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The Jacobi—Wilson method: A new approach to the description
of polyatomic molecules

C. Leforestier, A. Viel,” F. Gatti,” C. Mufioz, and C. lung
Laboratoire Structure et Dynamique des Systs Moleulaires et Solides (UMR 5636), CC 014,
Universitedes Sciences et Techniques du Languedoc, 34095 Montpellier Cedex 05, France

(Received 21 September 2000; accepted 9 November)2000

We present a new method adapted to the calculation of excited rovibrational states of semirigid
molecules. It first relies on a description of the molecule in terms of polyspherical coordinates of

Jacobi vectors, in order to obtain a compact expression for the kinetic energy ofg@Xofhis
general description is then adapted to the molecule considered by defimintinear normal modes

from the corresponding zero order harmonic Hamiltorfrfh= T(qeo)+vharm(q), the solutions of

which are being used as the working basis set. The residual kinetic Adrris treated mainly
analytically in this basis, and displays no radial contribution. Anharmonic coupidq) is
handled by means of a pseudospectral scheme based on Gauss Hermite quadratures. This method is

particularly adapted tdirect iterative approaches which only require the actiorHobn a vector,
without the need of the associated matrix, thus allowing ultralarge bases to be considered. An
application to the excited vibrational states of the HFCO molecule is presented. It is shown in this
example that energy levels can be trivially assigned from the leading expansion coefficient of the
associated eigenvector. @001 American Institute of Physic§DOI: 10.1063/1.1337048

I. INTRODUCTION components.Such a large number of terms first makes more
) o  involved the actual implementation of the method. It also
Calculation of rovibrational energy levels of polyatomic means that it will be more difficult to define a zero-order

molecules, beyond the normal modes approximation, S’t“‘—|amiltonian HO from which the working basis set is to be
represents a challenging task. A powerful tool, the vibra-

. . . . built, usually as its eigenstates. On the other hand, Jacobi
tional self-consistent fieldSCH method, has been intro- y g

S coordinates display an extremely simple KEO with cross-
duced by Bowmahto this aim. The SCF steper seallows derivative terms only appearing between angular coordi-

the calculation to take into account both the anharmonic be- 2 -
nates. Such a property makes its implementation very easy

havior of each mode and part of the intermode coupling . i -
through a mean-field definition. The subsequent configuras[—)m does not provide a good zero-order description of bound

L : L . molecular states: Jacobi coordinates do not correspond to
tion interaction procedure explicitly brings the full correla- . . S

. : . : . actual physical motions, except in limiting cases such as
tion between the modes. In its usual implementation, thlﬁ_| 0.8 where th Imost coincide with valen rdinat
method relies on a rectilinear definition of the normal’ 2-2 ere they aimost coincide alence coordina’es.

modes’ due to its simplicity. However, this formulation re- In this paper, we present a new method which combines

duces the efficiency of the method when excited states are 5l?e simplicity of the Jacobi description with the efficiency of

interest, or if overall rotation is explicitly considered. Con- j[he Wilson normal modes approach. It first consists of recast-

sequently, many studies of small excited polyatomibs ( ing the problem in a collision-type formulation by means of

—4-5) made use so far of a curvilinear description of thepolyspherical coordinatésThis formulation leads to a very
molecules, be it in valenéer Jacobi typé:” compact form of the KEO and allows for an easy implemen-

For semirigid molecules, valence coordinates are usuall§ation of the rotational terms. This general description is then
considered to be more physically grounded as they closel§daptedto the molecule of interest by definingurvilinear
resemble the actual stretch or bend motions. In fact, this i§ormal modes from a zero-order harmonic Hamiltoriéth
true essentially at high energy in the local modes regime, bufe solutions of which are being used as the working basis
it is not so well verified at low energy when normal modesset. As a result, only the differenéé—H®° has to be explic-
prevail. However, the kinetic energy operat®¢EO) dis- itly consideredH° being trivially handled. Such a scheme is
plays an intricate expression, with numerous coupling termgarticularly efficient when used in conjunction with an itera-
contributing both to the vibration and rotation—vibration tive direct method®-*?Indeed, defining a physically adapted

basis set from the eigenstatestﬂ is equivalent to precon-

@Electronic mail: lefores@Isd.imov-montp2.fr ditioning the iterative method by means B°. 1t is well

Ypresent address: Department of Chemistry, University of California, Ber PSR
keley, CA 94720, known that such a preconditioning step greatly enhances or

9Present address: Theoretische Chemie, Ruprecht-Karls Universita even makes possible the qonvergence of thes_g methods.
Neuenheimer Feld 229, D-69120 Heidelberg, Germany. One should also mention the use of curvilinear normal
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FIG. 1. Definition of the three Jacobi vectoRy, R,, and R; used to
describe the HFCO molecule.

coordinates by Sibert and co-workErand Quadé? In their

case, these normal modes were defined from a Hamiltonia!

