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Quantum structure and rotational dynamics of HCN in helium clusters
Alexandra Viela) and K. Birgitta Whaleyb)

Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California,
Berkeley, California 94720-1460

~Received 1 June 2001; accepted 8 August 2001!

We present diffusion Monte Carlo calculations of ground states and rotationally excited states of
HCN 4Hen , using our recently developed algorithm for importance sampled rigid body diffusion
Monte Carlo @Viel et al., Comput. Phys. Commun.~in press, 2001!# within the mixed frame
implementation. Excited states are studied with both fixed node approximations, and the Projection
Operator Imaginary Time Spectral Evolution~POITSE! method that allows nodal constraints to be
circumvented. Improvements in the POITSE algorithm allow excited states of clusters with up to 80
degrees of freedom to be determined here. The results presented here show that the rotational
dynamics of the HCN molecule in4He clusters are very different from the behavior of heavier
molecules such as SF6. Detailed analysis of ground state densities shows that the lighter HCN
molecule induces negligible adiabatic following of the helium density as a result of its rotational
motion. The excited state calculations show that for small numbers of4He atoms the nodal structure
does not correspond to that of a freely rotating molecule. Nevertheless, the POITSE calculations
indicate that there is some admixture of this nodal structure in the low-lying rotational excitations.
It is found that a relatively large number of4He atoms are required to achieve saturation of the
effective rotational constant at the experimental value, in contradistinction to the small numbers of
atoms required to saturate the rotational constant for heavier molecules such as SF6 and OCS.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1407270#
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I. INTRODUCTION

An increasing number of experimental studies of heliu
clusters doped with atoms and molecules are now be
performed,1,2 driven by the recognition that such studies c
lead to microscopic understanding of superfluid propert
as well as to novel quantum phenomena due to the quan
solvation of a strongly bound impurity provided by a sup
fluid. One of the most striking features to emerge from sp
troscopic studies is the phenomenon of free rotation for e
bedded molecules in clusters of4He, the bosonic isotope o
helium.3 Rotational spectra measured with infrared or mic
wave spectroscopy for a series of molecules possessing
phase rotational constantsB0 , in the range 0.01–50 cm21,1,3

appear to fall into two dynamical regimes. The heavier m
ecules (B0<0.1 cm21) show a reduction in rotational con
stant of;60%–80%, while lighter molecules show a mu
smaller reduction of 0%–30%. The HCN molecule lies in t
latter regime, with gas phaseB051.47 cm21 and a reduction
of 19% in 4He clusters to an effectiveB value of 1.20 cm21.
Measurements come from two different experimental grou
and show a slight dependence on vibrational state of C
stretching~B51.204 cm21 for v50,4 and 1.174 cm21 for v
51, Ref. 5!. The isotopically substituted DCN molecule h
also been studied, and shows a very similar decrease in
tation constant, 17% forv50.4 These 17%–19% reduction
are significantly less than the;67% decrease observed fo
the heavier molecules, SF6 ~Ref. 6! and OCS.7

a!Electronic mail: viel@holmium.cchem.berkeley.edu
b!Electronic mail: whaley@socrates.berkeley.edu
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For the heavier molecules, one of us has proposed
notion of adiabatic following of the molecular rotation b
part of the helium density.3,8 Detailed microscopic quantum
analysis has shown that whiletotal adiabatic following by
the helium density is not justified for these molecules, so
degree of adiabatic following is nevertheless justified.3 This
has enabled simple dynamical models for the response o
locally inhomogeneous superfluid to rotation of the micr
scopic molecular probe to be developed.3 The most sophisti-
cated of these is a two-fluid model based on the identifica
of a local molecular-interaction induced nonsuperfluid de
sity that coexists with the local superfluid density in the fi
solvation shell9 and that may adiabatically follow the mo
lecular rotation in certain cases, leading to an increase in
effective moment of inertia.3 Such dynamical models, base
on microscopic densities calculated with path integral9 or
density functional10 techniques, complement the dire
analysis of rotational constants via explicit energy level c
culations using diffusion Monte Carlo techniques.8 Together,
the path integral and diffusion Monte Carlo based a
proaches have provided a complete and consistent ana
of the quantum rotational dynamics of heavy molecules s
as SF6 in 4He clusters.3

In contrast, much less is understood about the dynam
behavior of the lighter molecules in helium clusters. The H
molecule has been studied in the ground rotational state,
the extreme isotropy of the helium density around this w
taken to suggest that the rotational constant of this molec
would not be affected by the superfluid solvation.11 This the-
oretical prediction has recently been confirmed by the m
surement of only a 2% reduction in rotational constant
6 © 2001 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10187J. Chem. Phys., Vol. 115, No. 22, 8 December 2001 Dynamics of HCN in helium clusters
HF (v51) in 4He droplets.12 HF thus appears to provide a
extreme calibration point of a light molecule possessin
relatively weak interaction with helium~well depth ;40
cm21, Ref. 13!, where the large zero point effects remove t
dynamical consequences of the potential anisotropy.
pointed out in Ref. 11, the ground state energy of HF–He
at 27.50 cm21, well above the height of the barrier at218.0
cm21 that separates the two minima. HCN is a very intere
ing molecule to compare with this extreme reference in
regime of lighter molecules. Like HF it is also linear. It po
sesses a somewhat shallower interaction with helium~well
depth;30 cm21, Ref. 14! than does HF, but is heavier tha
HF. The ground state of HCN–He lies at29.65 cm21, which
is now only just above the energy of the potential barrier
211.7 cm21. This leads one to expect a more complex qu
tum rotational motion, with greater evidence of hindran
due to the potential anisotropy. The fact that it shows a m
larger reduction in rotational constant than HF~;19% com-
pared with;2%!, provides experimental evidence that HC
possesses considerably more complex quantum dynam
rotational motion in helium.

Prior to this work, no theoretical studies of the quantu
rotational motion of HCN in helium clusters have be
made. However, classical energetic estimates employing
integral densities3 have indicated that there can be no ad
batic following for HCN. In addition, a scaling of the quan
tum analysis made for SF6 to lighter spherical top rotors
showed that adiabatic following by the helium density
absent for fast rotors having rotational constants similar
HCN.8 The focus of this paper is to now provide a thorou
microscopic quantum analysis of the rotational dynamics
HCN in helium clusters, employing fully quantum calcul
tions incorporating the rotational motion of the HCN mo
ecule in addition to all van der Waals degrees of freedo
Ground state energies and structures are determined
range of cluster sizes varying fromn51 to n560 using our
recently developed importance sampled rigid body diffus
Monte Carlo algorithm.15 Comparison of ground state stru
tures obtained with and without molecular rotation allows
to demonstrate a lack of adiabatic following by the heliu
Excited states are then calculated using both a fixed n
approximation and an intrinsically exact method, POITS
that relaxes nodal approximations. Energy differences
tweenJ51 andJ50 levels are used to extract the effecti
rotational constantB, and the variation of this with cluste
size is analyzed. We find that the HCN molecule show
surprisingly rich rotational dynamic behavior inside boso
4He clusters. This behavior is in many respects considera
more complex than the corresponding rotational dynamic
heavier molecules such as SF6 and OCS. We suggest her
that this behavior is related to the lack of adiabatic followi
of helium with the HCN rotation, together with strong qua
tum coupling effects introduced by the close proximity of t
zero point energy to the potential barrier in the HCN–
system.

