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The Jacobi–Wilson method: A new approach to the description
of polyatomic molecules

C. Leforestier,a) A. Viel,b) F. Gatti,c) C. Muñoz, and C. Iung
Laboratoire Structure et Dynamique des Syste`mes Mole´culaires et Solides (UMR 5636), CC 014,
Universitédes Sciences et Techniques du Languedoc, 34095 Montpellier Cedex 05, France

~Received 21 September 2000; accepted 9 November 2000!

We present a new method adapted to the calculation of excited rovibrational states of semirigid
molecules. It first relies on a description of the molecule in terms of polyspherical coordinates of
Jacobi vectors, in order to obtain a compact expression for the kinetic energy operatorT̂(q). This
general description is then adapted to the molecule considered by definingcurvilinearnormal modes
from the corresponding zero order harmonic HamiltonianĤ05T̂(qeq)1Vharm(q), the solutions of
which are being used as the working basis set. The residual kinetic termDT̂ is treated mainly
analytically in this basis, and displays no radial contribution. Anharmonic couplingDV(q) is
handled by means of a pseudospectral scheme based on Gauss Hermite quadratures. This method is
particularly adapted todirect iterative approaches which only require the action ofĤ on a vector,
without the need of the associated matrix, thus allowing ultralarge bases to be considered. An
application to the excited vibrational states of the HFCO molecule is presented. It is shown in this
example that energy levels can be trivially assigned from the leading expansion coefficient of the
associated eigenvector. ©2001 American Institute of Physics.@DOI: 10.1063/1.1337048#
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I. INTRODUCTION

Calculation of rovibrational energy levels of polyatom
molecules, beyond the normal modes approximation,
represents a challenging task. A powerful tool, the vib
tional self-consistent field~VSCF! method, has been intro
duced by Bowman1 to this aim. The SCF stepper seallows
the calculation to take into account both the anharmonic
havior of each mode and part of the intermode couplin
through a mean-field definition. The subsequent configu
tion interaction procedure explicitly brings the full correl
tion between the modes. In its usual implementation,
method relies on a rectilinear definition of the norm
modes,2 due to its simplicity. However, this formulation re
duces the efficiency of the method when excited states ar
interest, or if overall rotation is explicitly considered. Co
sequently, many studies of small excited polyatomicsN
54 – 5) made use so far of a curvilinear description of
molecules, be it in valence3 or Jacobi type.4–7

For semirigid molecules, valence coordinates are usu
considered to be more physically grounded as they clo
resemble the actual stretch or bend motions. In fact, thi
true essentially at high energy in the local modes regime,
it is not so well verified at low energy when normal mod
prevail. However, the kinetic energy operator~KEO! dis-
plays an intricate expression, with numerous coupling te
contributing both to the vibration and rotation–vibratio
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components.3 Such a large number of terms first makes mo
involved the actual implementation of the method. It al
means that it will be more difficult to define a zero-ord

Hamiltonian Ĥo from which the working basis set is to b
built, usually as its eigenstates. On the other hand, Ja
coordinates display an extremely simple KEO with cro
derivative terms only appearing between angular coo
nates. Such a property makes its implementation very e
but does not provide a good zero-order description of bo
molecular states: Jacobi coordinates do not correspon
actual physical motions, except in limiting cases such
H2O2

8 where they almost coincide with valence coordinat
In this paper, we present a new method which combi

the simplicity of the Jacobi description with the efficiency
the Wilson normal modes approach. It first consists of rec
ing the problem in a collision-type formulation by means
polyspherical coordinates.9 This formulation leads to a very
compact form of the KEO and allows for an easy impleme
tation of the rotational terms. This general description is th
adaptedto the molecule of interest by definingcurvilinear

normal modes from a zero-order harmonic HamiltonianĤo,
the solutions of which are being used as the working ba

set. As a result, only the differenceĤ2Ĥo has to be explic-

itly considered,Ĥo being trivially handled. Such a scheme
particularly efficient when used in conjunction with an iter
tive direct method.10–12Indeed, defining a physically adapte

basis set from the eigenstates ofĤo is equivalent to precon-

ditioning the iterative method by means ofĤo. It is well
known that such a preconditioning step greatly enhance
even makes possible the convergence of these methods

