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Quantum structure and rotational dynamics of HCN in helium clusters

Alexandra Viel® and K. Birgitta Whaley”
Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California,
Berkeley, California 94720-1460

(Received 1 June 2001; accepted 8 August 2001

We present diffusion Monte Carlo calculations of ground states and rotationally excited states of
HCN “He,, using our recently developed algorithm for importance sampled rigid body diffusion
Monte Carlo[Viel et al, Comput. Phys. Commur(in press, 2001 within the mixed frame
implementation. Excited states are studied with both fixed node approximations, and the Projection
Operator Imaginary Time Spectral Evoluti0ROITSE method that allows nodal constraints to be
circumvented. Improvements in the POITSE algorithm allow excited states of clusters with up to 80
degrees of freedom to be determined here. The results presented here show that the rotational
dynamics of the HCN molecule ifHe clusters are very different from the behavior of heavier
molecules such as gFDetailed analysis of ground state densities shows that the lighter HCN
molecule induces negligible adiabatic following of the helium density as a result of its rotational
motion. The excited state calculations show that for small numbéitdeatoms the nodal structure
does not correspond to that of a freely rotating molecule. Nevertheless, the POITSE calculations
indicate that there is some admixture of this nodal structure in the low-lying rotational excitations.
It is found that a relatively large number &fle atoms are required to achieve saturation of the
effective rotational constant at the experimental value, in contradistinction to the small numbers of
atoms required to saturate the rotational constant for heavier molecules sucly andSBCS.

© 2001 American Institute of Physic§DOI: 10.1063/1.1407270

I. INTRODUCTION For the heavier molecules, one of us has proposed the
notion of adiabatic following of the molecular rotation by
An increasing number of experimental studies of heliumpart of the helium density® Detailed microscopic quantum
clusters doped with atoms and molecules are now beingnalysis has shown that whitetal adiabatic following by
performed:? driven by the recognition that such studies canthe helium density is not justified for these molecules, some
lead to microscopic understanding of superfluid propertiesdegree of adiabatic following is nevertheless justifiéthis
as well as to novel quantum phenomena due to the quantufias enabled simple dynamical models for the response of the
solvation of a strongly bound impurity provided by a super-locally inhomogeneous superfluid to rotation of the micro-
fluid. One of the most striking features to emerge from specscopic molecular probe to be developethe most sophisti-
troscopic studies is the phenomenon of free rotation for emeated of these is a two-fluid model based on the identification
bedded molecules in clusters tfe, the bosonic isotope of of a local molecular-interaction induced nonsuperfluid den-
helium? Rotational spectra measured with infrared or micro-sity that coexists with the local superfluid density in the first
wave spectroscopy for a series of molecules possessing gsslvation shefl and that may adiabatically follow the mo-
phase rotational constarig, in the range 0.01-50 cm,>®  |ecular rotation in certain cases, leading to an increase in the
appear to fall into two dynamical regimes. The heavier mol-effective moment of inertid.Such dynamical models, based
ecules Bp<0.1cm*) show a reduction in rotational con- on microscopic densities calculated with path intel
stant of ~60%—-80%, while lighter molecules show a much density functiond® techniques, complement the direct
smaller reduction of 0%-30%. The HCN molecule lies in theanalysis of rotational constants via explicit energy level cal-
latter regime, with gas pha®=1.47 cmi ! and a reduction  culations using diffusion Monte Carlo techniqifeEogether,
of 19% in“He clusters to an effectivB value of 1.20 cm'.  the path integral and diffusion Monte Carlo based ap-
Measurements come from two different experimental groupsproaches have provided a complete and consistent analysis
and show a slight dependence on vibrational state of C—hbf the quantum rotational dynamics of heavy molecules such
stretching(B=1.204 cmi* for v=0," and 1.174 cm* forv  as Sk in “He clusters.
=1, Ref. 5. The isotopically substituted DCN molecule has In contrast, much less is understood about the dynamical
also been studied, and shows a very similar decrease in r@ehavior of the lighter molecules in helium clusters. The HF
tation constant, 17% foy =0.* These 17%-19% reductions molecule has been studied in the ground rotational state, and
are significantly less than the67% decrease observed for the extreme isotropy of the helium density around this was
the heavier molecules, $FRef. 6 and OCS. taken to suggest that the rotational constant of this molecule
would not be affected by the superfluid solvatidiThis the-
aElectronic mail: viel@holmium.cchem.berkeley.edu oretical prediction has recently been confirmed by the mea-
YElectronic mail: whaley@socrates.berkeley.edu surement of only a 2% reduction in rotational constant for
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HF (v=1) in “He droplets-? HF thus appears to provide an cessful study of the HeHCN system. Results and discussion
extreme calibration point of a light molecule possessing &re presented in Sec. lll, and the dynamical behavior of HCN
relatively weak interaction with heliuntwell depth ~40  summarized and put in context of other molecules in Sec. IV.
cm 1, Ref. 13, where the large zero point effects remove the
dynamical consequences of the potential anisotropy. A
pointed out in Ref. 11, the ground state energy of HF—He Iiesﬁ' THEORETICAL APPROACH
at —7.50 cm %, well above the height of the barrier at18.0  A. Monte Carlo techniques
cm ! that separates the two minima. HCN is a very interest-  Thg only methods currently available for studying quan-
ing molecule to compare with this extreme reference in thg,,, system with many degrees of freed6wb) are based on
regime of lighter molecules. Like HF it is also linear. It pos- siochastic techniques such as the variational and diffusion
sesses a somewhat shallower interaction with heljumll Monte Carlo(VMC and DMC) methods. In this paper, we
depth~30 cm %, Ref. 19 than doe; HF, but is heavier than employ rigid body diffusion Monte Carl(RBDMC), imple-
HF. The ground state of HCN—He lies-9.65 cm*, which  menting importance sampling of all degrees of freedom,
is now only just above the energy of the potential barrier ayccording to our recently developed general formaf&m.
—11.7 cm™. This leads one to expect a more complex qUanRBDMC is combined here for the first time with the projec-
tum rotational motion, with greater evidence of hindranceton operator imaginary time spectral evolutiéROITSE
due to the potential anisotropy. The fact that it shows a muclnethodology for calculation of excited states without nodal
larger reduction in rotational constant than KHF19% com-  gpproximations®” To date, the POITSE method has been
pared with~2%), provides experimental evidence that HCN ysed for the calculation of excited states for system with up
possesses considerably more complex quantum dynamicg 15 dimension$®'°We present here a modified implemen-
rotational motion in helium. tation of the POITSE scheme which allows us to now study
Prior to this work, no theoretical studies of the quantumyotational excitation of systems with significantly larger di-
rotational motion of HCN in helium clusters have beenmensiona”ty, |e;-\,80 degrees Of freedo(lsee also Refs_ 20
made. However, classical energetic estimates employing pahd 2. The basic VMC and DMC methodology has been
integral densitié%have indicated that there can be no adia'described in many pape%g_z_zes'rherefore we provide here
batic following for HCN. In addition, a scaling of the quan- only a brief description of the basic approach, focusing in-
tum analysis made for GRo lighter spherical top rotors stead on description of the above algorithmic developments
showed that adiabatic following by the helium density isiy RBDMC and POITSE that were necessary for successful
absent for fast rotors having rotational constants similar tqreatment of the HCN molecule in helium clusters, in addi-
HCN.? The focus of this paper is to now provide a thoroughtion to the specific details of the calculations for HCN.
microscopic quantum analysis of the rotational dynamics of
HCN in helium clusters, employing fully quantum calcula- 1. variational diffusion Monte Carlo: VMC
tions incorporating the rotational motion of the HCN mol- Variational Monte Carlo was used in this work to opti-
ecule in addition to all van der Waals degrees of freedom. . . . e P
Ground state energies and structures are determined for %€ frial wave fun_c'q(_)ns nee_ded fpr diffuston Monte Carlo,
range of cluster sizes varying from=1 to n=60 using our and t_o create t.he _|n|t|al conflguratllons for the POITSE cal-
recently developed importance sampled rigid body diffusionCUIat'on.s." _In this S|mp_lest stochastic gpproach 0 squtlon_ of
Monte Carlo algorithm® Comparison of ground state struc- the Schrdinger eguatlon, oneAapproxmates the expectation
tures obtained with and without molecular rotation allows us/alué for a coordinate operat@(R) overV+(R) by
to d_emonstrate a lack of adiabatic folk_)wmg by the_ helium. JPER)O(R)FH(R)IR 1 Mo i
Excited states are then calculated using both a fixed node 5 =—> O(R)=(O)wmc,
approximation and an intrinsically exact method, POITSE, ST (R)[*dR M=
that relaxes nodal approximations. Energy differences be- @
tweenJ=1 andJ=0 levels are used to extract the effective whereR is a vector describing the coordinate space configu-
rotational constanB, and the variation of this with cluster ration of the systemM is the number of configurations
size is analyzed. We find that the HCN molecule shows avhich are sampled from the distributid®(R) =|¥1(R)|?
surprisingly rich rotational dynamic behavior inside bosonicvia a Metropolis algorithni’ The optimization of the param-
“He clusters. This behavior is in many respects considerablgtrized trial wave function is done by computing the average
more complex than the corresponding rotational dynamics ofor the Hamiltonian operator and by minimizing either the
heavier molecules such as S&nd OCS. We suggest here energy or its varianc& Our implementation of VMC here
that this behavior is related to the lack of adiabatic followingwas made using an unbiased random walk where each ele-
of helium with the HCN rotation, together with strong quan- mentk of the vectorR moves inside an intervgl— ¢y, ].
tum coupling effects introduced by the close proximity of theThe box sizes are chosen such that the number of accepted
zero point energy to the potential barrier in the HCN—Hemoves is approximately maintained at half the number of
system. attempted ones. The indéxrefers to the different kinds of
In Sec. Il we briefly summarize the various diffusion degrees of freedom as we explain below. All box sizgare
Monte Carlo methods used here, providing the relevant crititaken to be equal, after checking that taking different values
cal modifications of the importance-sampled rigid bodyfor different degrees of freedom had no significant effect on
DMC and POITSE algorithms that were necessary for sucthe results.
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2. Unbiased and biased RBDMC This acceptance/rejection step requires us to define the effec-