In Sec. II we briefly summarize the various diffusio
Monte Carlo methods used here, providing the relevant c
cal modifications of the importance-sampled rigid bo
DMC and POITSE algorithms that were necessary for s
Downloaded 28 Nov 2001 to 129.187.122.33. Redistribution subject to A
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cessful study of the Hen HCN system. Results and discussio
are presented in Sec. III, and the dynamical behavior of H
summarized and put in context of other molecules in Sec.

II. THEORETICAL APPROACH

A. Monte Carlo techniques

The only methods currently available for studying qua
tum system with many degrees of freedom~.6! are based on
stochastic techniques such as the variational and diffus
Monte Carlo~VMC and DMC! methods. In this paper, we
employ rigid body diffusion Monte Carlo~RBDMC!, imple-
menting importance sampling of all degrees of freedo
according to our recently developed general formalism15

RBDMC is combined here for the first time with the proje
tion operator imaginary time spectral evolution~POITSE!
methodology for calculation of excited states without nod
approximations.16,17 To date, the POITSE method has be
used for the calculation of excited states for system with
to 15 dimensions.18,19We present here a modified impleme
tation of the POITSE scheme which allows us to now stu
rotational excitation of systems with significantly larger d
mensionality, i.e.,;80 degrees of freedom~see also Refs. 20
and 21!. The basic VMC and DMC methodology has be
described in many papers.2,22–26Therefore we provide here
only a brief description of the basic approach, focusing
stead on description of the above algorithmic developme
in RBDMC and POITSE that were necessary for succes
treatment of the HCN molecule in helium clusters, in ad
tion to the specific details of the calculations for HCN.

1. Variational diffusion Monte Carlo: VMC

Variational Monte Carlo was used in this work to op
mize trial wave functions needed for diffusion Monte Car
and to create the initial configurations for the POITSE c
culations. In this simplest stochastic approach to solution
the Schro¨dinger equation, one approximates the expectat
value for a coordinate operatorÔ(R) over CT(R) by

*CT* ~R!Ô~R!CT~R!dR
* uCT~R!u2dR .

1

M (
i 51

M

Ô~Ri !5^Ô&VMC ,

~1!

whereR is a vector describing the coordinate space confi
ration of the system,M is the number of configuration
which are sampled from the distributionP(R)5uCT(R)u2

via a Metropolis algorithm.27 The optimization of the param
etrized trial wave function is done by computing the avera
for the Hamiltonian operator and by minimizing either th
energy or its variance.28 Our implementation of VMC here
was made using an unbiased random walk where each
mentk of the vectorR moves inside an interval@2zk ,zk#.
The box sizes are chosen such that the number of acce
moves is approximately maintained at half the number
attempted ones. The indexk refers to the different kinds o
degrees of freedom as we explain below. All box sizeszk are
taken to be equal, after checking that taking different valu
for different degrees of freedom had no significant effect
the results.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10188 J. Chem. Phys., Vol. 115, No. 22, 8 December 2001 A. Viel and K. B. Whaley
2. Unbiased and biased RBDMC

In the diffusion Monte Carlo scheme, the tim
dependent Schro¨dinger equation is rewritten introducing th
imaginary timet5 i t /\:

]C~R!

]t
5(

j

N
D j¹ j

2C~R!2@V~R!2Eref#C~R!, ~2!

whereR is now specifically a vector in theN-dimensional
space,D j5\2/2mj if the j th degree of freedom correspond
to a translation, andD j5Bj5\2/2I j if this degree of free-
dom corresponds to a rotation. In the above equation,Eref is
a constant defining the zero of the absolute energy scale,
V is the potential. This formulation implies the use of Ca
tesian coordinates for the atomlike particles and for the c
ter of mass of the rigid body, and the use of rotational ang
around the principal axes of the rigid body.

To improve the efficiency of this method and to ma
possible the study of large clusters incorporating wea
bound species like4He, one usually introduces a guidin
function CT which approximates the true solutionC of Eq.
~2!. The introduction of this guiding function leads to a d
fusionlike equation for the product functionf (R)
5C(R)CT(R), that differs from Eq.~2! by the presence o
additional drift terms:

] f ~R!

]t
5(

j

N
$D j¹ j

2f ~R!2D j¹ j@ f ~R!F j~R!#%

2@El~R!2Eref# f ~R!. ~3!

Here El(R)5CT(R)21ĤCT(R) is the local energy, and
F j (R)5¹ j lnuCT(R)u2 is the quantum force that controls th
drift terms.

A random walk technique is used to determine the ste
state of Eq.~3! or Eq. ~2!. A walker ~or configuration! is
defined as a vectorR in the N-dimensional space. It repre
sents the position and orientation of all the particles of
system under study. An ensemble of walkers is propaga
from some arbitrary initial distribution using the short tim
approximation of the Green’s function appropriate to Eq.~3!:

G~R→R8;dt!5)
j

F 1

~4pDjdt!1/2

3exp$2~Rj82Rj2D jdtF j~R!!%

3expH2dteffFEl~R!1El~R8!

2
2ErefG J . ~4!

The statistical representation of this Green’s function ta
two steps. First, each coordinate of the walkers is mo
according to a Gaussian distributed random number cha
terized by a standard deviation ofA2D jdt and displaced by
the quantum drift forceD jdtF j (R). Detailed balance is en
sured by using a Metropolis scheme at each time step.
cording to this, the abovementioned attempted move fromR
to R8 is accepted with probability

P~R→R8!5minH 1,
uCT~R8!u2

uCT~R!u2

G~R8→R;dt!

G~R→R8;dt! J . ~5!
Downloaded 28 Nov 2001 to 129.187.122.33. Redistribution subject to A
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This acceptance/rejection step requires us to define the e
tive time stepdteff of Eq. ~4!:

dteff

dt
5

1

nk
(

k

^DR2&k
acc

^DR2&k
att . ~6!

Herek refers to different types of degrees of freedom, andnk

is the number of degrees of freedom controlled by the sa
D j coefficient. The averagê̄ &k only includes those de
grees of freedom of typek, i.e., the different contributions
from atom or rigid body translations, or from rigid bod
rotations. For the current study,nk53, i.e., helium atom
translations, HCN center of mass translation, and HCN ro
tions. For a cluster withn helium atoms, we have then

dteff

dt
5

1

3 F ^Dwx
21Dwy

2&acc

^Dwx
21Dwy

2&att

1
^DxHCN

2 1DyHCN
2 1DzHCN

2 &acc

^DxHCN
2 1DyHCN

2 1DzHCN
2 &att

1
^( j 51

n Dxj
21Dyj

21Dzj
2&acc

^( j 51
n Dxj

21Dyj
21Dzj

2&attG , ~7!

where $xi ,yi ,zi ; i 51,...,n% refers to the Cartesian coord
nates of then helium atoms,xHCN,yHCN,zHCN refers to the
Cartesian coordinates of the center of mass of HCN,
wx ,wy refers to the angles of rotation in the principal ax
frame~PAF! of HCN. This constitutes a mixed frame imple
mentation of RBDMC, in contradistinction to the fixed fram
implementation used previously for a spherical top molec
in helium clusters8 ~see discussion in Sec. II B 2 below!. The
DMC acceptance rates are around 99.99% in our calc
tions, with a slightly smaller value being achieved in excit
state computations.