Leforestier et al.

two rotations is calledE,. A last rotation DZ(«yzflbff_2
aroundGz52=G 72" is defined such that thez half plane
(x>0) is parallel toRy_».

Consequently, the system can be parametrized by the
three Euler angles o=®3 ;,8=05",,y=®.2,), and
the (3N—6) BF spherical coordinates of the Jacobi vectors

(i) N-1 distances;=R;,i=1,... N—1;

(i)  N-2 plane angle®; between vectorKy_; andR;;
. E E .

(iii) N-33 dihedral angles¢i=® 2—®2,,i=1,... N

By definition of the BF framefy_1,¢n_1, and ¢y_, are
fixed to zero. Furthermore, different recent stutfie® have
shown the interest of introducing the variablgs- cosé, in-
stead of#;. The final parametrization thus consists of the
three Euler angles and 3N-6 internal variables denoted col-
Iﬁctively by

operator written in terms of internal coordinates, and ex-
panded around the equilibrium geometry. Subsequent calcu-
lations then relied on perturbation theory.

The outline of this paper is as follows. In Sec. Il, we
recall the Jacobi polyspherical parametrization of a mol-
ecule, and then present the resulting KEO. Section IIl gives
an example of the new approach as applied to a six dimen-
sional study of the bound states of the HFCO molecule. Fi-
nally, Sec. IV concludes on further possible improvements o
this approach.

{anpary®={r;.i=

1,...N=-1;u,i=1,... N=2;¢,,

i=1,...N-3 )

In the past, this parametrization was used as a starting
point in order to express the KEO in terms of N-1 angular
momenta® adapted to large amplitude motions. We derive

below anew and generaéxpression of the KEO aimed at
describing the rovibrational motion of semirigid molecules

II. KINETIC ENERGY OPERATOR IN A JACOBI
POLYSPHERICAL PARAMETRIZATION (i)

In this approach, an N atom system is initially param-
etrized by N-1 Jacobi vectorsR¢,R,, ... ,Ry_1) in a (i)
space-fixedSF) frame. By definition, a Jacobi vector relies
on either 2 atoms, or the center of mass of a fragment and an

as it is expressed in terms of

the 3N-6 operatorp,, conjugate to the spherical co-
ordinatesp,= —i%a/dq,;

the BF Hermitian projectionsJ(,J,,J,) of the total
angular momentund.

atom, or the centers of mass of 2 fragments of the system. 1@nly the general strategy is sketched here; details of the
order to simplify the notations later on, these vectors arecalculation and generalization to any set of vectdescobi,

defined sequentially in reverse order, iBy_; is the first

valence, satellite . ., or acombination of themare given

one, followed byRy_, until R,. Also, by convention in the elsewhere®

following formulation, thez body fixed (BF) axis is taken
parallel toRy_;. For example, Fig. 1 displays the set of
Jacobi vectors used to describe the HFCO molecule to b@)
considered in the next section. The interest of this formula-
tion stems from the well-known simplicity of the KEO ex-

pressed in terms of the momentd; (P, ... ,Py_1) conju-
gate to the Jacobi vectors
N-1 &t 7
A PI . PI
T= , 1
zi 2pi @

where u; is the reduced mass associatedRto The Jacobi
vectors are initially characterized by their spherical coordi-,...
nates R;,0°", &) in the SF frame. (if)
In order to separate out molecular rotation, a BF frame is
defined accordingly to Chapuisat and Iththe z axis is
taken parallel toRy_;. Consequently, the first two Euler (iv)
rotationsD,(a) andD () to defineGZz°" axis correspond
toD,(Py" ;) andD(OR" ;). The frame obtained after these

The main steps of the calculation are the following:

first, the P, vectors[Eq. (1)] are substituted by their
expression in terms of angular momeﬁq-aand radial
conjugate momentg, , using

