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E. Oñate, J. Oliver and A. Huerta (Eds)

NUMERICAL COMPUTATION OF NOISE RADIATION
FROM BREAKING SYSTEMS FOR SQUEAL NOISE

PREDICTION

D. DUHAMEL∗
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Abstract. Many trains have braking systems made of discs and pads which can generate
very high noise levels. During the braking, instabilities can be generated in the contact
zone between the pads and the disc, leading to high vibrations and high levels of noise
radiations for frequencies typically between 1kHz and 15kHz. Numerical computations of
noise radiation at these high frequencies for systems having the size of usual train braking
systems and their geometrical complexities are difficult with classical methods and thus
require special attention. In this paper, different strategies based on the boundary element
methods and approximate methods are used for computing the sound radiation from the
knowledge of the surface velocity. Contributions of parts of the system such as the disc,
the pads and the caliper to the global sound levels are identified. Analysis of the system
radiation in terms of spectra and directivities are also presented.

1 SQUEAL NOISE

1.1 Introduction

Recent railways vehicles are equipped with disc brakes. For some systems, braking may
be accompanied by intense squeal noise. Detailed studies show that the braking system is
responsible for the overall noise and brake pads play an important role in the squeal noise
generation. The squeal noise generation seems highly linked to friction conditions between
the disc and the pads. Instabilities are created in the contact zone between the pads and
the disc leading to high vibrations and then to high levels of noise radiation. The global
numerical simulation of vibrations and noise radiation of these systems are necessary to
understand their physical behavior in a first step and to build quieter systems as a final
aim. Analysis of these systems shows that noise spectra are generally made of discrete
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frequencies corresponding to unstable vibration modes. These instabilities are responsible
for the high levels of vibration. The unstable modes are usually located in the middle and
high frequency ranges, and can generate sound as loud as 100dBA. Prediction methods
are needed to clearly explain this phenomenon and to compute the noise levels from the
knowledge of geometrical and mechanical properties of these systems, see [1, 9, 4, 6].
Finite element methods are often used for this purpose. This allows to predict several
types of instabilities and gives the vibrations of the structure by a time domain analysis.
This approach is suited for braking at constant force which leads to stationary noise or
noise levels with low variation with time which is the current and interesting situation.
Then, from a Fourier analysis, the vibrations at different frequencies of the braking system
can be computed. Finally the sound radiation has to be estimated to find the acoustic
power which is radiated and the sound levels at different points in the exterior domain.
This paper focuses on this sound radiation. The main feature of this problem is that the
systems vibrate at high frequencies, typically between 1kHz and 15kHz. It is therefore
necessary to use specific methods adapted to the calculation of radiation for this range of
frequencies. According to the frequency, usual boundary element methods, fast multipole
boundary elements methods or high frequency approximations are used and compared for
these problems. Sound powers and noise levels are computed for different parts of the
braking system. Then conclusions are presented.

1.2 Acoustic problem

To compute the sound pressure p in air, one has to solve the following Helmholtz
equation:

∆p(x) + k2p(x) = 0 ∀x ∈ Ω

∂p

∂n
(x) = iρωvn ∀x ∈ S (1)

where k = ω
c

is the wavenumber, ω the circular frequency, c the sound velocity in air, vn

the normal velocity at the exterior surface of the braking system, Ω the air domain and
S the exterior boundary between air and the braking system.

The solution of equation (1) is also solution of the boundary integral equation on S

1

2
p(x) =

∫

S

[

p(y)
∂G

∂ny

(x,y) −
∂p

∂ny

(y)G(x,y)

]

dy (2)

with the Green’s function

G(x,y) =
eikr

4πr
(3)

and r = |x − y|. To avoid numerical problems in the formulation (2) for some frequen-
cies associated to resonances of the interior acoustic domain, the Burton and Miller’s
formulation is used [2]. This formulation leads to singular kernels. For regularizing these
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singularities, a variational formulation of the boundary integral equation is used, which
finally leads to the following relation:

1

2

∫

S

p̃(x)p(x)dx +
i

2k

∫

S

p̃(x)
∂p

∂nx

(x)dx =
∫

S

∫

S

p̃(x)p(y)
∂G

∂ny

(x,y)dydx −

∫

S

∫

S

p̃(x)
∂p

∂ny

(y)G(x,y)dydx +

i

k

{
∫

S

∫

S

k2p̃(x)nx.nyG(x,y)p(y)dydx −

∫

S

∫

S

(nx ∧∇xp̃(x)).(ny ∧∇yp(y))G(x,y)dxdy

−

∫

S

∫

S

p̃(x)
∂p

∂ny

(y)
∂G

∂nx

(x,y)dydx

}

(4)

for all test functions p̃ on the boundary S.
However, the precedent formulation leads to full matrices and heavy computations.

For improving the efficiency of such computations, the Fast Multiple Method (FMM) was
introduced by Rokhlin in 1985 to solve boundary integral equations for the 2D Laplace
equation in O(N) operations [7]. Nowadays, the FMM is applied in multiple areas, such
as fluid mechanics [10] or elastodynamics [3]. The development for acoustics was mainly
initiated by Rokhlin [8].