In the diffusion Monte Carlo scheme, the time- tive time stepdrey of Eq. (4):

dependent Schdinger equation is rewritten introducing the 8te 1 (AR?)pee
imaginary timer=it/#: Sr m% (ARDE (6)
N

IV (R) =3 DV¥(R)~[V(R)-E] ¥(R),

@) Herek refers to different types of degrees of freedom, apd
aT

is the number of degrees of freedom controlled by the same
D; coefficient. The average --), only includes those de-
grees of freedom of typg, i.e., the different contributions
from atom or rigid body translations, or from rigid body

whereR is now specifically a vector in thd/~dimensional
spacepD; =h2/2mj if the jth degree of freedom corresponds

. _ _ 2 . .
to a translation, an®;=B;=#/2I; if this degree of free- yaiions. For the current study, =3, i.e., helium atom
dom corresponds to a rotation. In the above equatiofis  transjations, HCN center of mass translation, and HCN rota-

a constant defining the zero of the absolute energy scale, and s For a cluster wit helium atoms. we have then
V is the potential. This formulation implies the use of Car- '

tesian coordinates for the atomlike particles and for the cen- 67 1 (A¢§+A<p§)a°°
ter of mass of the rigid body, and the use of rotational angles "5 — 3 (A @2+ A 2)at
around the principal axes of the rigid body. Y

To improve the efficiency of this method and to make (AXBenT AYfen+ Azficn
possible the study of large clusters incorporating weakly * (AXZonT AyZent Az ™
bound species likéHe, one usually introduces a guiding
function ¥ which approximates the true solutioh of Eq. (S]_AXP+ Ay?+ AzZD)ce
(2). The introduction of this guiding function leads to a dif- + (ST AXZ+ Ay T AZD) | (7)

fusionlike equation for the product functionf(R)

=W(R)W(R), that differs from Eq(2) by the presence of where {X;,yi,z ;i.= 1,...n} refers to the Cartesian coordi-
additional drift terms: nates of then helium atomsxycn,Ynen»Zuen refers to the

Cartesian coordinates of the center of mass of HCN, and

If(R) ol ) ®x, ¢y refers to the angles of rotation in the principal axis
e _; {DJVJ' f(R)=D;V,[f(R)F;(R)]} frame (PAF) of HCN. This constitutes a mixed frame imple-
mentation of RBDMC, in contradistinction to the fixed frame

—[E(R)—Elf(R). 3 implementation used previously for a spherical top molecule

in helium cluster®(see discussion in Sec. Il B 2 belpvrhe
5. DMC acceptance rates are around 99.99% in our calcula-
Fj(R)=V;In[W+(R)| is the quantum force that controls the tj5ns with a slightly smaller value being achieved in excited

drift terms. o . state computations.
Arandom walk technique is used to determine the steady  he |ast factor of the Green’s function is implemented
state of Eq.(3) or Eq. (2). A walker (or configuratio is  pere through a branching scheme, whereby walkers can be

defined as a vectaR in the \-dimensional space. It repre- kept, destroyed or replicated. Each walker is branched ac-
sents the position and orientation of all the particles of th%ording to

system under study. An ensemble of walkers is propagated

Here E|(R)=\I'T(R)‘1I3|\PT(R) is the local energy, and

from some arbitrary initial distribution using the short time M=int expsrd E E(R)+E(R') N 8
approximation of the Green’s function appropriate to &J. = NG EXPOTefr| Eref 2 ¢l 8)
. 1 where is a uniformly distributed random number. In order
G(R—R ﬁT)ZH (47D, 5112 to keep a reasonable ensemble size, we update the reference
energy by
xexm_(R]—RJ_DjéTFJ(R))} ET+§T_ET N a I N(T) o
E/(R)+E((R’) el = Erelt 5N NG 57| ©)
X exp, —O7ef T — Eref| (- (D)

where N is the ensemble size, aralis a parameter. This
The statistical representation of this Green’s function take®arameter was arbitrarily chosen for equilibration of the con-
two steps. First, each coordinate of the walkers is movedigurations. For production runs, it was then reduced to a
according to a Gaussian distributed random number chara¥2lue that results in a similar variance {@ ) and for(E,).
terized by a standard deviation dQngT and displaced by Other implementations based on continuous weights can be
the quantum drift forc®; 87F;(R). Detailed balance is en- used. A pure DMC scheme is usually less numerically
sured by using a Metropolis scheme at each time step. Actablé® and has to be supplemented by branching siéps.