The last factor of the Green’s function is implement
here through a branching scheme, whereby walkers can
kept, destroyed or replicated. Each walker is branched
cording to

M5 intFexpdteffS Eref2
El~R!1El~R8!

2 D1zG , ~8!

wherez is a uniformly distributed random number. In ord
to keep a reasonable ensemble size, we update the refe
energy by

Eref
t1dt5Eref

t 1
a

dt
lnF N~t!

N~t1dt!G , ~9!

where N is the ensemble size, anda is a parameter. This
parameter was arbitrarily chosen for equilibration of the co
figurations. For production runs, it was then reduced to
value that results in a similar variance for^Eref& and for^El&.
Other implementations based on continuous weights can
used. A pure DMC scheme is usually less numerica
stable29 and has to be supplemented by branching steps.30,31

The energy of the system can be computed as the a
age of the local energyEl(R) or of the reference energ
Eref . The difference between these two estimates provide
measure of the actual time step error introduced by both
of a trial wave function~usually linear!, and by the short
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10189J. Chem. Phys., Vol. 115, No. 22, 8 December 2001 Dynamics of HCN in helium clusters
time representation of the Green’s Function@O(dt2) for
CT51#.31 In this article, we report the average of the loc
energy, since the average of the reference energy was al
found to be equal to this within the error bars.

3. Fixed node approximation

The computation of excited state energies is not an e
task with DMC. The fixed node approximation enables o
to compute excited state levels by imposing a predefi
nodal surface. Practical implementation of this approxim
tion consists in adding a rejection step in the scheme. Thu
each time step, any attempted move that crosses the n
surface is rejected, and the walker keeps its former posit
The use of a guiding function with a nodal structure c
make the DMC walk considerably more difficult to stabiliz
Indeed, we have found that close to the node, the drift te
can be extremely large, resulting in the creation of ‘‘pers
tent’’ walkers.24 Those configurations are stuck at positio
close to the node where the local energy is not always a
rate. This problem was overcome by first reducing the ti
step, and second by using a modified version of the quan
force:24,32

F j~R!modified5
211A112D j@F j~R!#2dt

D j@F j~R!#2dt
F j~R!. ~10!

This has a smoother behavior close to nodes, since it d
not assume thatF j is constant, but onlyDF j .

The position of the nodal surfaces was checked here
propagating two different ensembles, each one restricte
be in one side of the node. This scheme allows us to optim
the node position by requiring that the two one-sided en
gies be equal.33 This simple check of the nodal position
not an absolute criterion in any other than one dimens
and one must therefore bear in mind that the fixed n
results are implicitly dependent on the nodal surface cho
In the studies described here, we shall analyze and com
the excited state results obtained from three different no
surfaces for then51 He–HCN ‘‘dimer.’’ It is important to
recognize that the accuracy of a given nodal approxima
has nothing to do with the specific implementation of t
RBDMC, i.e., whether mixed or fixed frame is used.

4. Expectation values

One of the attractive features of Monte Carlo method
that it provides geometrical information on the system sin
one has access to either the full-dimensional wave func
~unbiased DMC! or to the productCCT ~biased DMC!. Ar-
bitrary property expectation values are computed by rep
ing integrals by sums over samples. In particular, this te
nique can be applied to positional functions which are v
useful in visualizing the structure of the clusters such as
radial distribution of helium atoms relative to the center
mass of the HCN molecule

Prad~R!5
1

n (
i 51

n K d~Ri2R!

R2 L
walk

, ~11!

and the angular density distributionr(r ,z) of helium atoms
with respect to the HCN molecule
Downloaded 28 Nov 2001 to 129.187.122.33. Redistribution subject to A
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r~r ,z!5
n

2p (
i 51

n K d~r i2r !

r
d~zi2z!L

walk

, ~12!

where thez axis is defined by the HCN molecule, andr is the
distance to this axis.

Since importance sampling is employed, we obtain
mixed averageŝCuÔuCT&. To obtain the true average ove
C, these should be corrected by multiplying with the fac
C/CT in the integrand. This can in principle be obtained
descendant weighting.34 Alternatively, we can use the ex
trapolated quantity 2̂CuÔuCT&2^CTuÔuCT&5^CuÔuC&
1O(DC2), whereDC5C2CT . This is correct to second
order in the differenceDC. We present here only mixed den
sities rmixed[^Cur̂uCT&. These provide an adequate repr
sentation of the rotational features that we are intereste
demonstrating in this work.

5. Projection operation imaginary time spectral
evolution (POITSE)

The computation of excited state energies using a fi
node approximation requires some knowledge of the no
structure of the excited state. The use of incorrect nodes
lead to incorrect values of the energies, as we will sh
explicitly later. The POITSE scheme overcomes this appro
mation and can yield exact excited state energies.16 In this
scheme, one extracts excited state energies from the
sided inverse Laplace transform of an imaginary time cor
lation functionk̃(t). The time-dependent decay of this co
relation function is computed using a multi-dimension
Monte Carlo integration, combined with zero temperatu
diffusion Monte Carlo sidewalks.16 In imaginary time, the
correlation function will eventually decay as the sidewa
provide relaxation to the initial state, usually taken to be
approximation to the ground state. The basic idea is the
study the behavior of the Green’s function at small imagin
times, before the equilibration to the ground state distribut
is completed, and to thereby extract information about
excited states. The decay of the correlation,k̃(t) contains
information about energy differencesEf2E0 , whereE0 is
the ground state energy andEf an excited state energy leve
Specifically,k̃(t) can be transformed to yield an excitatio
function from which the excitation energies can simply
read off. The transformation is performed here with t
maximum entropy method, as described in Ref. 16.

The renormalized POITSE correlation function can
written16 in a convenient form for Monte Carlo evaluation

k̃~t!5

^CTuA exp@2~Ĥ2E0t#A†uCT&

^CTuCT&

^CTuexp@2~Ĥ2E0!t#uCT&

^CTuCT&

. ~13!

In this equation,A is a local operator chosen to project fro
the trial function uCT& onto some excited stateuC f&. An
inverse Laplace transform ofk̃(t) yields to the desired spec
tral informationk~v!,

k~v!5(
f

u^CTuAuC f&u2d~E02Ef1v!. ~14!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Former implementations of this scheme were made us
sidewalk DMC propagations inside a variational Mon
Carlo outer loop.16–19The sidewalk DMC propagations wer
done using continuous weights and a constant size for
ensemble of walkers. The use of weights instead of bran
ing is appealing since the evaluation ofk̃(t) is thus simple.16

In general, DMC propagations with weights are know
to be unstable, because after some time the distributio
weights among the walkers is unequal and some walk
carry all the weights, whereas some carry very sm
weights. This feature can have a drastic effect on a POIT
scheme, since if the energy difference we are looking a
small, the length of the sidewalks need to be increased
one may then reach the region of instability. This has limi
use of POITSE to<15 dimensions to date. We have ove
come this difficulty here by using DMC sidewalks with pu
branching.~Related studies are now being carried out usin
combination of weights and branching.20,21! In this pure
branching formulation, the number of walkers is not ke
constant and is instead a function oft, N(t). The new ex-
pression fork̃(t) is given by

k̃~t!5
1

N~t! (
k51

N~t!