One should also mention the use of curvilinear norm

r-
9 © 2001 American Institute of Physics

o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.



ni
ex
lc

e
o
ve
e
F
o

m

s
d
.

ar

of
b

la

di

e

r

e

the

s

he
col-

ting
lar
ve
t
es

-

the

r

ir

s-

2100 J. Chem. Phys., Vol. 114, No. 5, 1 February 2001 Leforestier et al.
coordinates by Sibert and co-workers13 and Quade.14 In their
case, these normal modes were defined from a Hamilto
operator written in terms of internal coordinates, and
panded around the equilibrium geometry. Subsequent ca
lations then relied on perturbation theory.

The outline of this paper is as follows. In Sec. II, w
recall the Jacobi polyspherical parametrization of a m
ecule, and then present the resulting KEO. Section III gi
an example of the new approach as applied to a six dim
sional study of the bound states of the HFCO molecule.
nally, Sec. IV concludes on further possible improvements
this approach.

II. KINETIC ENERGY OPERATOR IN A JACOBI
POLYSPHERICAL PARAMETRIZATION

In this approach, an N atom system is initially para
etrized by N-1 Jacobi vectors (R1 ,R2 , . . . ,RN21) in a
space-fixed~SF! frame. By definition, a Jacobi vector relie
on either 2 atoms, or the center of mass of a fragment an
atom, or the centers of mass of 2 fragments of the system
order to simplify the notations later on, these vectors
defined sequentially in reverse order, i.e.,RN21 is the first
one, followed byRN22 until R1. Also, by convention in the
following formulation, thez body fixed ~BF! axis is taken
parallel to RN21. For example, Fig. 1 displays the set
Jacobi vectors used to describe the HFCO molecule to
considered in the next section. The interest of this formu
tion stems from the well-known simplicity15 of the KEO ex-
pressed in terms of the momenta (P1 ,P2 , . . . ,PN21) conju-
gate to the Jacobi vectors

T̂5 (
i

N21 P̂i
†
•P̂i

2m i
, ~1!

wherem i is the reduced mass associated toRi . The Jacobi
vectors are initially characterized by their spherical coor
nates (Ri ,Q i

SF,F i
SF) in the SF frame.

In order to separate out molecular rotation, a BF fram
defined accordingly to Chapuisat and Iung:9 the z axis is
taken parallel toRN21. Consequently, the first two Eule
rotationsDz(a) andDy(b) to defineGzBF axis correspond
to Dz(FN21

SF ) andDy(QN21
SF ). The frame obtained after thes

FIG. 1. Definition of the three Jacobi vectorsR3 , R2 , and R1 used to
describe the HFCO molecule.
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two rotations is calledE2. A last rotationDz(g5FN22
E2 )

aroundGzE25GzBF is defined such that thexz half plane
(x.0) is parallel toRN22.

Consequently, the system can be parametrized by
three Euler angles (a5FN21

SF ,b5QN21
SF ,g5FN22

E2 ), and
the ~3N26! BF spherical coordinates of the Jacobi vector

~i! N-1 distancesr i5Ri ,i 51, . . . ,N21;
~ii ! N-2 plane anglesu i between vectorsRN21 andRi ;
~iii ! N-3 dihedral anglesf i5F i

E22FN22
E2 ,i 51, . . . ,N

23.

By definition of the BF frame,uN21 ,fN21 , andfN22 are
fixed to zero. Furthermore, different recent studies16–18 have
shown the interest of introducing the variablesui5cosui in-
stead ofu i . The final parametrization thus consists of t
three Euler angles and 3N-6 internal variables denoted
lectively by

$qn%n51
3N265$r i ,i 51, . . . ,N21;ui ,i 51, . . . ,N22;f i ,

i 51, . . . ,N23%. ~2!