cording to this, the abovementioned attempted move fRom The energy of the system can be computed as the aver-
to R’ is accepted with probability age of the local energ¥ (R) or of the reference energy

E.es- The difference between these two estimates provides a

|¥+(R")|* G(R'—R;57) measure of the actual time step error introduced by both use

P(R—R')=minj 1

©)

"W H(R)? G(R—R';67) | of a trial wave function(usually lineay, and by the short
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time representation of the Green’s Functipf(572) for n (ri—r)

W:=1].3%In this article, we report the average of the local ~ p(r,2)= EZ <f5(2i—2)> : (12

energy, since the average of the reference energy was always =t walk

found to be equal to this within the error bars. where thez axis is defined by the HCN molecule, ani the
distance to this axis.

3. Fixed node approximation Since importance sampling is employed, we obtain the

The computation of excited state energies is not an easyiixed average$¥|O|W+). To obtain the true average over
task with DMC. The fixed node approximation enables oneV, these should be corrected by multiplying with the factor
to compute excited state levels by imposing a predefined /¥t in the integrand. This can in principle be obtained by
nodal surface. Practical implementation of this approximadescendant weightinif. Alternatively, we can use the ex-
tion consists in adding a rejection step in the scheme. Thus atapolated quantity @P|O|W)—(W|O|¥)=(¥|O|¥)
each time step, any attempted move that crosses the nodalO(AW¥?), whereAW =¥ —W. This is correct to second
surface is rejected, and the walker keeps its former positiororder in the differencaW¥. We present here only mixed den-
The use of a guiding function with a nodal structure cansities ppixe=(¥|p|¥1). These provide an adequate repre-
make the DMC walk considerably more difficult to stabilize. sentation of the rotational features that we are interested in
Indeed, we have found that close to the node, the drift termlemonstrating in this work.
can be extremely large, resulting in the creation of “persis-

” 24 ) - o 5. Projection operation imaginary time spectral
tent” walkers=" Those configurations are stuck at positions , .o (POITSE)

close to the node where the local energy is not always accu- . . . . ,
The computation of excited state energies using a fixed

rate. This problem was overcome by first reducing the time D :
ode approximation requires some knowledge of the nodal

step, and second by using a modified version of the uanturf} . .
P 24,32 y g g structure of the excited state. The use of incorrect nodes can

force: lead to incorrect values of the energies, as we will show
—1+1+ 2Dj[Fj(R)]257 explicitly later. The POITSE scheme overcomes this approxi-
F (R modified= D.[F(R)]%57 j mation and can yield exact excited state enerfida. this
) : ] ) ) scheme, one extracts excited state energies from the two-
This has a smoother behavior close to nodes, since it dog§qe inverse Laplace transform of an imaginary time corre-
not assume tha; is constant, but onhAF; . lation function%(7). The time-dependent decay of this cor-
The position of the nodal surfaces was checked here byy|aiion function is computed using a multi-dimensional
propagating two different ensembles, each one restricted {y,hte Carlo integration, combined with zero temperature
be in one side of the node. This scheme allows us to Optimizaiffusion Monte Carlo sidewalk¥ In imaginary time, the
the node position by requiring that the two one-sided energyajation function will eventually decay as the sidewalks
gies be equat This simple check of the nodal position is ., ige relaxation to the initial state, usually taken to be an
not an absolute criterion in any other than one d'mens'onapproximation to the ground state. The basic idea is then to

and one must .therefore bear in mind that the fixed nOd‘astudy the behavior of the Green'’s function at small imaginary
results are implicitly dependent on the nodal surface chosergi.mes

, . .~ information about energy differencé&s —E,, whereE, is
recognize that the accuracy of a given nodal approximation,e ¢y, nd state energy afd an excited state energy level.
has nothing to do with the specific implementation of thege cifically, %(7) can be transformed to yield an excitation
RBDMC, i.e., whether mixed or fixed frame is used. function from which the excitation energies can simply be
read off. The transformation is performed here with the
maximum entropy method, as described in Ref. 16.

One of the attractive features of Monte Carlo methods is  The renormalized POITSE correlation function can be
that it provides geometrical information on the system sincewritten'® in a convenient form for Monte Carlo evaluation
one has access to either the full-dimensional wave function

4. Expectation values

(unbiased DMQ or to the product ¥, (biased DMQ. Ar- (Wr|Aexd — (H—Eor]AT|¥y)

bitrary property expectation values are computed by replac- (W] Wy)

ing integrals by sums over samples. In particular, this tech- x(7)= — . (13

nique can be applied to positional functions which are very (Prlexd — (H—Eq)7]|¥+)

useful in visualizing the structure of the clusters such as the (U W7)

radial distribution of helium atoms relative to the center of

mass of the HCN molecule In this equationA is a local operator chosen to project from
LT SR-R the trial function|¥;) onto some excited statel;). An

i~ inverse Laplace transform &f( 7) yields to the desired spec-
Prad R)= _21 < R2 >Wa|k’ 1D pra information «(w),

and the angular density distributigr{r,z) of helium atoms K(w):z (W 1| A[W ) |28(Eg— Es+ w) (14)
with respect to the HCN molecule f T f o = '
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Former implementations of this scheme were made usinghe geometry of the minimum is linear, with He situated
sidewalk DMC propagations inside a variational Monteclose to the H atom at a distanceRyfe_ycn=4.2 A from the
Carlo outer loop®~1°The sidewalk DMC propagations were center of mass of HCN. The overall potential energy of the
done using continuous weights and a constant size for thele,HCN cluster is thus:

ensemble of walkers. The use of weights instead of branch- n n
ing is appealing since the evaluation(r) is thus simplée-® V(R)=S VHEHONR gy S yHeHgR ) (16)
In general, DMC propagations with weights are known =1 P !

to be unstable, because after some time the distribution %here R.