A†~Rj ~k!
~0! !A~Rk

~t!!, ~15!

where j (k) gives the ‘‘ascendant’’ of the current walkerk,
i.e., the index of the initial walker att50, from which the
walker k at time t comes from because of branching. T
initial configuration Rk

(0) is distributed according toCT
2,

thanks to the VMC outer loop.
In order to compute the rotational excitation of HC

inside helium clusters we employ here a projector compo
of the molecularJ51, M50, K50 Wigner function in the
space fixed frame. This projector is a function only of t
second Euler angle that specifies the orientation of the
lecular frame in the~arbitrary! space fixed frame. We empha
size that the projector provides only a kind of initial gue
for the nodal structure of the excitations, and that these
modified as the sidewalks proceed. Indeed, it is instructiv
compare the excitation energies obtained using the n
structure of the projectors within a fixed node approximati
with the results from a full POITSE calculation. We shall d
this for the rotational excitation of HCN–He in Sec. III be
low, and will see that they can produce very different resu

B. Description of the system

The system considered in the present study is maden
helium atoms and one rigid linear HCN molecule.

1. Potential

All the calculations were made with a purely pairwis
additive potential energy surface based onab initio calcula-
tion and spectroscopic data for He–HCN components,
employing the HFD–B potential of Azizet al.35 for the
He–He interaction. The He–He potential is an isotro
function of the distance between the two helium atoms.
He–HCN, we use the 1E8 potential of Atkins and Hutson14

This potential is expressed as a function of the Jacobi c
dinates~R, u! of He with respect to the linear HCN molecul
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The geometry of the minimum is linear, with He situate
close to the H atom at a distance ofRHe–HCN54.2 Å from the
center of mass of HCN. The overall potential energy of t
HenHCN cluster is thus:

V~R!5(
j 51

n

VHeHCN~Rj ,u j !1(
j ,k

n

VHeHe~Rjk!, ~16!

where Rjk is the distance between two helium atoms. B
cause the HCN–He potential well is considerably dee
than the He–He well~29.6 cm21 relative to 7.5 cm21! and
the binding energy of HCN–He is also much larger@9.66
cm21 ~Refs. 15,36! relative to;1023 cm21 ~Ref. 37!#, the
HCN molecule is located inside the Hen cluster and not at the
surface of the Hen component.

2. Hamiltonian

In the calculations presented here, we implicitly use
Born–Oppenheimer approximation in order to separate
electronic motion from the nuclear one. These studies fo
on the van der Waals degrees of freedom, for which
typical time scale is well separated from the internal degr
of freedom of HCN. Therefore, we can treat the HCN m
ecule as a rigid body. The kinetic term in the Hamiltonian
the cluster consists of translational and rotational terms. C
trary to basis set expansion methods, we do not try to se
rate out the overall translation and rotation of the whole s
tem here, since this will only eliminate 6 or 5 degrees
freedom, at the expense of making the DMC considera
more complicated. The translational part is expressed u
the Cartesian coordinates of each particle, i.e., then helium
atoms and the HCN center of mass. The entire cluster is
allowed to translate and rotate during the calculation. T
rotation of the rigid HCN has a simple expression when
principal axis frame of HCN is used. The full Hamiltonian
given by

Ĥ~R!52(
j 51

n
\2

2m H ]2

]xj
2 1

]2

]yj
2 1

]2

]zj
2J 2

\2

2M H ]2

]X2

1
]2

]Y2 1
]2

]Z2J 2B0H ]2

]wx
2 1

]2

]wy
2J , 1V~R!

~17!

wherem is the mass of4He, M the mass, andB0 the rota-
tional constant, respectively, of HCN. In this equatio
wx and wy correspond to rotations around the princip
axesx andy of HCN. In the particular case of a linear roto
like HCN, the PAF is defined by itsz axis which is taken to
be along the molecular axis. Thex andy axes are two arbi-
trary axes perpendicular to this. We define all the Cartes
coordinates in the laboratory~or space fixed! frame. The
combination of laboratory and principal axis frame coor
nates summarized in Eq.~17! provides a mixed frame
implementation of the rigid body DMC.15 Such a mixed
frame implementation is essential for multiple rigid bod
simulations. For a single linear molecule interacti
with many helium atoms, one could in principle also use
fixed frame implementation in the PAF of this molecul
However, the mixed frame implementation posses
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE I. Parameters used for the anisotropic and radial trial wave functions, Eqs.~21! and ~25!.

a0 a1 a2 a3 c0 c1 c2 c3

Anisotropic
He HCN 0.747 0.0375 0.112 0.0966 16 850 26825 46540 21 190

Radial
He HCN 0.638 22 067
He He 0.006 3852
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the advantage of generality and is therefore the approac
choice here. In our calculations we use the helium and m
lecular parametersm54.002 60 amu, M527.011 04 amu,
andB051.478 221 834 cm21.

3. Trial wave functions

An overall form of ground state trial function that re
spects the Bose symmetry is given by the product of p
correlation terms2

CT~R!5 )
p51

n

FT~Rk ,uk!)
pÞq

n

JT~Rpq!. ~18!

We have made use of two different trial functions for t
He–HCN interaction. The first one contains both a rad
dependenceR and an angular dependenceu, whereas the
second one is purely radial. In order to have an approxim
description of the ground state wave function of the H
HCN system, we choose to solve the Schro¨dinger equation
of a reduced dimensionality problem. In particular, w
solved the following radial equation:

2
\2

2m

]2

]R2 f~R;uq!1VHeHCN~R;uq!f~R;uq!

5E~uq!f~R;uq! ~19!

for a series ofuq values. This equation is the Schro¨dinger
equation for a helium atom moving with a fixed orientati
with respect to a fixed HCN molecule. In this equationm is
the reduced mass of the He–HCN system. In the above e
tion, we implicitly decouple the stretching and the bendi
mode, as well as the effect of the rotation of the HCN m
ecule. For this reason, in order to get useful trial functio
instead of using the real reduced mass of the system
employ a lighter mass, in order to make sure that the t
wave function obtained from Eq.~19! is broader than the
full-dimensionality exact ground state function. We sol
this series of one-dimensional equations by a standard c
cation scheme based on sine functions and a regularly sp
grid.38 The eigenfunctions are then fit to a simple exponen
form

f ~R!5b expS 2
c

R52aRD , ~20!

wherea andc are parameters, andb is a normalization factor.
By using b215 f ((5c/a)1/6), we ensure that the maximum
of this function is unity. The parametersa andc are functions
of the angleuq , and are fit by a polynomial expression up
the third degree. All values of the parameters are presente
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Table I. We add another angular dependence in the final t
dimensional function, since the maximum of the wave fun
tion is not constant asu varies. The final expression for th
trial function FT(R,u) is then given by

FT~R,u!

5@d01d1 cos~u!#

expS 2
c~u!

R5 2a~u!RD
expS 2

c~u!

R0~u!52a~u!R0~u! D , ~21!

R0~u!5F5c~u!

a~u! G1/6

, ~22!

a~u!5a01a1u1a2u21a3u3, ~23!

c~u!5c01c1u1c2u21c3u3. ~24!