In the past, this parametrization was used as a star
point in order to express the KEO in terms of N-1 angu
momenta,19 adapted to large amplitude motions. We deri
below anew and generalexpression of the KEO aimed a
describing the rovibrational motion of semirigid molecul
as it is expressed in terms of

~i! the 3N-6 operatorsp̂n conjugate to the spherical co
ordinates:p̂n52 i\]/]qn ;

~ii ! the BF Hermitian projections (Ĵx ,Ĵy ,Ĵz) of the total
angular momentumĴ.

Only the general strategy is sketched here; details of
calculation and generalization to any set of vectors~Jacobi,
valence, satellite, . . . , or acombination of them! are given
elsewhere.20

The main steps of the calculation are the following:

~i! first, the P̂i vectors@Eq. ~1!# are substituted by thei
expression in terms of angular momentaL̂ i and radial
conjugate momentap̂r i

, using

P̂i5 p̂r i
ei2

1

r i
ei3L̂ i ,

whereei denotes the unit vector along theRi direc-
tion;

~ii ! L̂N21 is then substituted byĴ2( i 51
N22L̂ i in order to

introduceĴ;
~iii ! the angular momentaL̂ i( i 51, . . . ,N23), which are

not linked to the BF frame, are substituted by the
known expression in terms ofp̂ui

and p̂f i
;21

~iv! then, the angular momentumL̂N22, partially linked to
the BF frame, is substituted by the following expre
sion, previously derived by Gattiet al.:22
o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.



O

.

u

w

l-

ia

il-

is set

t

dra-
ex-

ss

b-
he
pa-
lly,
ed

of
ted

we

ol-
of

vec-
s

2101J. Chem. Phys., Vol. 114, No. 5, 1 February 2001 The Jacobi–Wilson method
L̂ (N22)x52cotuN22S Ĵz2 (
i 51

N23

p̂f i D
L̂ (N22)y52sinuN22p̂uN22

~3!

L̂ (N22)z5 Ĵz2 (
i 51

N23

p̂f i
,

which leads to the following general expression for the KE

T̂5T̂vib1T̂Cor1T̂Rot, ~4!

with

T̂vib5
1

2 (
nm

3N26

p̂nGnmp̂m , ~5!

T̂cor5
1

2 (
n51

3N26

(
a5x,y,z

p̂nCnaJâ1JâCnap̂n , ~6!

T̂rot5 (
ab5x,y,z

ĴaGabĴb1 ĴbGabĴa , ~7!

associated with the volume element

dV5sinb da db dg )
i 51

N23

df i )
i 51

N22

dui )
i 51

N21

dri .

The G, C, andG matrix elements are given in Appendix A
The expressions@Eqs. ~4!–~7!# apply for any numberN of
atoms and include in a very simple way the Coriolis co
plings. The general expression@Eq. ~5!# can be further sim-
plified due to the fact that theG(rr ) block is diagonal and
constant, and theG(ru) andG(rf) ones are identically zero

2T̂vib5 (
i 51

N21

Gii
(rr )p̂r i

2 1 (
i , j

N22

p̂ui
Gi j

(uu)p̂uj

1 (
i , j

N23

p̂f i
Gi j

(ff)p̂f j

1 (
i 51

N22

(
j 51

N23

$ p̂ui
Gi j

(uf)p̂f j
1 p̂f j

Gi j
(uf)p̂ui

%. ~8!

For reasons which will be discussed in the next section,
explicitly retain the abovesymmetricalformulation.

As emphasized in the Introduction, this formulation a
lows us to define a zero-order vibrational HamiltonianĤvib

o

Ĥvib
o 5

1

2 (
n,m51

3N26

~qnFnmqm1 p̂nGnm
o p̂m!, ~9!

whereGo represents theG matrix of Appendix A evaluated
at the equilibrium geometryqeq, and theF matrix corre-
sponds to the harmonic approximation for the potent
Downloaded 25 Jan 2001  to 128.32.198.138.  Redistribution subject t
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Fnm5]2V/]qn]qmuqeq
. One can then proceed along the W

son G matrix formulation,2 and definecurvilinear normal
modes$Qa% in terms of the Jacobi coordinates

Qa5 (
n

3N26

Lan
21qn . ~10!