iah h Ik ) | and K ik is the distance between two helium atoms. Be-
weights among the walkers is unequal and some walkers, g the HCN—He potential well is considerably deeper

carry all the weights, whereas some carry very smallthan the He—He well29.6 cni ! relative to 7.5 cmY) and
weights. This feature can have a drastic effect on a POITSK o binding energy of HCN—He is also much larger66
scheme, since if the energy difference we are looking at i% 1 (Refs. 15,36 relative to~10"3cm™* (Ref. 37], the

small, the length of the sidewalks need to be increased a CN molecule is located inside the Heluster and not at the
one may then reach the region of instability. This has IimitedSurface of the Hecomponent

use of POITSE to<15 dimensions to date. We have over-

come this difficulty here by using DMC sidewalks with pure 2 Hamiltonian

branching(Related studies are now being carried out using &

combination of weights and branchif%?) In this pure In the calculations presented here, we implicitly use the
branching formulation, the number of walkers is not keptBorn—Oppenheimer approximation in order to separate the
constant and is instead a function ﬂfN(T) The new ex- electronic motion from the nuclear one. These studies focus
pression fofk(7) is given by on the van der Waals degrees of freedom, for which the
typical time scale is well separated from the internal degrees
of freedom of HCN. Therefore, we can treat the HCN mol-
ecule as a rigid body. The kinetic term in the Hamiltonian of
the cluster consists of translational and rotational terms. Con-
trary to basis set expansion methods, we do not try to sepa-
rate out the overall translation and rotation of the whole sys-
-~ _ _ (0) i i , 5 tem here, since this will only eliminate 6 or 5 degrees of
initial configuration R, is distributed according toP, freedom, at the expense of making the DMC considerably
thanks to the VMC outer loop. _ _ more complicated. The translational part is expressed using
_In order to compute the rotational excitation of HCN o cartesian coordinates of each particle, i.e.,nthelium
inside helium clusters we employ here a projector composegd;,mq and the HCN center of mass. The entire cluster is thus
of the moleculard=1, M =0, K=0 Wigner function in the 5 5veq to translate and rotate during the calculation. The
space fixed frame. This projector is a function only of therotation of the rigid HCN has a simple expression when the

second Euler angle that specifies the orientation of the mof)rincipal axis frame of HCN is used. The full Hamiltonian is
lecular frame in théarbitrary) space fixed frame. We empha- given by

size that the projector provides only a kind of initial guess

N(7)
2 ATRG)ARY), (15

*()=

N(7)

wherej(k) gives the “ascendant” of the current walk&r
i.e., the index of the initial walker at=0, from which the
walker k at time 7 comes from because of branching. The

for the nodal structure of the excitations, and that these are . A N R A N T
modified as the sidewalks proceed. Indeed, it is instructive to ~ H(R)= & %(a_xf + oy + &_212] - W{W
compare the excitation energies obtained using the nodal

structure of the projectors within a fixed node approximation, ? P ? PP

with the results from a full POITSE calculation. We shall do ANz Bo (9_¢)2(+ (9_5 , TV(R)

this for the rotational excitation of HCN—He in Sec. Il be-
low, and will see that they can produce very different results. 17)
wherem is the mass ofHe, M the mass, an@, the rota-
tional constant, respectively, of HCN. In this equation,
¢x and ¢, correspond to rotations around the principal
The system considered in the present study is made of axesx andy of HCN. In the particular case of a linear rotor
helium atoms and one rigid linear HCN molecule. like HCN, the PAF is defined by its axis which is taken to
be along the molecular axis. Theandy axes are two arbi-
trary axes perpendicular to this. We define all the Cartesian
All the calculations were made with a purely pairwise- coordinates in the laboratorfor space fixed frame. The
additive potential energy surface basedaiminitio calcula- combination of laboratory and principal axis frame coordi-
tion and spectroscopic data for He—HCN components, andates summarized in Eq.l7) provides a mixed frame
employing the HFD—B potential of Aziet al®® for the implementation of the rigid body DM& Such a mixed
He—He interaction. The He—He potential is an isotropicframe implementation is essential for multiple rigid body
function of the distance between the two helium atoms. Fosimulations. For a single linear molecule interacting
He—HCN, we use the 1E8 potential of Atkins and Hutdbn. with many helium atoms, one could in principle also use a
This potential is expressed as a function of the Jacobi cooffixed frame implementation in the PAF of this molecule.
dinates(R, ) of He with respect to the linear HCN molecule. However, the mixed frame implementation possesses

B. Description of the system

1. Potential
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TABLE I. Parameters used for the anisotropic and radial trial wave functions,(Efjsand (25).

N a a; az Co C1 C2 C3

Anisotropic
He HCN 0.747 0.0375 0.112 0.0966 16850 —6825 46540 21190

Radial
He HCN 0.638 22067
He He 0.006 3852

the advantage of generality and is therefore the approach dmble I. We add another angular dependence in the final two-
choice here. In our calculations we use the helium and modimensional function, since the maximum of the wave func-
lecular parameteramn=4.002 60 amu, M=27.01104 amu, tion is not constant a8 varies. The final expression for the

andB,=1.478 221834 cm'. trial function ®¢(R, ) is then given by
d4(R,6)
3. Trial wave functions
An overall form of ground state trial function that re- exr{ — %z)_ a( G)R)
spects _the Bose symmetry is given by the product of pair =[do+d; cog 6)] . @D
correlation term’ exp{ ~c(9) _a(o)R (6))
n n Ro( 0)5 0
Vr(R)=I1 ®(Re.00 T Ex(Rpg). (18 5c(6)] Y6
p=1 P#a Ry( )= (22)
o( ) o) |
We have made use of two different trial functions for the
He—HCN interaction. The first one contains both a radiala(9)=a,+a, 0+ a,0°+az6°, (23
dependencer and an angular dependende whereas the ) 3
second one is purely radial. In order to have an approximaté(®) =Co+ C16+ 26+ C36". (24)

description of the ground state wave fgnphon of thg He_Optimization of this trial function was carried out by a series
HCN system, we choose to solve the Salinger equation ¢ \arjational Monte Carlo computations. We first varied the
of a reduced dimensionality problem. In particular, We eqced masg, and checked that both the variational energy
solved the following radial equation: and the shape of the wave function are in agreement with the