Optimization of this trial function was carried out by a seri
of variational Monte Carlo computations. We first varied t
reduced massm, and checked that both the variational ener
and the shape of the wave function are in agreement with
DMC results. We then included the extra angular depende
through parametersd0 and d1 . The VMC energies and tes
DMC runs showed that adding such an angular depende
does not lead to either a large decrease of the VMC ene
nor to a big reduction in the statistical noise. We therefo
employ the simplest combination of parametersdi ; d051,
andd150. The introduction of this guiding functionC(R,u)
allows us to use a bigger time step~i.e., 50 a.u.! than is
possible with unbiased DMC~i.e., 10 a.u.!, and also reduces
the statistical noise.

In order to study larger clusters withn;2,...,60, we do
not try to optimize this angular wave function. Instead, w
define a simpler radial wave function of the form

FT
rad~R!5expS 2

c0

R52a0RD , ~25!

which is cheaper to evaluate. We performed several unbia
DMC runs and used the projection of the effective on
particle wave function in order to define the parametersa0

andc0 . We fit FT
rad(R) to the radial projection for the larges

cluster that we can study with unbiased DMC (n59), raised
to the power 0.8. The use of this power of 0.8 ensures
the fit will be broader than the real distribution, and thus w
ensure sampling of all the relevant configuration space
large clusters.15 The fitted parameter values obtained wi
Eq. ~25! for n59 area050.638 andc0522 067. For the trial
wave function component describing the He–He correlat
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Eq

on
th

c

d
es
e

il

ta
un
er
al

ll
io
ta

th

t
io
h
p

rre
o

t
di
s

a-
al-

n
xi-

ol-
s in

the
the
a-
f
tifi-

-
ut
w a
He
ini-
he
t

es,

e
c-
ge
ery
y

of
nal
of
d
r
ed
of

rs,

po

f
.

10192 J. Chem. Phys., Vol. 115, No. 22, 8 December 2001 A. Viel and K. B. Whaley
J(R), we took a radial expression of the same form as
~25!. The corresponding parametersa0 and c0 reported in
Table I were defined by fitting to the He–He eigenfuncti
obtained by a FBR-DVR calculation. A comparison wi
wave functions given in the literature30,39shows that the cor-
responding wave function used in this work is indeed mu
broader, as desired.

The excited state trial functions used in the fixed no
calculations are constructed by multiplying the nodel
ground state functionCT(R) by a function that imposes th
nodal structure. Thus,

CT
~e!~R!5CT

~0!~R!Cnode
~ i ! . ~26!

Three forms of nodal functionsCnode
( i ) are discussed in deta

in Sec. III B below.

III. RESULTS

A. Ground state studies

We present first a systematic study of the ground s
properties, using both unbiased and biased DMC. We fo
that unbiased DMC was unsuitable for the study of clust
with more thann59 helium atoms, since the unphysic
‘‘dissociation’’ of helium atoms starts at that size.15 The un-
biased calculations are nevertheless required since they a
us to define the parameters of the radial trial wave funct
as described above. Table II summarizes the ground s
energies. We employed the radial trial wave function for
importance sampling DMC calculations, which leads to
significant net reduction of the statistical noise. In order
estimate the statistical noise, we split the DMC propagat
into blocks of a size longer than the correlation length. T
square root of the variance computed using one energy
block is reported as the error. The results on Table II co
spond to one run of 800 blocks, each of which consists
150 time steps. The energy per helium atom is constan
;210 cm21 up to 15 atoms, then it starts to increase, in
cating that the second solvation shell begins to form. Thi
also noticeable in the radial profile~see Fig. 1!.

TABLE II. Ground state energies for HCN Hen , reported in cm21. The
energies shown in the third and fourth columns were obtained with im
tance sampling DMC, employing the radial trial wave function, Eq.~25!.

n ^E&unbiased ^E& ^E&/n

1 29.7 6 0.8 29.71 6 0.13 29.71 6 0.13
2 219.7 6 1.2 219.72 6 0.28 29.86 6 0.14
3 230.1 6 1.6 229.90 6 0.17 29.67 6 0.06
4 240.3 6 2.0 240.15 6 0.15 210.02 6 0.04
6 260.6 6 3.1 260.61 6 0.15 210.10 6 0.03
8 280.9 6 3.5 281.19 6 0.16 210.15 6 0.02
9 290.3 6 5.1

10 288.4 6 5.6a 2101.3 6 0.9 210.13 6 0.09
15 2142.8 6 1.6 29.52 6 0.11
20 2164.8 6 1.8 28.24 6 0.09
30 2199. 6 3.0 26.6 6 0.1
40 2233. 6 5.0 25.8 6 0.2
60 2293. 6 8.0 24.9 6 0.2

aThe unbiased energy for HCN He10 is unphysical since at this size one o
the helium atoms dissociates unless importance sampling is employed
Downloaded 28 Nov 2001 to 129.187.122.33. Redistribution subject to A
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The mixed radial density profiles obtained with the r
dial trial wave function are presented in Fig. 1. The norm
ization was taken to be the number of helium atomsn. For
sizes larger thann;20 helium atoms, the second solvatio
shell starts to fill. For these larger clusters, the density ma
mum inside the first shell occurs closer to the HCN m
ecule. Such packing effects are general to all molecule
4He clusters, whether strongly bound40 or weakly bound.11

As noted earlier, unbiased DMC gives access to
wave function of the system. We are thus able to see
effect of the rotation of HCN. The breakdown of the adi
batic following that was predicted for HCN by violation o
an energetic criterion in Ref. 3 can be seen here by ar
cially suppressing the HCN rotation~i.e., settingBHCN[B0

equal to zero! during the DMC propagation. The two corre
sponding wave function amplitudes, i.e., with and witho
molecular rotation, are presented in Fig. 2. Both plots sho
maximum at the linear geometry corresponding to the
close to the H atom, which corresponds to the global m
mum of the interaction potential. The wave function in t
nonrotating case, Fig. 2~b! is much more localized than tha
for the physical system in which the HCN molecule rotat
Fig. 2~a!. @Note that different scales were used for~a! and
~b!.# This localization is such that the probability to find th
helium atom on the nitrogen side of the molecule is effe
tively zero, whereas it is finite for the real system. The lar
difference between those two amplitudes is a mark of v
inefficient adiabatic following of the molecular rotation b
the helium.3 For complete adiabatic following, the helium
wave function would be independent of the rotational state
the molecule, and of the presence of any molecular rotatio
kinetic energy. A more quantitative study of the extent
adiabatic following for various molecules will be publishe
elsewhere.41 The reduction of the rotational constant fo
HCN inside helium clusters can therefore not be explain
by a model based on adiabatic following by any fraction
the helium density.3

Figure 3 shows the mixed densities for larger cluste

r-

FIG. 1. Evolution of the mixed density radial profile with the numbern of
helium atoms. The curves are normalized such that 4p*rmixed(R)R2dR
5n.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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n59, 25, and 60, respectively, for the true physical syst
~i.e., with the HCN rotational kinetic energy included!. The
comparison of the wave function for one helium atom@Fig.
2~a!# with the density forn59 helium atoms@Fig. 3~a!# and
for n525 @Fig. 3~b!# shows that the angular dependence
the maximum on the elliptical-like contours around the m
ecule tends to smooth out asn increases. For large cluster
n.20, the helium environment around HCN becomes th
more isotropic than was observed for the more stron
bound molecules like SF6 ~Ref. 8! and OCS~Ref. 3!. This
results from the smaller anisotropy in the He–HCN inter
tion potential. For more thann;17– 20 helium atoms, a sec
ond solvation shell is evident in the mixed densities, as F
3~c! shows for a cluster withn560 helium atoms.

