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Abstract

We present an algorithm to solve BSDEs with jumps based on Wiener Chaos Expansion and
Picard’s iterations. This paper extends the results given in [7] to the case of BSDEs with
jumps. We get a forward scheme where the conditional expectations are easily computed
thanks to chaos decomposition formulas. Concerning the error, we derive explicit bounds
with respect to the number of chaos, the discretization time step and the number of Monte
Carlo simulations. We also present numerical experiments. We obtain very encouraging
results in terms of speed and accuracy.

Keywords: Backward stochastic Differential Equations with jumps, Wiener Chaos
expansion, Numerical method
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1. Introduction

In this paper we are interested in the numerical approximation of solutions (Y, Z,U) to
backward stochastic differential equations (BSDEs in the sequel) with jumps of the following
form

T T ~
Yt:g+/ f(s,Ys,ZS,US)ds—/ ZSdBS—/} VN, 0<t<T, (1)
t t t,T

where B is a 1-dimensional standard Brownian motion and N is a compensated Poisson
process independent from B, i.e. N, := N, — st and {N,};> is a Poisson process with
intensity £ > 0. The terminal condition ¢ is a real-valued Fp—measurable random variable
where {F; }o<t<r stands for the augmented natural filtration associated with B and N. Under
standard Lipschitz assumptions on the driver f, the existence and uniqueness of the solution
have been stated by Tang and Li [23], generalizing the seminal paper of Pardoux and Peng
[18].

The main objective of this paper is to propose a numerical method to approximate the
solution (Y, Z,U) of . In the no-jump case, there exist several methods to simulate
(Y, Z). The most popular one is the method based on the dynamic programming equation,
introduced by Briand, Delyon and Mémin [6]. In the Markovian case, the rate of convergence
of the method has been studied by Zhang [24] and Bouchard and Touzi [4]. From a numerical
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point of view, the main difficulty in solving BSDEs is to compute conditional expectations.
Different approaches have been proposed: Malliavin calculus [4], regression methods [10]
and quantization techniques [2]. In the general case (i.e. for a terminal condition which is
not necessarily Markovian), Briand and Labart [7] have proposed a forward scheme based
on Wiener chaos expansion and Picard’s iterations. Thanks to the chaos decomposition
formulas, conditional expectations are easily computed, which leads to an efficient, fully
implementable scheme. In case of BSDEs driven by a Poisson random measure, Bouchard
and Elie [3] have proposed a scheme based on the dynamic programming equation and
studied the rate of convergence of the method when the terminal condition is given by
¢ = g(Xr), where g is a Lipschitz function and X is a forward process. More recently,
Geiss and Steinicke [9] have extended this result to the case of a terminal condition which
may be a Borel function of finitely many increments of the Lévy forward process X which
is not necessarily Lipschitz but only satisfies a fractional smoothness condition. In the case
of jumps driven by a compensated Poisson process, Lejay, Mordecki and Torres [I5] have
developed a fully implementable scheme based on a random binomial tree, following the
approach proposed by Briand, Delyon and Mémin [5].

In this paper, we extend the algorithm based on Picard’s iterations and Wiener chaos
expansion introduced in [7] to the case of BSDEs with jumps. Our starting point is the use
of Picard’s iterations: (Y°, Z% U°) = (0,0,0) and for ¢ € N,

T
Ytq+1:§+/ (5,9, 79, U9) ds—/ 2041 . dB, — / UItdN,, 0<t<T.
t
Writing this Picard scheme in a forward way gives

T
an:]E(ng/ f (5, Y9, 29, U9) ds
0

E)zE( D}’ <§+/ £
Fo) = (00 (e [ s znuas) | 7)),

) / f(s,Y3, 28,U%) ds,

1
Zat

E <D§O)}/ttﬁ-1

S,}/SQZ;],U;I)CZS) ‘Ft> 3

UQ-H E <D§1)Y2q+l

where D" X (resp. DX ) stands for the Malliavin derivative of the random variable X
with respect to the Brownian motion (resp. w.r.t. the Poisson process).

In order to compute the previous conditional expectation, we use a Wiener chaos expan-
sion of the random variable

T
Fr—¢ +/ f(s,Y9, 29, U9) ds.
0

More precisely, we use the following orthogonal decomposition of the random variable F¢

(see Proposition
oo k
FI=E[F]+Y Y S dhg LR ) Ll i)

k=1 1=0 szNl jk_leNkfl



where L2%(g) (resp. L1 !(g)) denotes the iterated integral of order m of g w.r.t. the
Brownian motion (resp. w.r.t. the compensated Poisson process), (€[k1, ..., km|)k,en is an
orthogonal basis of (L?)®™([0,T7]), the subspace of symmetric functions from (L?)®™([0, T]).
The sequence of coefficients {dy, ;, , et j,_,ent— ensues from the Wiener chaos decompo-
sition of F.