- 1 R
Pi=p&— —&xLi,
|
wheree denotes the unit vector along th® direc-
tion;
Ln_1 is then substituted by—3N"2[; in order to
introduceJ;

the angular momentg;(i=1, ... N—3), which are
not linked to the BF frame, are substituted by their

known expression in terms @f, andp,;*!
then, the angular momentuiny,_», partially linked to

the BF frame, is substituted by the following expres-
sion, previously derived by Gattit al*2
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A N Fom=0°V/90,d0mlq . One can then proceed along the Wil-
L n_2jx= — COtOy o I,— > o ormo : "
(N-2)x= — COlON—2| J7 = Py, son G matrix formulatios, and definecurvilinear normal
modes{Q,} in terms of the Jacobi coordinates

IA—(N*Z)y:_Sin‘gN*ZE)uNfz 3 3N-6
- Q.= ; L oGn- (10)
i

I:(N—Z)zzjz_ 21 F3¢i,

Such a relationship enables one to use the harmonic basis set
. . . ~ 0 .
which leads to the following general expression for the KEO:{|_U 102, - .- Wan-e)} diagonalizingHy;, as the working ba-

sis set. We can splifl;, into

T= -’I\—vib + -’I\—Cor"' -,I\—Rota (4) R R R
. Huib=Hip+ AT, +AV(Q), (1)
with
aN-6 where AT, is0 obtained by substituting in Ed8) G;; by
A - - AG;;=G;; —G;;, and AV is defined as V
Tvb=75 E PnGnmPm 5 ! ! Y (@) IS (q)
2 ™ —Vham{@)- It should be noted thaAT,;, does not contain
any p;, contribution as theG{"”’ matrix elements does not
4 1 e sl T ool s ® depend org.
2 W Kyz Prtnarla™ JatnaPn. The structure ofAT,;, allows this term to be treated
partly analytically by means of the relations
?rot: 2 jar aﬁjﬁ+ jﬁr aﬁja ' (7)
aB=Xx,y,z d -1 d
o =2 Lan o (12)
associated with the volume element On "o Qa
N-3 N-2  N-1 The inside termAG;;(q) and the residual potentialV(q)
dV=singdadp dYH de; H du, H dr,. can easily be handled by means of Gauss—Hermite quadra-
=1 1 =1

1= tures associated to the harmonic basis set, as will be ex-
_ ) ) ) plained in the next section.

TheG, C, andI’ matrix elements are given in Appendix A. It is important to mention that the choice of ta@F axis
The expression$Egs. (4)—(7)] apply for any numbeN of s crycial but not really restrictive. First, the higher the mass
atoms and include in a very simple way the Coriolis CoU-,,  the smaller the Coriolis couplings as shown by &).
plings. The general expressipBg. (5)] can be further sim-  gecond, analysis of the singularities of #6¢ expressions
plified due to the fact that th& block is diagonal and [Eq. (AL)] reveals that none of the plane ang¥ should
constant, and the&™) andG® ones are identically zero g equal to zero ofr in the space explored near the equilib-
rium geometry. As a consequence, one must choose the
axis to avoid such singularities. This is the case of the pa-
rametrization adopted for HFCO, as shown in Fig. 1. Finally,
this method is not restricted to systems initially parametrized

N—-1 N-2
2-’i-vib: ;I. Gi(i”)f)rzi_’_ IE] ﬁuiGi(jUU)buj

NT3 - by Jacobi vectors: any set of orthogonal coordindRedau
+ .z p¢iGi(j¢¢)p¢j coordinates, for instange&an also be considered. The use of
! nonorthogonal coordinates is possible and treated
N-2 N-3 elsewherg®1°

t 2 2 PGPy Py G Ry @)