B. HCN–Hen excited states from fixed node

Experiments in doped helium clusters show that the
tational spectrum of HCN inside4He clusters possesses th
same symmetry as in gas phase, but that the effective r
tional constant is reduced by;19%.4,5 This reduction is con-
siderably less than the;65% reduction seen for mor
strongly bound species such as SF6.

6 As noted above, the
study of excited states within the fixed node approximat
requires some estimate of the nodal structure. Insight

FIG. 2. Two-dimensional representation of the ground state wave func
C of the HCN–Hen51 dimer.C was computed with unbiased DMC her
The rotation of the HCN molecule is included in~a!, whereas~b! corre-
sponds to a nonrotating~but translating! HCN molecule. The origin is set a
the molecular center of mass. The HCN molecule is oriented asN–C–H, the
H atom being at positivez. All distances are in atomic units. The norma
ization of the amplitude is arbitrary but identical in both figures.
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this can be obtained from level assignments made accor
to simple models. Previous studies of SF6 in 4Hen ~Refs. 3
and 8! present rotational levels corresponding toJ; j , where
J is the total angular momentum, andj the molecular angular
momentum. Those calculations were based on the no
structure for a free spherical topD00

1 ~a,b,g!, a, b, g being
the Euler angles describing the orientation of the princi
axis frame of the molecule in space fixed frame. This fun
tion is proportional to

Cnode
~1! ~R!5cos~b!. ~27!

In the particular case of the smallest cluster HCN–H
with n51, we have used collocation calculations of Atkin
and Hutson14 in order to analyze the exact eigenfunctio

n

FIG. 3. Ground state helium density for:~a! HCN He9, ~b! HCN He25, ~c!
HCN He60. The mixed densities are shown here, i.e.,rmixed5^Cur̂uCT&.
The orientation of the HCN molecule is identical to that defined in Fig.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE III. Ground and rotationally excited energy levels for HCN–He, reported in cm21. The level assign-
ments are the zeroth order level assignmentsujlJ& originally made in Ref. 36 and followed by Ref. 14.

E0 cos(u1x) cos@(uHCN1uHe)/2# cos~b!

DMC 29.7160.14 25.8460.2 29.0460.2 27.2560.2
Collocation method~Ref. 14! 29.657 25.899 29.127 N/A
Level assignment~Ref. 14! u000& u110& u011& N/A
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and to test both this free molecule nodal structure and
other nodal approximations. The level which has be
assigned14,36asu j 51, l 51, J50& shows a single nodal sur
face that is approximatelyr-independent.15 ~In this assign-
ment scheme,J is the total rotational quantum number,j the
quantum number of HCN, which is to a good approximati
conserved in the weakly bound complex, andl an ‘‘orbital’’
quantum number associated with the rotation of the hel
around the HCN.! This motivated us to use a trial nod
surface for theu110& state that is defined by

Cnode
~2! ~R!5cos~u1x!, ~28!

wherex is a parameter andu is the internal Jacobi angle o
the cluster. A third trial nodal surface was motivated by t
fact that the potential is minimum when the He atom
aligned with the HCN molecule. This corresponds touHCN

5uHe, whereuM is the spherical polar angle in the arbitra
space fixed frame. Consequently, a probable position o
node is a perpendicular surface touHCN5uHe; namely,

Cnode
~3! ~R!5cosFuHCN1uHe

2 G . ~29!

For each of these three nodal structures, we perform
importance sampling DMC runs restricted to each one of
two sides of the node, i.e., usingCT

(0)(R,u)Cnode
( i ) (R) as a

guiding function, fori 51,2,3. Those calculations were don
with approximately 5000–6000 walkers. After equilibratio
of the configuration, we perform one run of 800 blocks, ea
of which consist of 150 time steps withdt510 a.u. The
optimal parameter value for the second nodeCnode

(2) (R) was
found to bex515.65 deg. For the other two trial nodal su
faces, both runs restricted to one sign ofCnode

( i ) gave the same
energy. The results are summarized in Table III, where t
are compared with the corresponding values from colloca
calculations and level assignments to the zeroth order s
u jl J & made in Refs. 14 and 36.

For two of the nodal structures tested forn51, namely
for Cnode

(2) andCnode
(3) , the DMC results are in agreement wi

the collocation values,14 attesting that the trial nodes used a
relevant and accurate. These levels correspond to the ze
order assignmentsu110& and u011&, respectively, according to
the weak coupling classification of Refs. 36 and 14. N
that according to these zeroth order assignments, only on
these two levels has total cluster angular momentumJ
greater than zero, i.e.,u011&. The experimental observation o
transitions to this level~and to a level assigned asu022&! was
used in Ref. 36 to obtain a fitted rotational constant ofB
50.264 cm21 for the HCN–He complex.

In contrast to this excellent agreement between DM
and collocation results for the trial nodal surfacesCnode

(2) and
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Cnode
(3) , the nodal surface in the space fixed frame,Cnode

(1) ,
leads to an excitation of27.2560.2 cm21, which has no
counterpart in the levels obtained by the collocation sche
This proves that this space fixed node is incorrect forn51,
and has no physical meaning for the HCN–He dimer.
note that an energy level with the free rotor nodal struct
might be given the zeroth order level assignmentu j lJ &
5u101&. References 14 and 36 gave this assignment t
much higher-lying energy level, lying just below the lev
derived fromCnode

(2) . It is quite revealing that the minimum
energy derived from the free molecule, space fixed no
surface bears no relation to the energy of this experiment
assignedu101& level. This indicates HCN is really not at all in
a weak coupling limit, and that the zeroth order level assi
ments should be treated with caution.

For larger clusters,n.1, collocation and basis set meth
ods are not feasible, and only DMC methods can then p
vide access to excited states. The accuracy of the noda
proximations for larger size clusters is not necessarily
same as that forn51, since the helium density around th
molecule changes asn increases. As noted above, it becom
considerably more symmetrical, suggesting that the sp
fixed nodal approximation might become more accurate
larger sizes. Therefore we have analyzed the evolution of
corresponding energy as the number of helium atoms
creases, motivated by the expectation that this node sh
be more physical for a cluster in which the helium density
more symmetric around HCN than in the HCN–He dim
Since the angular dependence for larger clusters tend
smooth out, we employ the radial trial wave function, i.
CT

(e)5CT
rad(R)Cnode

(1) . The energy value forn51 is unaf-
fected by this change of trial wave function. We present thn
dependence from this trial function in Fig. 4. This plot co
responds to the evolution of the difference between the
cited and the ground state energies, which is assigne
twice the effective rotational constant,B. In order to obtain a
relatively small error bar, we used up to 80 000 walkers a
perform these calculations on parallel computers, scatte
the walkers onto the different processors. By looking at
fixed node energies, we would conclude thatB appears to
saturate with just three helium atoms. However, this nea
constant fixed node value lies below the experimental va
measured forn>103 helium atoms. The computation o
larger cluster sizes within the fixed node approximation w
not pursued since a further reduction of the error bars
comes intractable. While this could, in principle, be ove
come by the implementation of correlated sampling,31,42

implementation of this is not straightforward here since
two states of interest have a different nodal structure. A p
cedure such as the one proposed by Filippi and Umrigar43 for
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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this situation may lead to significant trial wave function bia
These results suggest that the free molecule spatial n

structures do not correspond to the true nodal structure
the rotational excitations in larger helium clusters. In the n
section we calculate excitation energies without any fix
nodal constraint, and will see that the corresponding no
structures can be quite different from the free molecule no
surfaces. The underlying cause of this lack of accuracy o
free molecule description may be the unusual energetic
the HCN–He dimer, that we have commented on ear
~Sec. I!. Due to the close energetic proximity of the grou
state and the potential barrier in the HCN–He dimer, th
may be an enhancement of the coupling between the r
tional and translation degrees of freedom of HCN in4HeN,
by quantum reflection at the potential barrier.