The point to get an implementable scheme is that we only keep a finite number of terms
in this expansion: we use a finite number of chaos and we choose a finite number of functions
{e1,--- ,en} tobuild {é[k1, -, km]|} ke, N3 More precisely, if we choose e; := ﬁlﬁi_hgi]
where t; = th and h := %, we obtain

» N B; — By,
FINBIF Y 5 TR (2 2 ) €, = )

k=1|n|=k =1

where K; (resp. C;) denotes the Hermite (resp. Charlier) polynomial of degree i, n =
(nP,--- B nl - nk)is a vector of integers and |n| = XN (n? + nl). By using this
approximation of F we can easily compute E(F?|F,), E(D{” F1|F,-) and E(D{" F1|F,-),
which gives us (Y7, ZI™1, U™). To get a fully implementable algorithm, it remains to
approximate E(F9) and the coefficients {d}},.» by Monte Carlo.

When extending [7] to the jump case one realizes that the main difficulty lies in the fact
that there is no hypercontractivity property in the Poisson chaos decomposition case. This
property plays an important role in the proof of the convergence in the Brownian case. To
circumvent this problem, we exploit a recent result of Last, Penrose, Schulte and Théle [13],
which gives a formula to compute the expectation of products of Poisson multiple integrals,
and the according result for the Brownian case from Peccati and Taqqu [19]. In fact, in
equation of Proposition we get an explicit expression for

]E<In1 (fnl) U [nz<fm>)

in terms of a combinatoric sum of tensor products of the chaos kernels f,,. Here I,,.(fy,)
denotes the multiple integral of order n; with respect to the process B + N. By this expres-
sion one gets the required estimates for the truncated chaos without the hypercontractivity
property. Therefore, to prove the convergence of the method we may proceed similarly to
[7], and split the error into four terms:

e the error due to Picard iterations

e the error due to the truncation onto the chaos up to order p

e the error due to the finite number of basis functions {ey,--- ,enx} for each chaos

e the error due to the Monte Carlo simulations to approximate the expectations appear-

ing in the coeflicients {d}}, k.

The paper is organized as follows: Section [2] contains the notations and gives preliminary
results, Section [3] describes the approximation procedure, Section [ states the convergence
results and Section [5| presents the algorithm and some numerical examples. Some technical
results are proved in the appendix.



1.1. Definitions and Notations
Given a probability space (2, F,P) we consider

o LP(Fr) = LP(Q,Fr,P), p € N* = N\ {0}, the space of all Fr-measurable random
variables (r.v. in the following) X : Q +— R satisfying ||.X||} := E(|X[P) < oo.

e ST (R), p € N,p > 2, the space of all cadlag, adapted processes ¢ : Q x [0,7] — R
such that ||¢[|g, = E(sup;ejo 7 [6:]7) < oc.

e HL.(R), p € N,p > 2, the space of all predictable processes ¢ : Q x [0,T] — R such
that (6], — E(T [éiPdt) < oo,

e 1.2(0,T), the space of all square integrable functions on [0, 7.

e O™ the set of continuously differentiable functions ¢ : (¢,z) € [0,7] x R® with con-
tinuous derivatives w.r.t. ¢ (resp. w.r.t. ) up to order k (resp. up to order [).

e CP', the set of continuously differentiable functions ¢ : (¢, z) € [0, 7] x R? with contin-
uous and uniformly bounded derivatives w.r.t. ¢ (resp. w.r.t. x) up to order k (resp.
up to order [). The function ¢ is also bounded.

e [|07,f||%,, the sum of the squared norms of the derivatives of f([0, 7] x R*,R) w.r.t. all
the space variables 2 which sum equals j : [|0],f2, == Xx=; H@’;i@ig@ﬁf“w where
’k’ - kl —|—]€2 —|—k3

e O, the set of smooth functions f : R" —— R (n > 1) with partial derivatives of
polynomial growth.

e ||(-;+,)|l{ss p = 1, the norm on the space S.(R) x H.(R) x H}.(R) defined by
10,2, Ul = Esup %) / (1Z,P)dt + & / E(|U[P)dt. 2)
te[0,T

Hypothesis 1.1. We assume
e the terminal condition & belongs to L*(Fr);

e the generator f € C([0,T] x R R) is Lipschitz continuous in space, uniformly in t:
there exists a constant Ly such that

y Y1, 21, U1) — y Y2, 22, U2)| > L (|Y1 — Y2 21 — %2 Uy — Ua|) -
| f( ) — f(t )< Ly (| |+ | |+ )

Lemma 1.2. If Hypothesis is satisfied and & € DY? (defined below) we get from [9,
Theorem 3.4] that for a.e. t € [0,T]

Z, =E[DY,|F,_), U, =E[DVY|F_] P— as. (3)

where DiO)X stands for the Malliavin derivative w.r.t. the Brownian motion of the random
variable X, and Dfl)X stands for the Malliavin derivative w.r.t. the Poisson process of the
random variable X. Here E[-|F;_] should be understood as the predictable projection, and
since the paths s — D,@YS are a.s. cadlag we define D,@Yt = lim,y, D,@YS if the limit exists,
and zero otherwise.