K2 92 HeHEN DMC results. We then included the extra angular dependence

- ﬂﬁ(ﬁ(R;@q)ﬁLV (R;6q) p(R; 6q) through parameterd, andd;. The VMC energies and test
DMC runs showed that adding such an angular dependence
=E(6g) o(R; 6q) (199 does not lead to either a large decrease of the VMC energy,

nor to a big reduction in the statistical noise. We therefore

for a series off, values. This equation is the Schinger lov the Sirmol binati drs do—
equation for a helium atom moving with a fixed orientation ©MPI0y the simplest combination of parametdrs do=1,
andd;=0. The introduction of this guiding functioWr (R, )

with respect to a fixed HCN molecule. In this equatjeris I bi . X han i
the reduced mass of the He—HCN system. In the above equﬁ- ows us to use a bigger time stépe., 50 a.u. than is

tion, we implicitly decouple the stretching and the bendingposs'bh:j' W'th “”t?'ased DM@.e., 10 a.u, and also reduces
mode, as well as the effect of the rotation of the HCN mol-the statistical noise. )
ecule. For this reason, in order to get useful trial functions, " Order to study larger clusters with—2,...,60, we do
instead of using the real reduced mass of the system Wléot_ try to _optlmlze thls angular wave function. Instead, we
employ a lighter mass, in order to make sure that the triaf'€fin€ @ simpler radial wave function of the form
wave function obtained from Ed19) is broader than the Co
full-dimensionality exact ground state function. We solve (I)rTad(R)=ex;{—$—aOR
this series of one-dimensional equations by a standard collo-
cation scheme based on sine functions and a regularly spaceghich is cheaper to evaluate. We performed several unbiased
grid.38The eigenfunctions are then fit to a simple exponentiaDMC runs and used the projection of the effective one-
form particle wave function in order to define the parametgys
andcy. We fit ®YR) to the radial projection for the largest
, (20 cluster that we can study with unbiased DMCK9), raised
to the power 0.8. The use of this power of 0.8 ensures that
wherea andc are parameters, arfis a normalization factor. the fit will be broader than the real distribution, and thus will
By usingb~t=f((5c/a)*%), we ensure that the maximum ensure sampling of all the relevant configuration space for
of this function is unity. The parametessandc are functions  large clusters® The fitted parameter values obtained with
of the angled,, and are fit by a polynomial expression up to Eq. (25) for n=9 area,=0.638 and:,=22 067. For the trial
the third degree. All values of the parameters are presented imave function component describing the He—He correlation

. (25

c
f(R)=bex;{—$—aR
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TABLE Il. Ground state energies for HCN He reported in cm?. The 0.010 r . : : :
energies shown in the third and fourth columns were obtained with impor-
tance sampling DMC, employing the radial trial wave function, &%).
n <E>unbiased <E> <E>/I"I 0008
1 —-9.7 = 0.8 —-9.71 = 0.13 -9.71 = 0.13
2 —-19.7 £ 1.2 —19.72 = 0.28 —-9.86 = 0.14 T 0.006 -
3 —-30.1 * 1.6 —29.90 = 0.17 —9.67 = 0.06 i
4 —-40.3 £ 2.0 —40.15 = 0.15 —10.02 = 0.04 2
6 —-60.6 £ 3.1 —60.61 = 0.15 —10.10 = 0.03 é
8 -80.9 = 35 —81.19 = 0.16 —10.15 = 0.02 2 0004 r
9 -90.3 = 5.1 =
10 -88.4 = 5.6 -101.3 = 0.9 —10.13 = 0.09
15 -1428 + 16 -9.52 = 0.1 0.002 -
20 -164.8 = 1.8 —-8.24 = 0.09
30 —-199. + 3.0 —-6.6 £ 0.1
40 —233. £ 5.0 —-58 = 0.2
60 —293. £ 8.0 —-49 = 0.2 0-0004

#The unbiased energy for HCN kigis unphysical since at this size one of
the helium atoms dissociates unless importance sampling is employed. FiG. 1. Evolution of the mixed density radial profile with the numbesf
helium atoms. The curves are normalized such thaf g R)R?dR
=n.
Z(R), we took a radial expression of the same form as Eq.
(25). The corresponding parametesig and c, reported in ) . . ) . .
Table | were defined by fitting to the He—He eigenfunctiond_ IThel m|xedf radlgl density proﬂle; _oblt:a_uneld _\I'_Vr']th the ral-
obtained by a FBR-DVR calculation. A comparison with |a_tr|a Wavekuncnog ar(; presegte 'fnh 'IQ- - 'he ::orma-
wave functions given in the literatui®*® shows that the cor- |z_at|on| was ti en to itl'e number Oh elium a(;cmnl or
responding wave function used in this work is indeed muctP'Zes 1arger t ‘?‘""NZO elium atoms, the secon SO vatlon_
broader. as desired. shell starts to fill. For these larger clusters, the density maxi-
The excited state trial functions used in the fixed nodemurln "gs'df] the ;!rst s?fell oceurs closelr to t“e H|CN :“OI'_
calculations are constructed by multiplying the nodeles§CLI €. Such packing effects are general to all molecules in

1
ground state functioW'+(R) by a function that imposes the He clusters, whether strongly boufdr Weakly bound:
nodal structure. Thus, As noted earlier, unbiased DMC gives access to the

wave function of the system. We are thus able to see the

TER)=VO(R)V e (26)  effect of the rotation of HCN. The breakdown of the adia-
Three forms of nodal function® ). are discussed in detail batic following that was predicted for HCN by violation of

node an energetic criterion in Ref. 3 can be seen here by artifi-
cially suppressing the HCN rotatidine., settingBycn=Bo
equal to zerpduring the DMC propagation. The two corre-
I1l. RESULTS sponding wave function amplitudes, i.e., with and without
molecular rotation, are presented in Fig. 2. Both plots show a
maximum at the linear geometry corresponding to the He
We present first a systematic study of the ground statelose to the H atom, which corresponds to the global mini-
properties, using both unbiased and biased DMC. We foundhum of the interaction potential. The wave function in the
that unbiased DMC was unsuitable for the study of clustersionrotating case, Fig.(B) is much more localized than that
with more thann=9 helium atoms, since the unphysical for the physical system in which the HCN molecule rotates,
“dissociation” of helium atoms starts at that sizeThe un-  Fig. 2a). [Note that different scales were used faj and
biased calculations are nevertheless required since they alloil).] This localization is such that the probability to find the
us to define the parameters of the radial trial wave functiorhelium atom on the nitrogen side of the molecule is effec-
as described above. Table Il summarizes the ground statevely zero, whereas it is finite for the real system. The large
energies. We employed the radial trial wave function for thedifference between those two amplitudes is a mark of very
importance sampling DMC calculations, which leads to ainefficient adiabatic following of the molecular rotation by
significant net reduction of the statistical noise. In order tothe helium® For complete adiabatic following, the helium
estimate the statistical noise, we split the DMC propagatiorwave function would be independent of the rotational state of
into blocks of a size longer than the correlation length. Thethe molecule, and of the presence of any molecular rotational
square root of the variance computed using one energy péinetic energy. A more quantitative study of the extent of
block is reported as the error. The results on Table Il correadiabatic following for various molecules will be published
spond to one run of 800 blocks, each of which consists otlsewherd! The reduction of the rotational constant for
150 time steps. The energy per helium atom is constant diCN inside helium clusters can therefore not be explained
~—10 cm ! up to 15 atoms, then it starts to increase, indi-by a model based on adiabatic following by any fraction of
cating that the second solvation shell begins to form. This ishe helium density.
also noticeable in the radial profilsee Fig. 1 Figure 3 shows the mixed densities for larger clusters,

in Sec. Ill B below.