C. HCN–Hen excited states from POITSE

Given the uncertainties of the fixed node approximat
illustrated above, we now apply the POITSE methodology
the rotational excitations of HCN. POITSE has been sho
to lead to exact excited state energies when no knowledg
the exactnodal surface is available but when a ‘‘good’’ es
mate of it is accessible.18 This is precisely the situation here
where the rotational excitation is located primarily on t
molecule. The molecular rotation functionA5cos(b), i.e.,
the J51, M50, K50 Wigner function, will therefore be
used as projector here. This function is one of the three b
set functionsuJ,0, M &, J51, M50,61 which are used to
describe a rotating linear rigid object with one quantum
excitation.44 We thus expect to project the ground state wa
function onto a linear combination of the trueJ51 states.
We already know that forn51, the projectorA5cos(b) will
not yield a single peak, otherwise the fixed node calculat
described above would have given a correct value.

FIG. 4. Evolution of the fixed node excitation energyDE5E(e)2E(0) with
the number of helium atomsn ~open circles!. The space fixed trial noda
surfacesCnode

(1) were employed here, Eqs.~26! and ~27!. The corresponding
experimental values for HCN in the gas phase~Ref. 36! ~solid circle! and for
HCN inside large4He clusters~Ref. 4! ~dashed line! are also shown. For
n51 we also show the excitations obtained from nodal trial functio
Cnode

(2) , Eq. ~28! ~open triangle! and Cnode
(3) , Eq. ~29! ~open square!. The

collocation energy levels corresponding to these excitations are show
asterisks. They correspond, respectively, to the zeroth order level as
mentsu110& and u011& of Refs. 36 and 14.
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The spectrum for then51 HCN–He dimer obtained
from 1056 POITSE decays terminated attfinal

5693 000 a.u., is presented in Fig. 5. We used 5000 walk
and a time step of 20 a.u. This POITSE spectrum is c
verged with respect to the number of POITSE decays. T
guiding function used here is the radial one, Eq.~25!. The
anisotropic trial function Eq.~21! leads to a similar spec
trum. Figure 5 shows a two peak structure, i.e., this projec
accesses at least two excited states. This confirms our in
expectation based on the failure of the fixed node appro
mation using the space fixed node, Eqs.~26! and ~27!. Nei-
ther of the two peaks obtained correspond to that fixed n
result. Instead, the excitation energies are in good agreem
with the exact values computed by the collocation meth
and listed in Table III. Moreover, it can be seen by compa
son with all the collocation energy levels listed in Ref. 1
that onlyJ51 states are probed with this particular proje
tor. The maxima of both peaks are within 10% of the ‘‘exac
values ~relative error!. The statistical noise inherent to th
Monte Carlo scheme, as well as the presence of mult
decays in the projection which makes the realization of
inverse Laplace transform more delicate,17 is responsible for
this uncertainty.

We now proceed to examination of the evolution of the
J51 states as the number of helium atoms in the clusten,
increases. Figures 6~a!–6~c! show POITSE spectra for vari
ous cluster sizes ranging fromn51 to n525. For these cal-
culations, the number of walkers was reduced to 2000
the number of decays was increased by;100, until the po-
sition of the maximum of the first peak is unchanged. T
reduction from 5000 to 2000 walkers does not notably aff
the n51 spectrum. The time step is the same as in then
51 case and the final number of decays was around 1000
all sizes presented. The effect is that we reduce the com
tational effort for the larger sizes without loosing any co
vergence with respect to the number of decays included
the POITSE average. The decay length was shortene
tfinal5494 800 a.u. forn515, and totfinal5395 740 a.u. for

s

as
n-

FIG. 5. POITSE excitation spectrum for the HCN–He dimer, obtained us
cos(b) as a projector. Vertical lines correspond to the collocation res
from Ref. 14 forJ50 ~dotted line! andJ51 ~dashed lines!.
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n525. This was done to obtain greater efficiency at
larger sizes, since asn increases, the energy differenc
probed increases. Consequently, the exponential decay h
shorter time constant and need not be followed for such l
imaginary times. For the largest cluster size studiedn

FIG. 6. POITSE excitation spectra for HCN Hen , obtained using cos(b) as
a projector. The vertical line corresponds to twice the experimentally m
sured rotational constant for HCN (v50) in large helium clusters~Ref. 4!
2B52.40 cm21. ~a! Spectra forn51 – 15, showing two peaks.~b! Magni-
fication of the first peak forn51 – 15.~c! Spectrum forn525, showing only
a single peak.
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525) the number of walkers was reduced to 1000. In or
to perform these (3n15)-dimension calculations, we used
parallel POITSE code which scatters the computation of
decays onto different processors. The code is obviously
fectly suitable for parallelization and is highly scalable. T
largest cluster calculations were performed on an IBM/S
power 3~NPACI Blue Horizon parallel machine!. The CPU
requirement varies as approximately 1:1.7:4.7:6.7:13.4
for n51:4:8:10:15:25.These sizes correspond to system
having 8:17:29:35:50:80 degrees of freedom, respectiv
This is the first application of POITSE to a truly large mul
dimensional cluster system.

For sizesn51 – 15, the POITSE spectrum consists
two peaks, shown in Fig. 6~a!. For the largest size studied
n525, the spectrum is made of only one broad peak, sho
in Fig. 6~c!. The width of these peaks increases with t
number of helium atomsn. We can tentatively attribute this
trend to the inherent increase withn of the statistical noise in
the DMC procedure. However, as previously discussed,17 the
width of the spectral peaks after inversion is not related
the accuracy of the derived excitations in any obvious m
ner. For all sizes shown in Fig. 6~a!, the lower energy peak is
narrower than the higher energy one. Figure 6~b! presents a
magnification of the first peak forn51 – 15. It can be seen
that the position of this peak first decreases when the num
of helium atoms increases from 1 to 3, and then turns aro
and increases with further increase inn. Even if the precise
location of the peaks are subject to a similar error as tha
the n51 spectrum, it is evident that for, e.g.,n58, the first
energy difference is definitively larger than the correspo
ing difference forn51. For reference, we indicate with th
vertical line in Figs. 6~a!–6~c! the position of the lowest
rotational level predicted by the experimental measureme
of B for HCN inside large helium clusters,4 i.e., E[2B
52.40 cm21.