2. Wiener Chaos Expansion

2.1. Notations and useful results

2.1.1. [Iterated integrals
We refer to [16] and [21] for more details on this section. Let us briefly recall the Wiener
chaos expansion in the case of a real-valued Brownian motion and an independent Poisson

process with intensity x > 0.
We define

Go(t) = By, Gi(t) = Ny — kt,

and L (f) the iterated integral of f with respect to Gy and G,

LZ1,'~~,ik (f) = /OT </0tk e (/Otg f(ty, ..., tx)dGy, (t1)> e dGik_l(tk—1)> dG;, ().

We have the following chaotic representation property.
Proposition 2.1. ([16, Proposition 2.1]) For k € N* define
i, = (iy,...,i) € {0, 1}".
Any F € L3(Fr) has a unique representation of the form
F=E(F)+> > Lflfi) (4)
k=1 i,e{0,1}F

where f;, € L*(Zx) and 3, = {(t1,..., 1) € [0,T)F: 0 <ty < --- < ty, < T} is the simplex
of [0, T]*.

Let |iy| := Zle i;. Due to the isometry property it holds
ILE (O = =M1 £113,

and for any f € L%(%;), g € L*(Z,), i, € {0,1}*, and j,, € {0,1}™ we have (see [16)
Proposition 1.1])

i . K|kl try oo t)g(ty, - te)dty - - dt if iy = jm
E[LyF(f)LIm(g)] = { o, k)%( 1 s ' oth];rwilse.

Then, ||F||* = E[F]* + iz1 X, 5[] fi, 172,y The chaos approximation of F' up to order
p is defined by

C,(F) = E(F) +I§ZL}:<ﬁk> (5)

=1 i

and Py(F) =3, L¥(fi,) is the Wiener chaos of order k of F. We have

E[(PL(F)*] = 32 a1 i, 15, (6)
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Let f € L*(X;) and j € {0,1}. Following [I6], we define the derivative of L{*(f) w.r.t.
the Brownian motion and the Poisson process as the element of L*(Q x [0,77]) given
by

DY LE(f) = S lgp Ly Pt ), (7)
=1 -1
where 7 means that the i-th index is omitted.
Let j € {0,1}. We extend the definition of DY) to

00 k
Dom DV .= {F € L*(Fr) satisfying @) and > > > 15,5 /<a|i’“|||fik||22k < oo} :

=1 i I=1
If £ € Dom DY then

. T .
Il b = BIFP + 7B [ |DPF[2dt < oo,

I with chaotic representation belongs to Dom D =: D'? if F' belongs to
Dom D© 1 Dom DO i.e.

1F N5 = EIFP + 3" kD06 fil3, < oo
k=1 i
More generally, we define D™? as follows:

Let m > 1. We say that F satisfying belongs to D™? if it holds

m oo ]{5' ;
|F e = EIFP 4323 o SR fi 13, < oc.
=1 k:l( - ) i

We recall
72 —_— 72
D> =Ny D™=

We define for [ € N* with [ < m the seminorm || - || o on D™? by

i T T, . 2 < K i
IF|2 = Y /ME </0 [k F] dtl---dtl> =3 o 2l
i l T

) ®)

where D}! ., = Dj --- Di represents the multi-index Malliavin derivative.

Remark 2.2. By using this notation we have ||F|[3,.. = E|F|> + 3" [|F||%..



e For m > 1 and j € N* we define D™ as the space of all F' € D™? such that

||F||Zn] = Z Z ess sup EHD;lltlFV] < 00

1<Il<m ile{OJ}l (tlv"'vtl)e[O»T}l

(Since (w,t1,....t) + (Di .., F)(w) is regarded as an element of L*(Q x [0,T)
w.r.t. the measure P ® )y (\q denotes the Lebesgue measure on R?) we use the es-
sential supremum w.r.t. \;.)

o S™I denotes the space of all triples of processes (Y, Z, U) belonging to S7.(R) x H (R%) x
H%.(R) and such that

(Y, Z,U) H C= Z Z ess sup H(Dill’,,,’tlY, Dill,--~,t,Z> Dill,...,tlU)Hij < 00,

1<i<m i (t1,t)€[0,T]!
where | - ||/, has been defined in (2). We denote S™> := N2, 8™

Remark 2.3. If F := g(G), where g : R — R is a C} function and G € D2, we have
(following [8, Proposition 5.1]) that

(D" F, D{'F) = (¢(@)D"G, 9(G + D G) — 9(@)).
Moreover, using Notation , we get
IFI 5 = 1D F 22 (x 027 + K1 DY FlIE 2oy < N9 151G
More generally, if g : R — R is a C[* function and G € D™?2, we have
1EHm < C(m, {19 oo Yrzms G llom2),
where C(m, {||9™ ||loo Yh<m, ||G|lpm2) is a constant depending onm, {||g™ || st k<m and ||G||pm.2.
Lemma 2.4. Let 1 <m <p+1 and F € D™%. We have

| F||Hm
(p+2—m)---(p+1)

E[[F = C,(F)"] <

Proof. Using @, we get
ElF —C,(F)P| = 3 ElP(F)’]= > sl

k>p+1 k>p+1 iy
=) > Al
Kopil (k — m)! k! . e 1122k

k!