Such a relationship enables one to use the harmonic bas

$uv1v2 , . . . ,v3N26&% diagonalizingĤvib
o as the working ba-

sis set. We can splitĤvib into

Ĥvib5Ĥvib
o 1DT̂vib1DV~q!, ~11!

where DT̂vib is obtained by substituting in Eq.~8! Gi j by
DGi j 5Gi j 2Gi j

o , and DV(q) is defined as V(q)
2Vharm(q). It should be noted thatDT̂vib does not contain
any p̂r i

contribution as theGii
(rr ) matrix elements does no

depend onq.
The structure ofDT̂vib allows this term to be treated

partly analytically by means of the relations

]

]qn
5(

a
Lan

21 ]

]Qa
. ~12!

The inside termDGi j (q) and the residual potentialDV(q)
can easily be handled by means of Gauss–Hermite qua
tures associated to the harmonic basis set, as will be
plained in the next section.

It is important to mention that the choice of thez BF axis
is crucial but not really restrictive. First, the higher the ma
mn , the smaller the Coriolis couplings as shown by Eq.~A3!.
Second, analysis of the singularities of theGi j expressions
@Eq. ~A1!# reveals that none of the plane anglesu i

BF should
be equal to zero orp in the space explored near the equili
rium geometry. As a consequence, one must choose tz
axis to avoid such singularities. This is the case of the
rametrization adopted for HFCO, as shown in Fig. 1. Fina
this method is not restricted to systems initially parametriz
by Jacobi vectors: any set of orthogonal coordinates~Radau
coordinates, for instance! can also be considered. The use
nonorthogonal coordinates is possible and trea
elsewhere.20,19

III. APPLICATION TO THE HFCO MOLECULE

In order to test the new formulation presented above,
apply it in this section to a six dimensional (J50) calcula-
tion of the bound states of the HFCO molecule. This m
ecule was recently studied by two of us in the framework
the adiabatic pseudospectral~APS! formulation.16 The
HFCO molecule has been described by the set of Jacobi
tors shown in Fig. 1. The BF frame has been defined az
parallel toOC and the O, C, and F atoms laying in thexz
plane. Specialization of Eqs.~8! and ~9! to the present case
leads to the following expressions:
o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.



2102 J. Chem. Phys., Vol. 114, No. 5, 1 February 2001 Leforestier et al.
T̂vib5
2\2

2m1

]2

]r 1
2

2
\2

2m2

]2

]r 2
2

2
\2

2m3

]2

]r 3
2

2
\2

2 F 1

m1r 1
2

1
1

m3r 3
2GF ]

]u1
~12u1

2!
]

]u1
1

1

12u1
2

]2

]f2G
2

\2

2 F 1

m2r 2
2

1
1

m3r 3
2GF ]

]u2
~12u2

2!
]

]u2
1

1

12u2
2

]2

]f2G1
\2

m3r 3
2

]

]f
~11cotu1 cotu2 cosf!

]

]f

2
\2

2m3r 3
2 F ]

]u1
sinu1 sinu2 cosf

]

]u2
1 (

i 51,2;i 8Þ i

]

]ui
sinu i cotu i 8 sinf

]

]fG1sym, ~13!
e
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of
m35
mC•mO

mC1mO
, m25

mF•mCO

mF1mCO
, m15

mH •mFCO

mH1mFCO
,

~14!

associated with the volume element dV
5dr1 dr2 dr3 du1 du2 df, and where sym means that th
last line has to be completed by its symmetric Hermit
]/]qiGi j ]/]qj→]/]qjGi j ]/]qi . The importance of writing
the KEO in symmetrical form has been stressed in the p
by Wei and Carrington.23

Following the formulation described in Sec. II, one c
define normal coordinatesQ from Eqs. ~9! and ~10!, ex-
pressed in terms of the reduced variables

qi5r i2r i eq
, i 51,2,3

qi 135ui2ui eq
, i 51,2

q65f2feq,

in order to set up the working basis set

$Fn1 , . . . ,n6
~Q!%5wn1

~Q1!3•••3wn6
~Q6!%. ~15!