Figure 7 presents the extractedB values obtained from
the first POITSE peak, as a function of the number of heli
atomsn. Also shown are the experimental values for bo

a-

FIG. 7. Effective rotational constantB extracted from the first, low energy
POITSE peak for eachn in Fig. 6. The experimental rotational constants f
n51 ~diamond, Ref. 36! and for n.3000 ~dashed line, Ref. 4! are also
shown.
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n51 ~0.264 cm21, measured in Ref. 36! and inside large4He
clusters~1.204 cm21, measured in Ref. 4!. The peaks for the
two largest cluster sizes presented here,n515 andn525, lie
below and above the experimental value, respectively. T
oscillatory behavior shows that a cluster with 15 or 25 h
lium atoms is still not large enough to faithfully represent t
local environment controlling the rotational dynamics
HCN in the experimental clusters, for which the average s
is a few thousand.4,5 The reason why the effectiveB value
extracted from then525 cluster is higher than the exper
mental value for much larger clusters (n>103) is not totally
understood at this time. Two possible explanations can
advanced. The first one derives from consideration of
physics. As seen from the density radial profiles presente
Fig. 1, the asymptotic structure of the helium solvation lay
around HCN is not yet completed for a size of evenn530
helium atoms. We might thus expect that the position of
peak is not yet located at its final saturation position a
function of cluster sizen. The second possible explanation
that the n525 POITSE spectrum is not completely co
verged with respect to the total decay time. While this sp
trum is, like those in Fig. 6~a!, converged with respect to th
number of POITSE decays included in the averaging pro
dure, the decay length forn525 was shortened to a smalle
value of the total imaginary time, for the reasons no
above. If this decay length is not asymptotic, there could
some possible underlying structure of the broad peak
served. Computational constraints precluded more exten
calculations for then525 cluster to test whether there mig
indeed be a spectral contribution from the residual deca
longer times.

Finally, we reiterate that the fixed node saturationB
value would lead to an excitation at 1.8 cm21. As stated
earlier, this is not in agreement with the experimental va
obtained in much larger clusters. Figure 6 shows that i
also not reproduced by the POITSE spectra for these clu
sizes. Thus the POITSE excitations also do not correspon
the free molecular nodal structure, although the fact that t
are arrived at from a free molecular projector does imply t
they may have some overlap with these. The results fon
51 give confidence in the accuracy of the POITSE exc
tions, allowing us to strengthen our physical conjecture t
the slow approach of the rotational excitations of HCN
4He clusters is related to the unusual confluence of energ
and quantum influences deriving from the location of t
zero point energy of HCN–He close to the potential barr

IV. CONCLUSION

We have presented quantum Monte Carlo studies
HCN Hen in its ground and low-lying excited rotationa
states, where the rotational excitation is localized at le
partly on the molecule. Comparison of ground state wa
functions for the real~rotating! system with those calculate
for a model reference where the HCN is artificially co
strained not to rotate, show explicitly that there is no sign
cant extent of any adiabatic following by helium atoms w
the rotational motion of this molecule. This is consistent w
previous predictions based on simple classical estim
Downloaded 28 Nov 2001 to 129.187.122.33. Redistribution subject to A
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showing that this molecule rotates too fast and the poten
asymmetry is too weak, for the helium density to adiaba
cally move with the molecule.3 In quantum mechanica
terms, this can be understood in terms of the close energ
proximity of the ground state of the He–HCN dimer to th
potential barrier separating the two different orientation
minima ~Sec. I!.

The excited state calculations within fixed node appro
mations show that the nodal structure of excited states
small clusters is very different from that seen with the mo
strongly bound and slower, spherical top rotor, SF6. In par-
ticular, for HCN, the free molecule spatial nodal approxim
tions were seen to be noticeably inaccurate at small s
(n51 – 10), although they have been shown to provide v
accurate results for SF6.

8 We have used then51 HCN–He
dimer, for which exact energies can be obtained from
collocation approach, to explicitly expose the general limi
tion of the fixed node approach, showing that it leads to
erroneous energy level when the incorrect node is us
From a physical perspective, this nodal finding for HCN
extremely interesting since the free molecule nodal struc
is what one might naively expect to be appropriate for lar
clusters possessing a more symmetric local solvation e
ronment. The ellipsoidally symmetric solvation shell of h
lium in the first shell around HCN is therefore providing
sufficient level of hindrance to the molecular rotation
cause the nodal surfaces for rotation to be modified in th
symmetry. This may also be a consequence of the very c
match between the ground state of HCN–He, and the po
tial barrier between the two orientational minima.

The problems associated with the fixed node approxim
tion were shown here to be surmountable by using the int
sically exact POITSE method. This was demonstrated fi
for the n51 HCN–He dimer by comparison of the POITS
excitations with results from calculations with the colloc
tion method. Most significant here was the finding that t
space fixed projector yielded accurate POITSE excitation
ergies, while a fixed node calculation with the correspond
space fixed nodal structure failed completely to provide
adequate representation. The good agreement betw
POITSE and collocation results obtained forn51 provides
confidence for the accuracy of the POITSE spectra obtai
for larger clusters. One of the excitations derived from t
space fixed projector appears to evolve to the experime
rotational constant measured in larger clusters, but in a r
tively slow and nonmonotonic fashion. Calculations
larger clusters would be desirable to provide conclusive c
firmation of this nonmonotonic convergence to the saturat
value.

Overall, the results for HCN rotations in helium cluste
composed of the boson isotope4He are striking in their slow
rate of convergence to a cluster rotational constant tha
independent of further increase in cluster size. This sugg
that HCN lies in a critical region of the parameter spa
highlighted by the energetics of the HCN–He dimer me
tioned above, in which the quantum rotational dynamics
highly sensitive to small modifications of the helium dens
as additional helium atoms are attached to these clusters
the size rangen51 – 30. This sensitivity to cluster size ove
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the small size range is very different from the behavior o
served for the heavier molecules SF6 ~Ref. 3! and OCS.45 For
these heavier molecules the rotational constant decre
monotonically from the gas phase value to a saturation va
that is reached at a very small number of atoms~8 for SF6

and 5–6 for OCS!, and then remains constant.3 The value of
n at saturation is approximately equal to the number of4He
atoms that can be packed into the positions of the glo
potential minima. This heavy molecule behavior is consist
with the dynamics of an adiabatically following local nons
perfluid density that constitutes only a fraction of the fi
solvation shell.3 In contrast, for HCN the rotational consta
shows a nonmonotonic dependence onn, and does not ap
pear to have reached saturation at even a complete solv
shell.

These marked differences for the rotational dynamics
HCN in helium clusters from both that of the heavier mo
ecules SF6 and OCS, and that of lighter molecules such
HF ~Sec. I! appears to reflect a critical balance between
molecular rotational motion and its translational motion,
energies just above the potential barriers of the HCN–
system. Strong quantum coupling effects are introduced
the close proximity of the zero point energy to the poten
barrier in the HCN–He system. These will be amplified
the larger clusters, with some modifications by the additio
He–He correlations. This special energetic feature of
HCN–He system appears to underly all three dynamic ch
acteristics observed here, namely,~i! the rotational nodal
structure,~ii ! the nonmonotonic and slowly varying size d
pendence of the rotational constant, and~iii ! the lack of adia-
batic following of helium with the HCN rotation.
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