> o = Ml

(p+2- m) (p+1) E>p+1 i,

K i
N

<(p+2 m) (p+1)k2m

IN




2.1.2. Multiple integrals
In the following, A denotes the Lebesgue measure. Setting

M (ds,dz) = dGy(s)déo(x) + dG(s)dd(z)

we get an independent random measure in the sense of 1t (see [I1]). There exists a chaotic
representation by multiple integrals w.r.t. this random measure M which is equivalent to
Proposition 2.1}

Proposition 2.5. ([I1]) Any F € L*(Fr) can be represented as

F =E[F] + i I (gr), (9)

k=1

with g, € (L2)ZF(\ @ (J + 501)) == (L2)([0,T] x {0, 1}, B0, T]) @ 2001, A & (8 + ).
This representation is unique if we assume that the functions gi(z1, ..., zx) with z; = (t;, ;) €
[0,7] x {0,1} are symmetric.

For the definition of the multiple integrals I;(gx) we refer to [I1] or [12]. But using the
result that the representations in Proposition [2.1] and are both unique we conclude for
symmetric g the relation

Ik(gk:) = k'ZL;vk(gk((vll)a 7("ik)))v (10)

ig

where i is defined in Proposition [2.1] and

gk(<<t1, il), ety (tk,Zk))) = k!fik(th e ,tk) on Zk

with f;, from Proposition [2.1]
Moreover, for symmetric g; € (L?)®%(\ ® (6 + k1)) and f,, € (L?)®™(A @ (8o + £61))
the relation

B[ (1) L (fi)] = { kXgr., fk>(L2)0®k()\®(50+561)) if k=m an

otherwise,

holds true. If F' € D™?, we combine (9), and [16], Definition 1.7] (which extends (7)) to
functions defined on L?([0,T])) to get

‘ . 1 i
ge((t1,91), oy (tyik)) = EIED,JIc 77777 W, B <m. (12)

On the other hand, this can be easily derived if one takes into account that for /' = E[F] +
Y021 Iik(gr) we have D F = 72, kli_1(gx((t1,41),-)), and that the expectation of any
multiple integral of order k£ > 0 is zero while [ is the identity map.

For the implementation of the numerical scheme we will use Hermite and Charlier poly-
nomials. In order to do so, we provide a chaotic representation consisting only of iterated

8



used.

Use {po,p1} = {10}, 7z1{y} as orthonormal basis of L*({0, 1}, 201 5 + K6;) and fix
an orthonormal basis {ey }ren for L2([0,T], B([0,T7]), \). By setting

6[(]{71, il), RN (km; ’Lm)] = (6k1 ®pz1> ... Q& (ekm ®pim)7 kj € N, ij c {0, 1}
we get an orthonormal basis of (L?)®™(\ ® (6 + xd1)). The symmetrizations
1

é[(lﬁ, il), RN (km, Zm)] = % e[(kw(l), iﬂ(l)), RN (kﬂ(m), iw(m))], kj e N, ij € {O, 1}
: ﬂ'ES’m
(13)

form an orthogonal basis of ([:2)®m()\® (09 + kd71)), the subspace of symmetric functions from
(LA)®™ (A @ (0o + Kd1)).
We also will use the notation

- 1
€[k’1, .. ,km] = ﬁ Z ekﬁ(l) K ® ekﬂ(m), kj S N,

. 7T€$m
where S, stands for the set of all permutations of {1,...,m}.
Proposition 2.6. Any F € L?(Fr) can be represented as
A 0,...,0 1,1
F:E[F] +ZZ Z Z dkl,jk,lLl ..... (é[khakl]) Lk’—l’ (é[j17"‘)jk—l])7
k=11=0 k;eN! j,_;eNk-!
U(k=D) gr.€[(k1,0),....(k1,0)]@e[(51,1),-,(Gk—1, D)) 12y @k

k=l . .
K2 ”6[(](;170) """ (kl70)7(]171) 7777 (]k—l71)]H(2L2)®k(>\®(50+’<51))

where dy, 5, , =

Proof. According to [I1, Theorem 1] a permutation of the coordinates of the kernels does
not change the multiple integral, i.e. for any m € &, we have