For reasons which will be discussed in the next section, wéll. APPLICATION TO THE HFCO MOLECULE
explicitly retain the aboveymmetricaformulation.
As emphasized in the Introduction, this formulation al-

lows us to define a zero-order vibrational Hamiltonfaf),

In order to test the new formulation presented above, we
apply it in this section to a six dimensional£€0) calcula-
tion of the bound states of the HFCO molecule. This mol-
IN-6 ecule was recently studied by two of us in the fralr671ework of
Mo T " ~0 5 the adiabatic pseudospectrdAPS formulation:® The
Vb2 n,gzl (GnF o+ PaGnmPr). © HFCO molecule has been described by the set of Jacobi vec-
tors shown in Fig. 1. The BF frame has been defined as
whereG° represents th& matrix of Appendix A evaluated parallel toOC and the O, C, and F atoms laying in tke
at the equilibrium geometry.,, and theF matrix corre-  plane. Specialization of Eq$8) and(9) to the present case
sponds to the harmonic approximation for the potentialleads to the following expressions:
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. —h* 9 K% 9 K2 9 R 1 1 d , 1 &
T~ =5 2 o2 2| 2 | g (AUt 2 2
2p1 grf 2m2 gr3 2m3 9r3 2| ugrd o ugri)| 9us i 1-uf 9
A% 1 1] o 1w J 1 7| #? (14 COLd, Cotd, cose) J
——=|—+—||—@1-uj)—+———|+ —— —(1+cotb, coth, cos¢) —
2 | pars  pard)[ 9u2 “oug 1-u3 9¢?|  pari 9¢ ' ’ I
he in@, sind ¢a+2 &'0t0'¢&+ (13
- ——sin 6, sinf, cos¢ — —sin @; cot6;, sing — | +sym,
2ugr?|dug TR My i U ! dp
|
_ Mc-mg ~ Mg-Mco My Meco tions with respect to the equilibrium geometyy,. As men-
K3 merme’ 2 metmee’ MY myt meco’ tioned previously{Eq. (12)], all the derivative terms can be

(14) evaluated analytically in the normal modes basis set

associated with the volume element dV

d -1 Ma®q
=dr,dr,drzdu; du,d¢, and where sym means that the T‘Pna(Qa)zz L, T\/n—a%{l@a)

last line has to be completed by its symmetric Hermitian :

dldq;G;j 9/ 99— a1 3q;G;j9/ dq; . The importance of writing —Jn.+1 )L (17)
the KEO in symmetrical form has been stressed in the past «*1¢n,+1(Qw))
by Wei and Carringtoi® We now make explicit the pseudospectral scheme to be used

Following the formulation described in Sec. Il, one canfor handling both theAG=G(q) — G(dey matrix and the
define normal coordinateQ from Egs. (9) and (10), ex-  potential termAV(q)=V(q) — Vhard). As the working ba-

pressed in terms of the reduced variables sis sefEq. (15)] is defined in terms of normal modé®)}, it
qi=r—r; =123 is easier to use the same coordinates in order to express the
ed residual terms:Af(q)—Af(q(Q)). Namely, this term is
Qi+a=Ui— Ui, =12 computed on the six-dimensional gii@;,X - - - X Qg¢}, the
Qo= b— be points of which correspond to the abscissas of Gauss Her-
@ mite quadratures associated to the different coordinates
in order to set up the working basis set {Q.}. In order to reduce its overall size, this grid is truncated
{‘Dnl _____ ne(Q)}: (Pnl(Ql) N ‘PnG(QG)}- (15) to keep only points corresponding to a potential energy lower

than some thresholBg, defined later on.
The above basis set is truncated such that only the states The action of the residualf on a wave function
located below some energy threshdits, are kept: Ep
<Egp. This results in a nondirect product basis set which is WV(O)= P 18
handled as described in Appendix B. @ ; ¥i®n(Q) 18

- cai o =0
(11)}/\/8 give below the missing contribution ty, " [Eq. is then performed by switching to the grid representation by

means of the sequential transformations

o n2 2 g
AR=ATp+AV(Q) == 5 2 = —[Gun(q)
nm=4 dQn

J
_Gnm(qecx)]&q +V_Vharma (16) ..................
m

where theG,,,, matrix elements are defined from E@.3) B ()

above. One can first note that no radial derivative term ap- ap, .., f‘% ane‘/’ab ----- Ne’

pears in this expression as they are exactly handled iRithe

description. Furthermore, the terms in Efj) display small  In the above relation®}(®) stands for the unitary collocation

amplitudes at moderate energies as they all appear as corréatrix associated with the Gauss quadratfirafter acting

Af, diagonal in the grid representation, one switches back to

the spectral representation by means of the invéirses-

posed transformations. Dealiasifijcan be enforced by us-

ing rectangular collocation matricd®®) associated with a

larger number of grid points. This was achieved by setting
7=10 »=11 »=12 =13 7=14 the thresholdEg, at a value somewhat larger than the one

rms (cntY) 060 014 007 004 o001 Espused for the basis seEg,= 7-Eg,. The n parameter

Max(EZ —EZ) (cm'?) 147 41 0.3 0.2 0.05 has to be varied until convergence of the energy levels of

interest, typically up to half the energy thresh&d,. As a

TABLE |. Root-mean-square deviation as defined by B®), and maxi-
mum deviation observed.
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TABLE II. Comparison of experimental leve{@g cm™!) with those obtained in the present formulation. The
coefficient given corresponds to the leading term in the expansion of the eigenvector onto the normal modes
basis set. All theassignedexperimental levels are reported in this table.