A. Ground state studies
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FIG. 2. Two-dimensional representation of the ground state wave function
W of the HCN—-Hen=1 dimer.¥ was computed with unbiased DMC here.  Density

The rotation of the HCN molecule is included {a), whereas(b) corre- n=60
sponds to a nonrotatin@put translating HCN molecule. The origin is set at

the molecular center of mass. The HCN molecule is orientéd-=8—H, the 0.08

H atom being at positive. All distances are in atomic units. The normal- g:gé

ization of the amplitude is arbitrary but identical in both figures. §E§§ ; \ o \'\)‘
0.02 E '\\\W\\ S ““‘!"' : .

n=9, 25, and 60, respectively, for the true physical systemo'oé

(i.e., with the HCN rotational kinetic energy inclugedhe

comparison of the wave function for one helium atfifig.

2(a)] with the density fom=9 helium atomgFig. 3a] and -20

for n=25 [Fig. 3(b)] shows that the angular dependence of (c

the maximum on the elliptical-like contours around the mol-

ecule tends to.smooth.out asincreases. For large clusters, FIG. 3. Ground state helium density fa) HCN Hey, (b) HCN Heys, (©)

n>20, the helium environment around HCN becomes thugicN He,, The mixed densities are shown here, i@pee=(¥|p|¥1).

more isotropic than was observed for the more stronglyrhe orientation of the HCN molecule is identical to that defined in Fig. 2.

bound molecules like SHRef. 8§ and OCS(Ref. 3. This

results from the smaller anisotropy in the He—HCN interac-

tion potential. For more than~ 17—20 helium atoms, a sec- this can be obtained from level assignments made according

ond solvation shell is evident in the mixed densities, as Figto simple models. Previous studies ofs3f “He, (Refs. 3

3(c) shows for a cluster witlm=60 helium atoms. and § present rotational levels correspondinglte j, where

Jis the total angular momentum, apthe molecular angular

momentum. Those calculations were based on the nodal

structure for a free spherical tdpéo (a,8,7), a, B, v being
Experiments in doped helium clusters show that the rothe Euler angles describing the orientation of the principal

tational spectrum of HCN insidéHe clusters possesses the axis frame of the molecule in space fixed frame. This func-

same symmetry as in gas phase, but that the effective rotdion is proportional to

nt

R \‘\\\\\\\\\\\\\\\\\
a
\\

RN
KRR
R

WX
R

B. HCN-He, excited states from fixed node

tional constant is reduced by19%:?° This reduction is con- (1) o
siderably less than the-65% reduction seen for more Whoad R)=cog ). @7
strongly bound species such asgSFAs noted above, the In the particular case of the smallest cluster HCN—He,

study of excited states within the fixed node approximatiorwith n=1, we have used collocation calculations of Atkins
requires some estimate of the nodal structure. Insight intand Hutsof* in order to analyze the exact eigenfunctions
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TABLE Ill. Ground and rotationally excited energy levels for HCN—He, reported in‘crihe level assign-
ments are the zeroth order level assignméls originally made in Ref. 36 and followed by Ref. 14.

Eo cos@+x) €09 (GuenTt Ohe) /2] cogp)
DMC —-9.71+0.14 —5.84+0.2 —9.04+0.2 —7.25+0.2
Collocation methodRef. 19 —9.657 —5.899 —9.127 N/A
Level assignmentRef. 14 |000 110 [011) N/A

and to test both this free molecule nodal structure and twap(3) ' the nodal surface in the space fixed frarigl),.,

other nodal approximations. The level which has beeneads to an excitation of 7.25+0.2 ¢, which has no
assignetf *°as|j=1, /=1, J=0) shows a single nodal sur- counterpart in the levels obtained by the collocation scheme.
face that is approximately-independent” (In this assign-  This proves that this space fixed node is incorrectrfer,
ment scheme] is the total rotational quantum numbgthe  and has no physical meaning for the HCN—He dimer. We
quantum number of HCN, which is to a good approximationnote that an energy level with the free rotor nodal structure
conserved in the weakly bound complex, afén “orbital” might be given the zeroth order level assignméjid)
guantum number associated with the rotation of the helium:|10]>_ References 14 and 36 gave this assignment to a
around the HCN. This motive_\ted us to use a trial nodal ch higher-lying energy level, lying just below the level
surface for the110) state that is defined by derived fromW{2),_. It is quite revealing that the minimum
V2 (R)=cog 6+ ), (28)  energy derived from the free molecule, space fixed nodal
. . ] surface bears no relation to the energy of this experimentally
where y is a parameter and is the internal Jacobi angle of 45signed101) level. This indicates HCN is really not at all in
the cluster. A third trial nodal surface was motivated by theg \yeak coupling limit, and that the zeroth order level assign-
fact that the potential is minimum when the He atom isments should be treated with caution.
aligned with the HCN molecule. This correspondséigey For larger clustersy>1, collocation and basis set meth-
= bhe, Wheredy, is the spherical polar angle in the arbitrary qs are not feasible, and only DMC methods can then pro-
space fixed frame. Consequently, a probable position of gide access to excited states. The accuracy of the nodal ap-
node is a perpendicular surface Aacn= fye; namely, proximations for larger size clusters is not necessarily the
Orient Ore same as that fon=1, since the helium density around the
T3AR) 200{7 (29 molecule changes asincreases. As noted above, it becomes
considerably more symmetrical, suggesting that the space
For each of these three nodal structures, we performefixed nodal approximation might become more accurate at
importance sampling DMC runs restricted to each one of thgarger sizes. Therefore we have analyzed the evolution of the
two sides of the node, i.e., usitg{?(R, )W (R) as a corresponding energy as the number of helium atoms in-
guiding function, fori=1,2,3. Those calculations were done creases, motivated by the expectation that this node should
with approximately 5000-6000 walkers. After equilibration be more physical for a cluster in which the helium density is
of the configuration, we perform one run of 800 blocks, eachmore symmetric around HCN than in the HCN—He dimer.
of which consist of 150 time steps withir=10a.u. The Since the angular dependence for larger clusters tends to
optimal parameter value for the second na#g)(R) was  smooth out, we employ the radial trial wave function, i.e.,
found to bex=15.65 deg. For the other two trial nodal sur- ¥(&=w2qR)w(L) ~ The energy value fon=1 is unaf-
faces, both runs restricted to one signidf),.gave the same fected by this change of trial wave function. We presentthe
energy. The results are summarized in Table I, where theglependence from this trial function in Fig. 4. This plot cor-
are compared with the corresponding values from collocatiomesponds to the evolution of the difference between the ex-
calculations and level assignments to the zeroth order statgited and the ground state energies, which is assigned as
[jlJ) made in Refs. 14 and 36. twice the effective rotational constaf, In order to obtain a
For two of the nodal structures tested for1, namely  relatively small error bar, we used up to 80000 walkers and
for (2 and W), the DMC results are in agreement with perform these calculations on parallel computers, scattering
the collocation value¥ attesting that the trial nodes used arethe walkers onto the different processors. By looking at the
relevant and accurate. These levels correspond to the zerdfiked node energies, we would conclude tlBaappears to
order assignmentd10 and|011), respectively, according to saturate with just three helium atoms. However, this nearly
the weak coupling classification of Refs. 36 and 14. Noteconstant fixed node value lies below the experimental value
that according to these zeroth order assignments, only one efieasured fom=10° helium atoms. The computation of
these two levels has total cluster angular momentlim larger cluster sizes within the fixed node approximation was
greater than zero, i.§Q11). The experimental observation of not pursued since a further reduction of the error bars be-
transitions to this leveland to a level assigned #22) was  comes intractable. While this could, in principle, be over-
used in Ref. 36 to obtain a fitted rotational constantBof come by the implementation of correlated sampfihty
=0.264 cm ! for the HCN—He complex. implementation of this is not straightforward here since the
In contrast to this excellent agreement between DMCwo states of interest have a different nodal structure. A pro-
and collocation results for the trial nodal surfr:ml’&%’de and  cedure such as the one proposed by Filippi and Unflidar
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FIG. 4. Evolution of the fixed node excitation eneryf =E(® — E(® with EE,