Ii(e[(R1y i), - oo (Rryin)]) = Te(e[(Brys inr))s - - (Brr) Gnr))])-

For any 7 with (irxq),...,%=%) = (0,...,0,1,...,1) (we assume that (i,...,4;) contains
[ zeros) it holds by the product formula for multiple integrals (see [Appendix A.5| or [14,
Theorem 3.6))

]k(é[(kla il)? SR (kkv Zk)]) = Il(e[(kw(l)a 0)7 T (kﬂ'(l): 0)])Ik—l(e[(k7r(l+l)7 1)7 R (kﬂ(k’)7 1)])

since

e[(kr)sin1)), - - - (Bx)s in))] = €[(kr1),0), ..., (Bry, 0)] @ e[(kr+1), 1)s - -5 (Krqry, 1)],

and for the contraction-identification ®! (for the definition see (A.12])) it holds
e[(kﬂ(1)7 0)7 SR} (kﬂ(l)7 0)] ®Tm e[(kﬂ(l+1)a 1); sy (kﬂ(k)a 1)] =0

9



if r £ 0 or m # 0. Since

e[(krs1), 1), -+ o5 (kry, D] = —=relbrar1), - - - ki)

K2
we conclude from and that
i , ME =D 0.0/ s
Ip(e[(kv,i1), ..o, (B, ix)]) = ?L? O@lknry, - - ka@D) Ly Elhmr)s - - -+ Knii)-
(15)
The symmetric functions g from Proposition [2.5] can be written as
ZZZ gk, € klu ) ..,(kl,())] ®€[(j171)7"'7(jk*l71)]>([]2)®k
=0 k; jx—i
X é[(kb 0)7 EEE) (kla 0>’ (jlv 1)? ey (jk—b 1)]Cklajk—l7 (16)

where we sum over all k; € N and j,_; € N*~! and

Ckpje—t = ||é[(k1’ 0)7 ) (kla 0)7 (jlu 1>’ 33 (jk—la 1)]||(_L22)®k()\®(50+,€51))
denotes the normalizing factor. Abbreviating

Nk —1)!

dkl:jkfl = = <gk>€[(k170>7'"7(k170>] ®e[(jlu1)7"'7<jk7171)]>(L2)®’“ Cky ik

we conclude from Proposition , and the orthogonal decomposition

Zzzzdkuk L é[klw"?kl])[’llcwf ( []h’“ajk—l])‘ (17)

k=11=0 k; jr—i

[]

Lemma 2.7. Fix N € N* and let

e[(k1,0), ..., (k1,0), (1, 1), s Gkt 1)] = Q€5 @ po) 2™ @ @(ej ® p1)®"

=1

i.e. nB and n (1 < i < N) denote the multiplicities of the functzons e; @ po and e; ®p1,
respectwely, so that |nB| = |(nB,....,n8)| =1 and In®| = |(nF,....n5)| =k — 1. Letn
nl...ng! for A= B, P and define n := (n®,n") so that |n| = | B| + |n®|. Then

. : : _ In|!
CKjru_1 — He[(kla 0)7 sy (kla O)a (.717 1)a ) (]k’fla 1)]”(52)@1%(/\@(50_’_%51)) = W

10



Proof. To compute cy, j, , notice that the functions h; := (ex, ® p;;) and hy (1 < 7,57 < k)
are either equal or orthogonal in L*(\ ® (o + #d1)). Denoting

e[(k1,0), ..., (k,0), (1, 1), oo, G, D] = Hy @ -+ - @ Iy,

yields

Hé[(kl? 0)7 ) (kl7 0)7 (jla 1)’ i) (jk_h 1)]H?L2)®k()\®(60+m51))

2
1
I‘k, D ha(t) @ -+ ® hagry
' TESE (L2)®k(>\®((5o+f€51))
nBinf1| X onB onP ?
TR (e @ po)*" @ K)(e; ® po) ™™
: i=1 j=1 (L2)®k (AR (So-+kd1))
nZn’!
TR
]
Remark 2.8. We deduce from that
P 0,...,0 1.1
Co(F) =E[F] + > > > > dig Ly (k- k) Ly (€l - -+ dii))-
k=11=0 k; ju_;

In order to compute the expectation of products of multiple integrals (see formula (18]
below) we introduce some notation following [13], [22], [19] and [17].

e If n € N* then [n] :={1,...,n}.

e For J C [n] we denote by O the singleton containing that x € {0,1}" for which
r; =0 <= i€ J holds.

o If ny,...,n; (I € N¥) are given and n := n; + - - - +n; we will denote by ¥ the ‘natural’
partition of [n] given by the summands n; :

\115:{\111,...,‘1/[}
::{{17"'777/1}7"-,{77/1+"'+77/[71+1,...,n}}.

e Let II,, denote the set of all partitions of [n| (a partition means here a set of disjoint
non-empty subsets of [n] such that their union is [n]) and I} denote the set of all
subpartitions of [n] (any set of disjoint non-empty subsets of [n] is a subpartition).

o Let II(ny,...,n;) CII, (respectively II*(ny,...,n;) C II) denote the set of all o € 11,
(respectively o € IT¥) with [¥; N J| <1 for 1 <i<!landall J € 0.

o Let [I>o(nq,...,mny) (respectively II_o(nq,...,n;)) denote the set of all o € II(ny, ..., n)
with |J| > 2 (respectively |J| = 2) for all J € o.