The above basis set is truncated such that only the s
located below some energy thresholdESp are kept: En

o

<ESp. This results in a nondirect product basis set which
handled as described in Appendix B.

We give below the missing contribution toĤvib
J50 @Eq.

~11!#

DĤ[DT̂vib1DV~q!52
\2

2 (
n,m54

6
]

]qn
@Gnm~q!

2Gnm~qeq!#
]

]qm
1V2Vharm, ~16!

where theGnm matrix elements are defined from Eq.~13!
above. One can first note that no radial derivative term
pears in this expression as they are exactly handled in theĤo

description. Furthermore, the terms in Eq.~16! display small
amplitudes at moderate energies as they all appear as co

TABLE I. Root-mean-square deviation as defined by Eq.~19!, and maxi-
mum deviation observed.

h51.0 h51.1 h51.2 h51.3 h51.4

rms (cm21) 0.60 0.14 0.07 0.04 0.01

Max(uEn
h82En

hu) (cm21) 14.7 4.1 0.3 0.2 0.05
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tes

s
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tions with respect to the equilibrium geometryqeq. As men-
tioned previously@Eq. ~12!#, all the derivative terms can b
evaluated analytically in the normal modes basis set

]

]qi
wna

~Qa!5(
a

La i
21Amava

2\
$Anawna21~Qa!

2Ana11wna11~Qa!%. ~17!

We now make explicit the pseudospectral scheme to be u
for handling both theDG[G(q)2G(qeq) matrix and the
potential termDV(q)[V(q)2Vharm(q). As the working ba-
sis set@Eq. ~15!# is defined in terms of normal modes$Q%, it
is easier to use the same coordinates in order to expres
residual terms:D f (q)→D f (q(Q)). Namely, this term is
computed on the six-dimensional grid$Q1a3•••3Q6 f%, the
points of which correspond to the abscissas of Gauss H
mite quadratures associated to the different coordina
$Qa%. In order to reduce its overall size, this grid is truncat
to keep only points corresponding to a potential energy low
than some thresholdEGr defined later on.

The action of the residualD f on a wave function

C~Q!5(
n

cnFn~Q! ~18!

is then performed by switching to the grid representation
means of the sequential transformations

can2 , . . . ,n6
5(

n1

Ran1

(1) cn1 , . . . ,n6

. . . . . . . . . . . . . . . . . .

cab, . . . ,f5(
n6

Rf n6

(6) cab, . . . ,n6
.

In the above relations,R(a) stands for the unitary collocation
matrix associated with the Gauss quadrature.24 After acting
D f , diagonal in the grid representation, one switches bac
the spectral representation by means of the inverse~trans-
posed! transformations. Dealiasing25 can be enforced by us
ing rectangular collocation matricesR(a) associated with a
larger number of grid points. This was achieved by sett
the thresholdEGr at a value somewhat larger than the o
ESp used for the basis set:EGr5h•ESp. The h parameter
has to be varied until convergence of the energy levels
interest, typically up to half the energy thresholdESp. As a
o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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Downloaded 25 
TABLE II. Comparison of experimental levels~in cm21) with those obtained in the present formulation. Th
coefficient given corresponds to the leading term in the expansion of the eigenvector onto the normal
basis set. All theassignedexperimental levels are reported in this table.