the number of helium atoms (open circles The space fixed trial nodal
surfaces¥ (%), were employed here, Eq&6) and (27). The corresponding
experimental values for HCN in the gas phé&Ref. 36 (solid circle) and for
HCN inside large*He clusters(Ref. 4 (dashed ling are also shown. For
n=1 we also show the excitations obtained from nodal trial functions
w2, Eq. (28) (open trianglg and ¥ &), Eq. (29) (open squane The
collocation energy levels corresponding to these excitations are shown as . .
asterisks. They correspond, respectively, to the zeroth order level assign- 1he spectrum for then=1 HCN-He dimer obtained

ments|110) and|011) of Refs. 36 and 14. from 1056 POITSE decays terminated atry
=693000a.u., is presented in Fig. 5. We used 5000 walkers

L . : . ._and a time step of 20 a.u. This POITSE spectrum is con-
this situation may lead to significant trial wave function bias. .
. verged with respect to the number of POITSE decays. The
These results suggest that the free molecule spatial nodar .

structures do not correspond to the true nodal structures &u!dmg fl_mctl_on useq here is the radial one,-@ﬁ). The
fmsotroplc trial function Eq(21) leads to a similar spec-

the rotational excitations in larger helium clusters. In the nex . ) . .
rum. Figure 5 shows a two peak structure, i.e., this projector

section we calculate excitation energies without any fixe ) . ) "
: . . ccesses at least two excited states. This confirms our initial
nodal constraint, and will see that the corresponding noda"il

o ?xpectation based on the failure of the fixed node approxi-
structures can be quite different from the free molecule nOdamation using the space fixed node, E(@6) and (27). Nei-
surfaces. The underlying cause of this lack of accuracy of g P ' ;

free molecule description may be the unusual energetics gper of the two peaks o_bta_med corr_espond_to that fixed node
) ._Tesult. Instead, the excitation energies are in good agreement
the HCN—-He dimer, that we have commented on earlier . .
. - with the exact values computed by the collocation method
(Sec. ). Due to the close energetic proximity of the ground d listed in Table IIl. Moreover. it can be seen by compari-
state and the potential barrier in the HCN—He dimer, therean 1S L ’ . y P
son with all the collocation energy levels listed in Ref. 14
Fhat onlyJ=1 states are probed with this particular projec-
tor. The maxima of both peaks are within 10% of the “exact”
values (relative erroj. The statistical noise inherent to the
Monte Carlo scheme, as well as the presence of multiple
decays in the projection which makes the realization of the
Given the uncertainties of the fixed node approximationinverse Laplace transform more delicafés responsible for
illustrated above, we now apply the POITSE methodology tahis uncertainty.
the rotational excitations of HCN. POITSE has been shown We now proceed to examination of the evolution of these
to lead to exact excited state energies when no knowledge df=1 states as the number of helium atoms in the cluster,
the exactnodal surface is available but when a “good” esti- increases. Figures(®—6(c) show POITSE spectra for vari-
mate of it is accessibi. This is precisely the situation here, ous cluster sizes ranging from=1 to n=25. For these cal-
where the rotational excitation is located primarily on theculations, the number of walkers was reduced to 2000 and
molecule. The molecular rotation functioh=cos@), i.e., the number of decays was increased-b¥00, until the po-
the J=1, M=0, K=0 Wigner function, will therefore be sition of the maximum of the first peak is unchanged. The
used as projector here. This function is one of the three basigduction from 5000 to 2000 walkers does not notably affect
set functions|J,0, M), J=1, M=0,=1 which are used to the n=1 spectrum. The time step is the same as inrthe
describe a rotating linear rigid object with one quantum of=1 case and the final number of decays was around 1000 for
excitation®* We thus expect to project the ground state waveall sizes presented. The effect is that we reduce the compu-
function onto a linear combination of the trie=1 states. tational effort for the larger sizes without loosing any con-

FIG. 5. POITSE excitation spectrum for the HCN—He dimer, obtained using
cos(B) as a projector. Vertical lines correspond to the collocation results
from Ref. 14 forJ=0 (dotted ling andJ=1 (dashed lines

tional and translation degrees of freedom of HCN'figy,
by quantum reflection at the potential barrier.

C. HCN-He,, excited states from POITSE

We already know that fon=1, the projectoA=cos(B) will vergence with respect to the number of decays included in
not yield a single peak, otherwise the fixed node calculatiorihe POITSE average. The decay length was shortened to
described above would have given a correct value. Tiina= 494 800 a.u. fom=15, and torg,,=395 740 a.u. for
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FIG. 6. POITSE excitation spectra for HCN Heobtained using cog) as

A. Viel and K. B. Whaley
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FIG. 7. Effective rotational constai extracted from the first, low energy,
POITSE peak for eachin Fig. 6. The experimental rotational constants for
n=1 (diamond, Ref. 3pand for n=3000 (dashed line, Ref. {are also
shown.

=25) the number of walkers was reduced to 1000. In order
to perform these (8+5)-dimension calculations, we used a
parallel POITSE code which scatters the computation of the
decays onto different processors. The code is obviously per-
fectly suitable for parallelization and is highly scalable. The
largest cluster calculations were performed on an IBM/SP2
power 3(NPACI Blue Horizon parallel machineThe CPU
requirement varies as approximately 1:1.7:4.7:6.7:13.4:34
for n=1:4:8:10:15:25These sizes correspond to systems
having 8:17:29:35:50:80 degrees of freedom, respectively.
This is the first application of POITSE to a truly large multi-
dimensional cluster system.