11



e In order to distinguish between integration w.r.t. the Brownian motion and compen-
sated Poisson process we consider for J? C [n] (J? will stand for integration w.r.t the
Brownian motion) and introduce 11—y >o(J?;ny, ..., n;) as the set of all pairs (7,0) of
subpartitions from IT*(ny,...,n;) such that for all J € 7: [J| =2 and Uye, J = JP as
well as for all J € o: |J| > 2 and Uy, J = [n] \ J5.

e For 7 € 1T} let |7| = #{J C [n] : J € 7} i.e. the number of its blocks and ||| :=
#UJGT J.

e For (1,0) € T_g>2(JB;ny,...,m) and f : ([0,T] x {0,1})" — R we define f,,, :
[0, 7]+l — R by identifying the time variables of each block of 7 U ¢ and setting
xz; = 0 fori € Uje, J and z; = 1 for ¢ € Uy, J. In order to make this map unique
we identify first the time variables of that block of 7 U ¢ which contains the smallest
number and denote all identified variables by ¢;. Next we choose from the remaining
blocks that one containing the smallest number and use 5 for all identified variables
and so on.

Example: Let n;y = 2,ny = 2 and ng = 3. Then ¥ = {{1,2}, {3,4}, {5,6,7}}. If
JP = {24,6,7} and 7 = {{2,6},{4,7}}, 0 ={{1,3,5}} we change by 7 U o the function
f((thxl)? R (t7,.§€7)) into

fTUU(t:LJ t27t3> = f((th 1)7 (t27 O)? (tlv 1)7 <t37 0)7 (tla 1)? (t27 0)7 <t3> O))

Proposition 2.9. Let f,, € (L*)®*"(A® (0g+ k1)) (ni € N for 1 <i <) be symmetric and
assume that for all (1,0) € U=y >o(JP;ny,...,ny) it holds

l

/[O,T]T+|a ( § |fnz

1

) ANl < 0.
TUo

Then

!
Elliy Lo, (fu) = Z Z 5" 0,771+l <®fm> e e
’ =1 T

JBen] (1,0)€ll=g >2(JB;n1,...,n;) Uo

Proof. Let us assume for the moment that the f,, are of the form

fm((thxl): T (tnzwxni)) = HZizldi(thxk) (19)

for some d; € L*(A ® (6o + Kkd1)).

If J; C [n;] and n) = #J;, we let Iy denote the multiple integral of order n) w.r.t. the
Brownian motion and Iy the multiple integral of order n} (n} 9

;= mn;—n;) w.r.t. the compound

Poisson process. Similarl to (14) we get
[”i(d?nilo‘]i) = [%([di(., 0)}@71?)}71;([(12,(,7 1)]@71%).

n:
n; 7 7

Consequently, since

12



> 1J r)=1, z€{0,1}™,

JiClny]

EHé:llm(fm) = Z EHi 1Inz((®k 1d)1 J)
J1Cn1lye., J1Cnyg]

= BB 01 A (1) )

1
J1C[nal,...,J1C[nq]

= X B[R 0] L L (1)),

J1C[n1],..., J1Cny]

From [19, Corollary 7.3.2] we conclude

l
EITL_, I8 ([d;(-, 0)]®") = 22
Lapeoh = s (@) o

T€l—2(nY,..., n?)

while [I3, Theorem 3.1] (see also [22, Section 3.2]) implies

EHé:lI?i*([di(" 1)]#") = 2 w7 [0,7)l] <®d®n ) e

o€ll>o(nt,..., nll) o

So we have shown relation for the special situation where each f,, is given as
tensor product di™. The general assertion follows by approximation using the multilinear

nature of w.rt. (fa, oo fa)- O

2.2. Hermite and Charlier polynomials
2.2.1. Hermite polynomials
Let us introduce the Hermite polynomials (K,,)nen defined by

i — > Kp(x)t™, t,xzeR.
m>0
With the convention K_; = 0 we have the relations K/ (z) — K], (x) + mK,,(z) = 0
and K/ () = K,,_1(z), for all m € N. The normalized sequence (vVm!K,,)men forms an
orthonormal basis in L*(R, u), where u denotes the normalized centered Gaussian measure.
Every square integrable random variable F', measurable with respect to FZ, admits the
following orthogonal decomposition

Fedo+3 Y & [[Kn, (/ )dB) (20)

k=1|n|=k  i>1

where n = {n;};>1 is a sequence of non-negative integers, [n| := >, n; and {e;};>1 is
an orthonormal basis of L?(0,7T). Taking into account the normalization of the Hermite
polynomials we use, we get

do = E[F], dp =nlE lF X I_L21 Ko, </OT ei(s)stﬂ ;

13



where n! = [];>;(n,!).