Exp. (Ref. 28 Esp=2.4  AE(Egp=2.6) Coef. ny n, N3 ny Ns Ng
662.6 660.9 -0.02 098 0 0 0 0 1 0
1011.2 1020.4 —0.06 098 0 0 0 0 0 1
1064.9 1047.3 -0.03 094 0 0 0 1 0 0
1324.1 1323.8 —0.04 096 0O 0 0 0 2 0
1342.3 1392.2 -0.02 097 0 0 1 0 0 0
1719.3 1697.1 —0.04 090 O 0 0 1 1 0
1836.8 1830.0 -0.02 096 0O 1 0 0 0 0
2115.6 2076.2 -0.15 085 0 0 0 2 0 0
2412.0 2432.3 -0.19 091 O 0 1 1 0 0
2494.2 2487.8 -0.16 093 0 1 0 0 1 0
2841.0 2845.3 -0.08 094 0 1 0 0 0 1
2895.0 2877.8 -0.31 088 O 1 0 1 0 0
2981.2 3021.7 -5.26 089 1 0 0 0 0 0
3150.6 3147.8 -0.16 091 0O 1 0 0 2 0
3652.8 3642.2 -1.16 088 0 2 0 0 0 0
3838.1 3859.5 -0.43 091 0O 1 0 0 0 2
4302.9 4297.3 -1.34 081 O 2 0 0 1 0
4307.5 4346.0 -2.29 086 1 0 0 0 2 0
4493.9 4509.1 -6.02 066 0O 1 0 0 1 2
4653.1 4652.4 -1.38 085 O 2 0 0 0 1
4705.2 4691.7 —-2.07 077 0 2 0 1 0 0
4817.6 4854.0 -1.88 087 1 1 0 0 0 0
4955.0 4955.2 -1.79 084 0 2 0 0 2 0

test, for a given basis set defined frofy,=1.8 eV, we In order to test the convergence of the reported energy

selected all the eigenvalue{Eﬁ(’)} up to E;<1.1 eV. We levels with respect to the basis set size, we also display in
report in Table | how this changes the root-mean-squardable I their energy changes as computed with an energy
(rm9) deviation between two sets corresponding to succeshresholdEs, set at 2.6 eV. The resulting’ and A" bases
sive valuesy and ' = 7+0.1 were of dimensions 10466 and 7771, respectively. For such
large values, direct diagonalization was no longer an option
1 D) (2 due to core memory restriction. We used instead a straight
MS=N\'N ; (Ex” —Ey")% (19 | anczos algorithf in order to converge the energy levels
of interest. One can check that states below 2000 and 4000
It can be seen that an value of 1.2 leads to a convergence cm™* of internal excitation energy are converged within 0.1
on the rms better than 0.1 ¢rh, and a maximum deviation and 1 cm?, respectively. The main exception concerns the
of the order of 0.3 cm?®. 1v, level (C—H stretch: this mode is strongly anharmonic,
The HFCO system has been described by the global po¢;;~—60cmi 1, and is badly represented in a pure harmonic
tential energy surface of Yamamoto and K&dhe formu-  basis set as done presently. This problem can be easily fixed
lation, as presented above, is basically designed to be uséy contracting the ¢, } basis set in order to include most of
within an iterative scheme such as LancZosr the filter  the anharmonicity, or preferably to perform vibrational SCF
diagonalization methotf. The basic operation consists of ap- on the whole basis set.
plying the Hamiltonian operatdfl on a wave function ex-
pressed in théCDn} basis set: In the study presenteq here, w8y piscusSION
were essentially interested in the low-lying levels in order to
compare to experimental results. For simplicity of the calcu- We have presented in this study a new formulation
lations, we chose to directly generate the Hamiltonian matria2imed at computing the energy levels of a semirigid mol-
ces, ofA’ (ng even andA” (ng odd) symmetries, by apply- €cule. Based on an initial description of the system in terms
ing H onto each element of the basis set. These bases wefé Jacobi vectors, it Iea.d's to a very compact expression of the
defined by keeping all the states located below an energ{fEO- By defining curvilinear normal modes from these Ja-
threshold of 2.4 eV. The resulting matrices, of dimension<0Pi coordinates, one can then set up an efficient zero-order
6538 and 4709, respectively, have then been diagonalized Bjarmonic HamiltoniarH®, similar to the Wilson formula-
the standard QL algorithm. Due to the high quality of thetion. The main advantage comes from the simplicity of the
working basis set, labeling of the energy levels can be doneesidual contributiolMH=AT,;,+AV(q).
from the leading expansion coefficient. Table Il below pre- It was shown that the calculations can be entirely con-
sents a comparison of the assigned experimental fvelsducted in the associated normal basis set, and then benefit
with the ones calculated in our new formulation. from an exactanalytig treatment of the residual derivative
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terms 9/0Q,,. Use of apseudospectrascheme based on 1. Vibrational terms