Exp. ~Ref. 28! ESp52.4 DE(ESp52.6) Coef. n1 n2 n3 n4 n5 n6

662.6 660.9 20.02 0.98 0 0 0 0 1 0
1011.2 1020.4 20.06 0.98 0 0 0 0 0 1
1064.9 1047.3 20.03 0.94 0 0 0 1 0 0
1324.1 1323.8 20.04 0.96 0 0 0 0 2 0
1342.3 1392.2 20.02 0.97 0 0 1 0 0 0
1719.3 1697.1 20.04 0.90 0 0 0 1 1 0
1836.8 1830.0 20.02 0.96 0 1 0 0 0 0
2115.6 2076.2 20.15 0.85 0 0 0 2 0 0
2412.0 2432.3 20.19 0.91 0 0 1 1 0 0
2494.2 2487.8 20.16 0.93 0 1 0 0 1 0
2841.0 2845.3 20.08 0.94 0 1 0 0 0 1
2895.0 2877.8 20.31 0.88 0 1 0 1 0 0
2981.2 3021.7 25.26 0.89 1 0 0 0 0 0
3150.6 3147.8 20.16 0.91 0 1 0 0 2 0
3652.8 3642.2 21.16 0.88 0 2 0 0 0 0
3838.1 3859.5 20.43 0.91 0 1 0 0 0 2
4302.9 4297.3 21.34 0.81 0 2 0 0 1 0
4307.5 4346.0 22.29 0.86 1 0 0 0 2 0
4493.9 4509.1 26.02 0.66 0 1 0 0 1 2
4653.1 4652.4 21.38 0.85 0 2 0 0 0 1
4705.2 4691.7 22.07 0.77 0 2 0 1 0 0
4817.6 4854.0 21.88 0.87 1 1 0 0 0 0
4955.0 4955.2 21.79 0.84 0 2 0 0 2 0
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test, for a given basis set defined fromESp51.8 eV, we
selected all the eigenvalues$En

(h)% up to En<1.1 eV. We
report in Table I how this changes the root-mean-squ
~rms! deviation between two sets corresponding to succ
sive valuesh andh85h10.1

rms5A1

N (
n

~En
(h)82En

(h)!2. ~19!

It can be seen that anh value of 1.2 leads to a convergenc
on the rms better than 0.1 cm21, and a maximum deviation
of the order of 0.3 cm21.

The HFCO system has been described by the global
tential energy surface of Yamamoto and Kato.26 The formu-
lation, as presented above, is basically designed to be
within an iterative scheme such as Lanczos10 or the filter
diagonalization method.27 The basic operation consists of a
plying the Hamiltonian operatorĤ on a wave function ex-
pressed in the$Fn% basis set. In the study presented here,
were essentially interested in the low-lying levels in order
compare to experimental results. For simplicity of the cal
lations, we chose to directly generate the Hamiltonian ma
ces, ofA8 (n6 even! andA9 (n6 odd! symmetries, by apply-
ing Ĥ onto each element of the basis set. These bases
defined by keeping all the states located below an ene
threshold of 2.4 eV. The resulting matrices, of dimensio
6538 and 4709, respectively, have then been diagonalize
the standard QL algorithm. Due to the high quality of t
working basis set, labeling of the energy levels can be d
from the leading expansion coefficient. Table II below p
sents a comparison of the assigned experimental leve28

with the ones calculated in our new formulation.
Jan 2001  to 128.32.198.138.  Redistribution subject t
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In order to test the convergence of the reported ene
levels with respect to the basis set size, we also displa
Table II their energy changes as computed with an ene
thresholdESp set at 2.6 eV. The resultingA8 andA9 bases
were of dimensions 10 466 and 7771, respectively. For s
large values, direct diagonalization was no longer an opt
due to core memory restriction. We used instead a stra
Lanczos algorithm10 in order to converge the energy leve
of interest. One can check that states below 2000 and 4
cm21 of internal excitation energy are converged within 0
and 1 cm21, respectively. The main exception concerns t
1n1 level ~C–H stretch!: this mode is strongly anharmonic
x11;260 cm21, and is badly represented in a pure harmo
basis set as done presently. This problem can be easily fi
by contracting the$wn1

% basis set in order to include most o
the anharmonicity, or preferably to perform vibrational SC
on the whole basis set.

IV. DISCUSSION

We have presented in this study a new formulati
aimed at computing the energy levels of a semirigid m
ecule. Based on an initial description of the system in ter
of Jacobi vectors, it leads to a very compact expression of
KEO. By defining curvilinear normal modes from these J
cobi coordinates, one can then set up an efficient zero-o
harmonic HamiltonianĤo, similar to the Wilson formula-
tion. The main advantage comes from the simplicity of t
residual contributionDĤ5DT̂vib1DV(q).