Now we choose N € N and let {to, 1, -+ ,tn} be a regular grid of [0,T], i.e. Vi €
{0,...,N}, ; = ih where h = L. From now on we will use a fixed orthonormal basis {e; }>1
of L*(0,T) : we set

1

61<t> = ﬁlﬁi—h%i](t)’ 1€ {0, ceey N} (21)

and complete this sequence to a basis in L?(0,T), for example, by using the Haar basis on

each interval ]£;_1,%;]. Let n® = (n® ... n%) be the vector of non-negative integers such

that [n®| = k. Then (see [21, Proposition 5.1.3])

0l

B! ﬁKn? (A\/—%) : (22)

where AB; = B;, — By, and o stands for the symmetric tensor product.

0,+,0¢ ®n{ “ngy _
Lk (61 OC---0 €N ) -_—

2.2.2. Charlier polynomials

Definition 2.10. The Charlier polynomial of order m € N and of parameter ¢ > 0 is defined
by

Co(z,t) =1, Cy(x,t) =z —t, x€R
and by the relation

Cri1(z,t) = (x —m — t)Cy(x,t) — mtCh_1 (2, t).

1 _ : : 2
The sequence { \/WC’m( ,mﬁ)}meN is an orthonormal basis for L*(N, v,;), where v,
denotes the law of a Poisson random variable with parameter xt. Let n” = (nf’,... nk) be

the vector of non-negative integers such that |[n”| = k. Using the same grid and the same
functions {e; }1<i<n as for (22)), we have (see [21, Proposition 6.2.9])

1

nf|lh =z =1

=

@nf nk
L11€7 ’1(6 1 og...oed™

where AN; = N;. — N;,_,. The following Lemma gives some useful properties of the chaos
decomposition.

Lemma 2.11.
o Let F be a rv. in L2(Fr). Vp > 1, we have E(|C,(F)|*) < E(|F]?).

o Let H be in HA(R). We deduce from Remark that C, (fOT Hsds) = [ C,(H,)ds.

o Forall F € D'2, for alli € {0,1} and for all t <r, DVE,[C,(F)] = E,[C,_1 (D" F)],
where E, stands for the conditional expectation with respect to JF,.

14



2.3. Truncation of the basis

Instead of summing over all k; € N' and j,_; € N*!, we only consider the N first
functions {ej,...,en} of the basis {e;}; defined in (21). This gives (together with the
orthogonal projection onto the chaos up to order p) the following approximation of F

Cy (F) =E[F]

p k
+ Z Z Z Z dkldk—zL? 77777 O(é[kla SRR kl])LI?f ( []la v 7jk—l])

k=1 1=0 kle{l N}l_]k ZE{L-“,N}kil

Fl+ Z PN(F). (24)

Let us now rewrite C(F) (p < N) in terms of Hermite and Charlier polynomials. From
, , and (23) we derive using the notation of Lemma that

(> e[(k1,0), ..., (K1, 0)] @ €[(d1, 1), s (Frmts D)) 2y2r
n?!

W <FHKB i nf(Qia"fh)>a

where we used G; : A\/Bi’ and @Q; := AN;. From Lemma we get then

CYF) = do+ 3" S &2 T] Koy (G5) Cop Qi i), (25)

k=1|n|=k i=1
where dy = E(F') and
n?!

= Py

<FH K B z' nf (Qu Iih)) . (26)

Proposition 2.12. Let F' be a real random wvariable in 1L2(Fr) and let r be an integer in
{1,--- ,N}. Forallt,_y <t <t,, we have

E, (C)'(F)) = do+

np
—t1\ ? B, — B; )
Z Z dn ( N 1) an (tt”) Cnf (Nt — NEr—l’ /‘i(t _ trfl))

k=1n(r)|=Fk tr—1

x (H K, (Gi)Cr (Qi, fih)) :

i<r

VR, (Y (F))

n,,B—l
P t—t,_ 2 B, — B; _
hTVEYT Y dp ( h 1) Kop (tttt—l) Cop (Nt — Ny, _ s K(E = ,-1)) A,
k=1 |n(r)|=k — 11
n2>0



ne
P t—11\ % By — By f
=2 > & ( . ) Ko () 0y Cup (N = N 6t = Tom1)) A,
k=1|n(r)|=k t—1t—1
nE>0
where for r < N n(r) = (n®(r),n"(r)), and n(r) stands for (n?,...,n?), where A = B or

P and n, = (nZ n?).