Gauss Hermite quadratures allowed us to compute any re- 1

sidual function type ternAf(q) to an arbitrary accuracy. It G{"M=—; Gi7=0(j#i), i=1,...N-1,
also permits us to consider ultralarge basis sets as no Hamil- H

tonian matrix representation is ever performed. It must be 1
stressed here that due to using different representations G|'")=——-——sin6; cod ¢;— ¢;)sing,
(spectral and grid hermiticity is only achieved if one retains Mn-1TN-1
the symmetricalformulation of Egs.(8) and(16). S
The advantage of using a normal mode basis set has +%(sin 6)% i,j=1,...N-2,
been shown when labeling the energy levels: mere inspection il
of the leading coefficient in the eigenvector expansion di-
rect!y gives thg associat.ed labels. Thi; is in contrast with a Gi(juqS): 1 sin 6,{cot 6, sin( ¢, — &)
straight Jacobi formulation where assignment proceeds by ,uN_lrﬁ_l
visual inspection or by fitting the energy levels to some spec- ,
troscopic Hamiltoniart®?° —sing; cotoy -},
Not considered in this preliminary study is the possibil- i=1,...N-2j=1,...N=3,
ity of performing J#0 calculations. In that case, one can
Qef|ne a zerg-order rowbra’uopal Hamiltonikty, by includ- Gi(j¢¢): {COt6, cotl; cos b — ;) + o Oy_»
ing Fhe _rotat|onal energy terr’ﬁ,ot_[Eq. (M] evalu_at_ed at th_e T o
equilibrium geometry, and possibly some Coriolis contribu-
tions. —Cotfy_,(COS¢; coth;+cose; cotd)}

In the present study, symmetry could be straightfor- S 1
wardly taken into account as it was governed by the sole d '
Q6= ¢— d¢q COOrdinate. For more involved cases, symmetry ,uiriz sin? 6; ,uNfgrﬁ,z sir? Oy,
can be implemented by switching from Jacobi to symmetry- .
adapted coordinates. In the case ofQ®, for example, hi=1,...N=3. (AD)
Bramley and Carringtohhave thus recast the formulation in
terms of Radau coordinates for the 2 hydrogen atoms.

2. Rotational terms

In its present formulation, this approach cannot handle 1
large amplitude motion as its efficiency relies on an equilib-  I'y,=1'yy,=———,
rium reference geometny,,. However, its extension to such MN-1TN-1
a case can be envisioned by means of the reaction path
. . . 0.31 . 0012 0N—2 1
Hamiltonian approach of Millet;** which makes use of r,,= ,
normal modes defined locally along some reaction coordi- UN—1TE_1  MN—2FE_ o SIMP Oy
nate. (A2)

Finally, the main improvement to the present method 1 xv= Ly Tyz=1'2=0,

should come from a vibrational S&freatment of the pri-

mary harmonic basis set. This, for example, should cure the T, ,=T,,= -
anharmonicity problem associated with the C—H stretch MN-1"N-1
mode as encountered in this preliminary study. It should also

help to improve the basis set at higher energy if a normal t&. Coriolis terms

local mode transition occurs. Further work along this direc-  ~n_

tion is in progress. fe

coty_»