Here, we use a multilevel FMM, based on a hierarchical space partition tree (oct-tree
in 3D) and using the variational formulation (4). It is based on multipole developments
of Green’s kernels such as

G(x,y) =
ik

4π

L
∑

n=1

(2n + 1)
n

∑

m=−n

Īm
n (k,y,yc)O

m
n (k,x,yc) (5)

with |y − yc| < |x − yc|. In equation (5), one has:






Im
n (k,y,yc) = jn(k |y − yc|)Y

m
n

(

y−yc

|y−yc|

)

Om
n (k,x,yc) = h

(1)
n (k |x − yc|) Y m

n

(

x−yc

|x−yc|

) (6)

with jn, h
(1)
n Bessel and Hankel functions of order n, Y m

n the spherical harmonic of degree
n and order m, defined by:

Y m
n (θ, φ) =

√

(n − m)!

(n + m)!
Pm

n (cos θ)eimφ (7)

with Pm
n the Legendre polynomial of degree n and order m. These developments are in-

troduced in formulation (4), then usual relations for multipole expansion (ME), multipole
to multipole (M2M), multipole to local (M2L), local to local (L2L) and local expansion
(LE) are computed. See [5] for details on the FMM.
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Another possibility, much faster but quite approximate, is to use the high frequency
approximation on the surface S:

p ≈ ρcvn (8)

meaning that the surface impedance is supposed to be given by ρc. In this case, the
acoustic power radiated by the surface is

Pa =

∫

S

1

2
Re(p∗vn)ds =

ρc

2

∫

S

|vn|
2ds = ρcPv (9)

with Pa is the acoustic power and Pv is defined as a vibration energy.
These different formulations are used to compute the sound radiation for squeal noise,

they are compared to find the most efficient for each case and finally a mixed formulation
is proposed.

2 EXAMPLE OF SOUND RADIATION

2.1 Mesh of the structure

We study here three parts of the braking system which are the disc, the pads and the
caliper, see figure 1.

Figure 1: braking system with disc (upper left), pads (upper right), caliper (bottom left) and full brake
(bottom right)
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2.2 Surface velocities

The computation of surface velocities on the brake surface from the structural dynamic
analysis leads to a large number of frequencies. An example of mean root square surface
velocities of the disc for the complete spectrum is shown in figure 2. As it can be seen,
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Figure 2: Root mean square velocity on the disc versus the frequency.

there are some clear spectral lines but also a broadband spectrum. An example of surface
velocity on the disc for the frequencies 2848Hz and 7096Hz are given in figure 3. They
exhibit complex patterns other the whole disc or other a small part only. To reduce the
computations, the most energetic frequencies are selected. So, for each frequency fi, the
energy of vibration on the surface S is defined by Ei =

∫

S
|vi|

2ds. Defining the maximal
error which is tolerated by the parameter ǫ and supposing the frequencies are ordered
such that E1 ≥ E2 ≥ ... ≥ Entot

, the n selected frequencies are such

i=n
∑

i=1

∫

S

|vi|
2ds ≥ (1 − ǫ)

i=ntot
∑

i=1

∫

S

|vi|
2ds (10)

Then the n frequencies are computed by the FMM and the ntot − n others are computed
by the approximate method.
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Figure 3: Normal velocities at the surface of the disc for the frequencies 2848Hz (left) and 7096Hz
(right).

2.3 Radiated power

The acoustic power radiated by a structure is defined by

P =
1

2

∫

S

Re(pv∗
n)ds (11)

This quantity has been computed for the most energetic frequencies for the disc, the pads
and the caliper. The frequencies computed by FMM are given in table 1.

Table 1: Computed frequencies in Hz for the different parts

Frequency Disc Caliper Pads
f1 2849 2749 2849
f2 4048 2849 4048
f3 5747 4048 5247
f4 7046 4148 5747
f5 7096 - 6947

The results are presented in figure 4 for the simplified method and for the FMM. As it
can be seen, the radiated power is rather correctly approximated by the simplified method
for these frequencies. The total power is obtained by summing the contributions of the
different frequencies by the formula

Ptot = ∆f

i=n
∑

i=1

Pi (12)
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Figure 4: Sound power radiated by the disc (upper left), the pads (upper right) and the caliper (bottom)
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where Pi is the power radiated by the frequency fi and ∆f is the frequency step. This
computation is done for different values of ǫ using formula 10 to select the frequencies.
Figure 5 presents the number of frequencies to keep versus the error in dB defined by
e = 10 log10(1 − ǫ). It can be seen that if an error of 2dB on the total vibration energy

0 2 4 6 8 10 12 14 16 18 20

0

50

100

150

200

250

300

Error in dB

N
um

be
r 

of
 fr

eq
ue

nc
ie

s 
to

 k
ee

p

Figure 5: Number of frequencies to keep

is accepted, only about 30 frequencies need to be kept over a total of 300. The acoustic
power in third octave bands is presented in figure 6 for the disc. One can see the wide
band of this spectrum. The total power is 95dBA.

2.4 Pressure at points and directivity of the sound pressure

The sound level is obtained by

L = 20 log10

|p|

2.10−5
(13)

and is computed for different points p1 = (1, 0, 0), p2 = (0, 1, 0) and p3 = (0, 0, 1). Results
are presented in figure 7 for the disc and the caliper. For some points and frequencies, the
difference between the FMM and the approximate method is larger than for the acoustic
power.

The sound pressure has also been plotted in a rectangle [−2m 2m]× [0.3m 2.3m] above
the disc in the xz plane. The results are plotted in figure 8. A rather strong directivity
of the sound pressure can be seen.
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Figure 6: Power level in third octave.

3 CONCLUSION

The computation of acoustic radiation for high frequency squeal noise has been pre-
sented. Comparison of FMM and approximate method leads to the proposition of a
mixed approach where the dominant frequencies are computed by FMM while the other
frequencies are computed by an approximate method. This seems especially useful for
the computation of the radiated acoustic power.
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