŝ and v̂ ÿ p̂), the source term of the mass flow balance equa-

tion can be integrated using Eq. (40):

lim
Xx!0

ÿ jx
Z

Xx

A�q0 ŝ

Cp

dx ¼ lim
Xx!0

Z

Xx

ûA
d�q0

dx
dx

¼ ½ �q0ûA�
2

1 ÿ lim
Xx!0

Z

Xx

�q0

dûA

dx
dx ð41Þ

Combining the mass flow rate conservation (Eq. (10)) and the

integration of the source term (Eq. (41)) shows that the entropy

singularity compensates one part of the mass flow rate (the one

independent of the Mach number: �q0ûA). Since at zero Mach

number the second part of the mass flux q̂�u0A is null it yields:

ð42Þ

Consequently limXx!0

R
Xx

�q0
dûA
dx

dx ¼ 0. In other words dûA
dx

is bounded

at x ¼ xf , which means that ½ûA�
2
1 ¼ 0.4 This proves that the mass

conservation at non-null Mach number and the volume flow rate

conservation at zero Mach number are consistent: at zero Mach

number, the entropy ŝ generated by the flame excited by the

acoustics û is stuck at the flame location xf due to the frozen flow.

The singularity of the fluctuating entropy cannot be neglected and

is related to the density gradient r�q0 (and the fluctuating heat

release q̂s for an unsteady flame), which leads to the volume flow

rate conservation (Eq. (42)).

5. Conclusion

The consistency between conservation equations at zero and

non-null Mach number has been proved for the mass/volume flow

rate conservation the case of two connected tubes separated by a

steady flame. The mass conservation equation is derived for all

Mach numbers: it involves source terms coupling the acoustic (p̂

or û) and entropy disturbances (ŝ or q̂). In particular, the nature

of entropy singularities changes with the Mach number explains

why mass conservation of fluctuations is satisfied at non-zero

4 This result can be proven by contradiction: let’s assume that ûA contains a

discontinuity at the interface (i.e. ûA � Hðxÿ xf Þ). Consequently, its derivative

contains a d-singularity (i.e. dûA=dx � dðxÿ xf Þ), which leads to limXx!0

R
Xx

dûA
dx dx – 0

in contradiction with Eq. (42). Therefore ûS is continuous at the interface, i.e.

½ûA�
2
1 ¼ 0.



Mach number while volume flow rate is conserved at zero Mach

number.

This conclusion can be discussed using the present analytical

results: at non-nullMach number, the entropy generated in the thin

flame region is convected by the mean flow. No singularity occurs

and leads to the classical mass m̂ conservation at the interface.

However, at zero Mach number, the flow is frozen and entropy

spots are not convected downstream: they are stuck in the thin

flame region producing a singularity related to the mean density

gradient, which acts as an additional source term in the mass con-

servation equation. The proper integration of this source term at

zero Mach number leads, not to the mass, but to the volume flow

rate conservation as expected. In addition, a balance equation for

the volume flow rate v̂ has also been derived. This equation couples

the volume flow rate v̂ , the mean pressure �p0 and the fluctuating

pressure p̂. It degenerates naturally toward the volume flow rate

conservation at the flame interface at zero Mach number because

of the pressure continuity.

This theoretical analysis has been systematically compared to

LEE simulations of stable flames and a good agreement is found

for the entropy fluctuations shape and the conserved quantities.

Appendix A. Comparison between theory and Linearized Euler

Equation (LEE) results

The solution of Eq. (33) can be compared to the Linearized Euler

Equation (LEE) simulations obtained by Nicoud andWieczorek [44]

displayed in Fig. A.3 for both Mach numbers M ¼ 0:05

and M ¼ 0:11. The complex frequencies provided in [44] are used

to evaluate the formula (33): f0:05 ¼ 139ÿ 13j Hz and f0:11 ¼

134ÿ 34j Hz. In this case, b ¼ 4 and �c1 ¼ 347 m=s. Since normali-

zation of ŝ has been performed in [44], the term kM ¼ Ks
û
�u

� ��
x¼xf

has been tuned to match the entropy spot at the flame location

leading to k0:05 ¼ 0:05 and k0:11 ¼ 0:08.

� No entropy is observed upstream of the flame (x < xf ) in both

LEE simulations and Eq. (33).

� An entropy spot at the flame location (x ¼ xf ) is present. In the

LEE simulations, the discontinuity is smoothed by the mesh res-

olution and the thickened flame technique.

� Downstream of the flame (x > xf ) the entropy is convected by

the mean flow leading to an increasing exponential shape (since

stable flames (ImðxÞ < 0) are studied in [44]).

� No singularity is present in Eq. (33) and Fig. A.3, which

implies that entropy fluctuations are bounded although

discontinuous.
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