(u)_sin 0, sin ¢;
ix = 2 d
MN-1TN-1

APPENDIX A: KINETIC ENERGY COEFFICIENTS cw_ _ Sinbicos,

I ’

) o o ’ :U’Nflrlz\l—l
We give below the coefficients appearing in the KEO

expressionEgs. (5)—(7)]. These expressions are valid for (u)_sin 0; sing; cotby_, A3
any N-atom molecule described in terms g1 Jacobi vec- iz~ MN—1F§—1 ' (A3)
tors, u; being the reduced mass associated Rth These
vectors are defined sequentially in reverse order,Rg.,; is (¢)_ —COtON_oF COS¢; cot b;
the first one, followed byRy_, until R;. Also, by conven- Cix'= 2 ,
tion, thez BF axis is taken parallel tRy_;, and thexz half Mn-1fN-1
plane >0) is parallel toRy_,. The G submatrices are sin¢; cot 6,
symmetrical, i.e.,G{'?=G{", and by definition$y_, ci(f):%,
=0. MN-1TN-1
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TABLE IlIl. M logM scaling law displayed by the whole scheme as a function of the basis sé{lsize

Energy thresholEs, (eV) 1.4 1.9 2.2 2.4 2.6
Basis set sizé 255 1619 3895 6538 10 466
CPU timeT (s) 1.03 9.97 29.5 39.2 64.8
T/(M log M) 1.7(-3) 1.9-3) 2.1(—3) 1.6—3) 1.6(—3)

6
cotfy_,(—cothy_,+ Ccose; cotb;) .
—. Rian, ... =Rop,. = TL (No+1).

cip- 2
MN-1"N-1
The result ofd/ 9Q{#,} is finally obtained by merging each
APPENDIX B: NONDIRECT PRODUCT BASIS SET list {4} to a unique accumulation list. For the calculations
In order to benefit from the physical meaning of the presented in this study, less than 2% of the CPU time is spent

normal modes, we chose to use a nondirect product basis g€t Merging.
defined by keeping only statgsb,(Q)} [Eq. (15)] below In order to show that using a nondirect product basis set
some given thresholBs,: EJ<Es,. The idea behind such a d0es not hamper the efficiency of the whole scheme, we
strategy relies on the fact that for moderate excitation ene€Port in Table il the cost of applying the Hamiltonian op-
gies, the coupling should be weak. From perturbation theoryeratorH on a function¥ (Q) for different basis set size¥.
it is well known that states located far from the perturbedEach of these bases corresponds to a given energy threshold
level should play a minor role. Esp, ranging from 1.4 to 2.6 eV. The last line of this table
This choice allows for a drastic reduction in the basis seteveals that the scheme displaysMrogM scaling law.
size as compared to a direct product definition. For example,
in the case of the HFCO molecule considered here, the size is
reduced from about 780000 down to 6538 for an energy
threshold set aEg,=2.4 eV. A second improvement con-
cerns the energy spread of the basis, as this is crucial for thzél M. Bowman, Acc. Chem. Re49, 202(1986. o
efficiency of any iterative scheme used in a direct method. (EMC%r;,VV'_'aCi’IT'NJe'WC\'(O?kecl";SS'Sa”d P. C. Croddplecular Vibrations
For the example given above, the direct product basis dis=y j gramley and N. C. Handy, J. Chem. Phgs, 1378(1993.
plays an upper energy threshold of about 10 eV. 4X. Chapuisat, A. Belafhal, and A. Nauts, J. Mol. Strus9, 274(1991).
The drawback is that handling a nondirect product basisZ';/'- éétBtifa‘;nlg{] :rgd PTH ifllr;jngégg,(fég;em- Phy81 8494(1994.
gene_rally_ results in more bookkeepmg when applylng the, Mladenovic, J. Chgm_ Phyd12, 1070(2000.
Hamiltonian operator on a wave function expressed in such a;. antikainen, R. A. Friesner, and C. Leforestier, J. Chem. Phgg,
basis set. In order to minimize this extra cost, we have used1270(1995.

the following strategy.
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The action of an operator such &9Q, on a function¥
known by its expansion coefficienfg, } [Eq.(18)] produces
two arrays{{ )} and{y{")} such agsee Eq(17)]

_ MW7
(’rllgl)lnz...z Tvnl_lwnlnz...}a

and a similar expression fdes "}
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