It was shown that the calculations can be entirely co
ducted in the associated normal basis set, and then be
from an exact~analytic! treatment of the residual derivativ
o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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terms ]/]Qa . Use of a pseudospectralscheme based o
Gauss Hermite quadratures allowed us to compute any
sidual function type termD f (q) to an arbitrary accuracy. I
also permits us to consider ultralarge basis sets as no Ha
tonian matrix representation is ever performed. It must
stressed here that due to using different representat
~spectral and grid!, hermiticity is only achieved if one retain
the symmetricalformulation of Eqs.~8! and ~16!.

The advantage of using a normal mode basis set
been shown when labeling the energy levels: mere inspec
of the leading coefficient in the eigenvector expansion
rectly gives the associated labels. This is in contrast wit
straight Jacobi formulation where assignment proceeds
visual inspection or by fitting the energy levels to some sp
troscopic Hamiltonian.16,29

Not considered in this preliminary study is the possib
ity of performing JÞ0 calculations. In that case, one ca
define a zero-order rovibrational HamiltonianĤvr

o by includ-
ing the rotational energy termT̂rot @Eq. ~7!# evaluated at the
equilibrium geometry, and possibly some Coriolis contrib
tions.

In the present study, symmetry could be straightf
wardly taken into account as it was governed by the s
Q6[f2feq coordinate. For more involved cases, symme
can be implemented by switching from Jacobi to symme
adapted coordinates. In the case of H2CO, for example,
Bramley and Carrington5 have thus recast the formulation
terms of Radau coordinates for the 2 hydrogen atoms.

In its present formulation, this approach cannot han
large amplitude motion as its efficiency relies on an equi
rium reference geometryqeq. However, its extension to suc
a case can be envisioned by means of the reaction
Hamiltonian approach of Miller,30,31 which makes use o
normal modes defined locally along some reaction coo
nate.

Finally, the main improvement to the present meth
should come from a vibrational SCF1 treatment of the pri-
mary harmonic basis set. This, for example, should cure
anharmonicity problem associated with the C–H stre
mode as encountered in this preliminary study. It should a
help to improve the basis set at higher energy if a norma
local mode transition occurs. Further work along this dire
tion is in progress.

APPENDIX A: KINETIC ENERGY COEFFICIENTS

We give below the coefficients appearing in the KE
expression@Eqs. ~5!–~7!#. These expressions are valid fo
any N-atom molecule described in terms ofN-1 Jacobi vec-
tors, m i being the reduced mass associated withRi . These
vectors are defined sequentially in reverse order, i.e.,RN21 is
the first one, followed byRN22 until R1. Also, by conven-
tion, thez BF axis is taken parallel toRN21, and thexz half
plane (x.0) is parallel toRN22. The G submatrices are
symmetrical, i.e.,Gi j

(uf)5Gji
(fu) , and by definitionfN22

50.
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1. Vibrational terms

Gii
(rr )5

1

m i
; Gi j

(rr )50~ j Þ i !, i 51, . . . ,N21,

Gi j
(uu)5

1

mN21r N21
2

sinu i cos~f i2f j !sinu j

1
d i j

m i r i
2 ~sinu i !

2, i , j 51, . . . ,N22,

Gi j
(uf)5

1

mN21r N21
2

sinu i$cotu j sin~f i2f j !

2sinf i cotuN22%,

i 51, . . . ,N22,j 51, . . . ,N23,

Gi j
(ff)5

1

mnr N21
2 $cotu i cotu j cos~f i2f j !1cot2 uN22

2cotuN22~cosf j cotu j1cosf i cotu i !%

1
d i j

m i r i
2 sin2 u i

1
1

mN22r N22
2 sin2 uN22

,

i , j 51, . . . ,N23. ~A1!