For sizesn=1-15, the POITSE spectrum consists of
two peaks, shown in Fig.(6). For the largest size studied,
n= 25, the spectrum is made of only one broad peak, shown
in Fig. 6(c). The width of these peaks increases with the
number of helium atoma. We can tentatively attribute this
trend to the inherent increase witlof the statistical noise in
the DMC procedure. However, as previously discusgehe
width of the spectral peaks after inversion is not related to
the accuracy of the derived excitations in any obvious man-
ner. For all sizes shown in Fig(®, the lower energy peak is
narrower than the higher energy one. Figu(b) resents a
magnification of the first peak fan=1-15. It can be seen
that the position of this peak first decreases when the number
of helium atoms increases from 1 to 3, and then turns around
and increases with further increasennEven if the precise

a projector. The vertical line corresponds to twice the experimentally mealocation of the peaks are subject to a similar error as that in

sured rotational constant for HCN €0) in large helium clusteréRef. 4

2B=2.40cmL. (a) Spectra fom=1-15, showing two peakgb) Magni-

fication of the first peak fon=1-15.(c) Spectrum fon= 25, showing only
a single peak.

then=1 spectrum, it is evident that for, e.qn=28, the first
energy difference is definitively larger than the correspond-
ing difference forn=1. For reference, we indicate with the
vertical line in Figs. €a—6(c) the position of the lowest
rotational level predicted by the experimental measurements

n=25. This was done to obtain greater efficiency at theof B for HCN inside large helium clustefsj.e., E=2B
larger sizes, since as increases, the energy difference =2.40cmt.

probed increases. Consequently, the exponential decay has a Figure 7 presents the extract&dvalues obtained from
shorter time constant and need not be followed for such longhe first POITSE peak, as a function of the number of helium
imaginary times. For the largest cluster size studied ( atomsn. Also shown are the experimental values for both
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n=1 (0.264 cm %, measured in Ref. 3@&nd inside largéHe  showing that this molecule rotates too fast and the potential

clusters(1.204 cm %, measured in Ref.)4The peaks for the asymmetry is too weak, for the helium density to adiabati-
two largest cluster sizes presented here15 andn=25, lie ~ cally move with the moleculg.In quantum mechanical
below and above the experimental value, respectively. Thierms, this can be understood in terms of the close energetic
oscillatory behavior shows that a cluster with 15 or 25 he-Proximity of the ground state of the He—HCN dimer to the
lium atoms is still not large enough to faithfully represent thePotential barrier separating the two different orientational
local environment controlling the rotational dynamics of Minima(Sec. ).

HCN in the experimental clusters, for which the average size ~ The excited state calculations within fixed node approxi-
is a few thousand® The reason why the effecti® value ~ mations show that the nodal structure of excited states for

extracted from then=25 cluster is higher than the experi- sSmall clusters is very different from that seen with the more
mental value for much larger clustens=10°) is not totally ~ Strongly bound and slower, spherical top rotorsSk par-
understood at this time. Two possible explanations can b#cular, for HCN, the free molecule spatial nodal approxima-
advanced. The first one derives from consideration of théions were seen to be noticeably inaccurate at small sizes
physics. As seen from the density radial profiles presented ifh=1-10), although they have been shown to provide very
Fig. 1, the asymptotic structure of the helium solvation layersaccurate results for ¥ We have used tha=1 HCN-He
around HCN is not yet completed for a size of even30  dimer, for which exact energies can be obtained from the
helium atoms. We might thus expect that the position of thecollocation approach, to explicitly expose the general limita-
peak is not yet located at its final saturation position as dion of the fixed node approach, showing that it leads to an
function of cluster siz&. The second possible explanation is erroneous energy level when the incorrect node is used.
that the n=25POITSE spectrum is not completely con- From a physical perspective, this nodal finding for HCN is
verged with respect to the total decay time. While this specextremely interesting since the free molecule nodal structure
trum is, like those in Fig. @), converged with respect to the is what one might naively expect to be appropriate for larger
number of POITSE decays included in the averaging proceslusters possessing a more symmetric local solvation envi-
dure, the decay length for=25 was shortened to a smaller ronment. The ellipsoidally symmetric solvation shell of he-
value of the total imaginary time, for the reasons notedium in the first shell around HCN is therefore providing a
above. If this decay length is not asymptotic, there could besufficient level of hindrance to the molecular rotation to
some possible underlying structure of the broad peak obeause the nodal surfaces for rotation to be modified in their
served. Computational constraints precluded more extensiveymmetry. This may also be a consequence of the very close
calculations for then=25 cluster to test whether there might match between the ground state of HCN—He, and the poten-
indeed be a spectral contribution from the residual decay dtal barrier between the two orientational minima.

longer times. The problems associated with the fixed node approxima-

Finally, we reiterate that the fixed node saturatiBn tion were shown here to be surmountable by using the intrin-
value would lead to an excitation at 1.8 ¢ As stated sically exact POITSE method. This was demonstrated first
earlier, this is not in agreement with the experimental valudor the n=1 HCN—He dimer by comparison of the POITSE
obtained in much larger clusters. Figure 6 shows that it i®excitations with results from calculations with the colloca-
also not reproduced by the POITSE spectra for these clustéion method. Most significant here was the finding that the
sizes. Thus the POITSE excitations also do not correspond tspace fixed projector yielded accurate POITSE excitation en-
the free molecular nodal structure, although the fact that thegrgies, while a fixed node calculation with the corresponding
are arrived at from a free molecular projector does imply thaspace fixed nodal structure failed completely to provide an
they may have some overlap with these. The resultsnfor adequate representation. The good agreement between
=1 give confidence in the accuracy of the POITSE excitaPOITSE and collocation results obtained foe 1 provides
tions, allowing us to strengthen our physical conjecture thatonfidence for the accuracy of the POITSE spectra obtained
the slow approach of the rotational excitations of HCN infor larger clusters. One of the excitations derived from the
“He clusters is related to the unusual confluence of energetigpace fixed projector appears to evolve to the experimental
and quantum influences deriving from the location of therotational constant measured in larger clusters, but in a rela-
zero point energy of HCN—He close to the potential barriertively slow and nonmonotonic fashion. Calculations on
larger clusters would be desirable to provide conclusive con-
firmation of this nonmonotonic convergence to the saturation
value.

We have presented quantum Monte Carlo studies of Overall, the results for HCN rotations in helium clusters
HCN He, in its ground and low-lying excited rotational composed of the boson isotofide are striking in their slow
states, where the rotational excitation is localized at leastate of convergence to a cluster rotational constant that is
partly on the molecule. Comparison of ground state wavendependent of further increase in cluster size. This suggests
functions for the rea(rotating system with those calculated that HCN lies in a critical region of the parameter space,
for a model reference where the HCN is artificially con- highlighted by the energetics of the HCN—He dimer men-
strained not to rotate, show explicitly that there is no signifi-tioned above, in which the quantum rotational dynamics are
cant extent of any adiabatic following by helium atoms with highly sensitive to small modifications of the helium density
the rotational motion of this molecule. This is consistent withas additional helium atoms are attached to these clusters over
previous predictions based on simple classical estimatethe size range=1—30. This sensitivity to cluster size over

IV. CONCLUSION
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