2. Rotational terms

Gxx5Gyy5
1

mN21r N21
2

,

Gzz5
cot2 uN22

mN21r N21
2

1
1

mN22r N22
2 sin2 uN22

,

~A2!
Gxy5Gyx5Gyz5Gzy50,

Gxz5Gzx5
cotuN22

mN21r N21
2

.

3. Coriolis terms

Cia
(r )50,

Cix
(u)5

sinu i sinf i

mN21r N21
2

,

Ciy
(u)52

sinu i cosf i

mN21r N21
2

,

Ciz
(u)5

sinu i sinf i cotuN22

mN21r N21
2

, ~A3!

Cix
(f)5

2cotuN221cosf i cotu i

mN21r N21
2

,

Ciy
(f)5

sinf i cotu i

mN21r N21
2

,

o AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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TABLE III. M log M scaling law displayed by the whole scheme as a function of the basis set sizeM.

Energy thresholdESp ~eV! 1.4 1.9 2.2 2.4 2.6

Basis set sizeM 255 1619 3895 6538 10 466
CPU timeT ~s! 1.03 9.97 29.5 39.2 64.8
T/(M log M) 1.7~23! 1.9~23! 2.1~23! 1.6~23! 1.6~23!
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Ciz
(f)5

cotuN22~2cotuN221cosf i cotu i !

mN21r N21
2

.

APPENDIX B: NONDIRECT PRODUCT BASIS SET

In order to benefit from the physical meaning of th
normal modes, we chose to use a nondirect product basis
defined by keeping only states$Fn(Q)% @Eq. ~15!# below
some given thresholdESp: En

o<ESp. The idea behind such a
strategy relies on the fact that for moderate excitation en
gies, the coupling should be weak. From perturbation theo
it is well known that states located far from the perturbe
level should play a minor role.

This choice allows for a drastic reduction in the basis s
size as compared to a direct product definition. For examp
in the case of the HFCO molecule considered here, the siz
reduced from about 780 000 down to 6538 for an ener
threshold set atESp52.4 eV. A second improvement con
cerns the energy spread of the basis, as this is crucial for
efficiency of any iterative scheme used in a direct metho
For the example given above, the direct product basis d
plays an upper energy threshold of about 10 eV.

The drawback is that handling a nondirect product ba
generally results in more bookkeeping when applying t
Hamiltonian operator on a wave function expressed in suc
basis set. In order to minimize this extra cost, we have us
the following strategy.

Associated with the truncated basis set$Fn(Q)% is a list
$Rn%, whereRn stands for the rank ofn in the virtual direct
product basis set:

Rn5~~~~~n1•~N211!1n2!•~N311!1n3!•~N411!

1n4!•~N511!1n5!•~N611!1n6!,

andNa stands for the maximum occupation number in mo
Qa . The $Fn(Q)% basis set is naturally ordered by increa
ing values ofRn .

The action of an operator such as]/]Q1 on a functionC
known by its expansion coefficients$cn% @Eq. ~18!# produces
two arrays$cn

(2)% and$cn
(1)% such as@see Eq.~17!#

H cn121n2 . . .
(2) [Am1v1

2\
An121cn1n2 . . . J ,

and a similar expression for$cn
(1)%.

The important point is that these two new arrays will st
be ordered by increasing values of their associated ra

$Rn
(2)% and $Rn

(1)%, respectively, even for a nondirect prod
uct basis set. Furthermore, these new values can be stra
forwardly computed as
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Rn161n2 . . .
(6) 5Rn1n2 . . . 6 )

a52

6

~Na11!.

The result of]/]Q1$cn% is finally obtained by merging eac
list $cn

(6)% to a unique accumulation list. For the calculatio
presented in this study, less than 2% of the CPU time is sp
in merging.

In order to show that using a nondirect product basis
does not hamper the efficiency of the whole scheme,
report in Table III the cost of applying the Hamiltonian o
eratorĤ on a functionC(Q) for different basis set sizesM.
Each of these bases corresponds to a given energy thres
ESp, ranging from 1.4 to 2.6 eV. The last line of this tab
reveals that the scheme displays anM logM scaling law.
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