Proof. The first result comes from [7, Proposition 2.7] for the Brownian part and from the
fact that E(C(Q,, kh)) = EiI, (1%’” ) tr])] Cn(Ne—N;, |, k(t—1,-1)) (see [21, Proposition
6.2.9]). The second result comes from [7, Proposition 2.7]. To get the last one, we write
Dt(l)cnf(Nt =Nyt —t) = DI P(1®n q) = nf]ng_l(l([?n t]) (see [21, Definition

TZ,
6.4.1]).
O

Remark 2.13. Fort =t, and r > 1, Proposition leads to

B, (CX(F) —do+ > S a2 ] Koo (Go) Cor(Qi ),

k=1|n(r)|=k i<r

D§9>Em (cN(F))—hl/zZp: > diK,s_1(G,)Cor(Qr, Kh) <HKB ;) nﬂ@,xh)),

P

k=1 |n(r)|=k i<r
nEZ>0
p
DR, (CY(F) =3 > diKyp (Gy)nf Cop_i(Qy, kh) <HKB ) nP(Qi,/ih)>.
k=1 |n(r)|=k i<r '
nl’>0

When r = 0, we get Ey, (CI],V(F)) = dy and we define DZ(S)EEO (CZ,V(F)) = ﬁd‘fl’ON (which
is the limit of D\"'E, (CI])V(F)> when t tends to 0) and DE(;)EEO (CéV(F)) = d¥N° where
e; :=(1,0,---,0) of size N and Ox is the vector null of size N.

The following Lemma, similar to Lemma [2.11} gives some useful properties of the operator
CN.
p

Lemma 2.14. Let F be a r.v. in L*(Fr) and H be in H%(R). Then
o V(p,N) € (N2, E(IC(F)]*) < E(IC,(F)*) < E(|F?).
o Let H be in HA(R). We deduce from that CY (f(;f Hsds) = fgCéV(Hs)ds.
o Forall F € D'2, for alli € {0,1} and for allt < r, D{E[CN(F)] = E,[CY ,(D{"F)].

Let us end this subsection by some examples.
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Example 2.15 (Case p = 2). From . . we have

N N
CY(F) =do + Y (1" K0 (G)) + &7 Co(Qy, k) + 3 (P Ka(G)) + d5 " Co(Qy, k) )
Jj=1 j=1
Nl y
+ 203 (7P KGR (Gy) + d5 T C Qi sh) (@5 h)
j=11i=1
S ,B,P
+szlj Kl( Z’)Cl(Qj,lih),

@
I

-
<.
I

-

where
d}” = E(FK\(G))), d¥ = —E(FCi(Q;, kh)),

1
2(%)21@(1702(@;'7 Kh)),
1

i,7,8 Z‘")P_
d J E(FKI(GZ)Kl(G]))7 d2j - (K)h)z

y 1
dQ’J’B’P _ EIE(FKl(Gi)Cl(Qja"‘3h))'

wh
" = 2B(FK,(G))), &7 =

E(FC1(Qi, kh)C1(Qy, kh)),

Remark 2.13 leads to

r

Eq, (CY(F)) =d + 2 (HPKA(Gy) + di7Co(Qy, kh)) + 3 (P Ka(Gy) + dbTCo(Qy, k)

j=1 j=1

+ZZ<d”BK1 DE1(G)) + d5? " CL(AN;, kh)Cy(Q;, D))

j=1:=1

—+ Z Z dé’j’B’PK1<Gi)Cl(Qj, /Qh)

i=1j=1

3. Numerical scheme

3.1. Picard’s approximation
Picard’s iterations: (Y, Z% U°%) = (0,0,0) and for ¢ € N,

) S 7

T T ~
vt =g [ ps e zevnds - | Zg“st—/] VSN, 0<i<T
t t tT

It is well-known that the sequence (Y9, Z9 U?) converges exponentially fast towards the
solution (Y, Z,U) to BSDE (). We write thls Picard scheme in a forward way. Let F'
denote F?:= ¢+ [ f(s,Y3,Z9,U9) ds. We define
t
yorl g (Fq ]-"t) - / f (s, Y9, 79, U9) ds, (27)
0

]-“t_) . (28)

7 = (D F

). v —E(DF
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3.2. Chaos approzimation

Let (Y%P Z%P [U%P) denote the approximation of (Y Z% U9) built at step ¢ using a
chaos decomposition up to order p: (Y%7, Z% U%) = (0,0,0) and

t
Y;q-&-l,p =E |:Cp (Fq,p) ‘ ft:| - /0 f (Sa Y;q,p’ Z;Lp’ Ug,p) ds> (29)
70 — | {Dﬁ(’)cp (F) ‘ ft} L U =R {Dﬁl’cp (F?) ‘ ft} : (30)

where F'9P = ¢ 4 f(;‘rf (5, Y P, Z3P ULP) ds.

3.2.1. Truncation of the basis

The third type of approximation comes from the truncation of the orthonormal 1.2(0,T)
basis {e;};>1 defined in (21)). Instead of considering the whole basis we only keep the first N
functions {ej,--- ,en} to build the chaos decomposition projections Cév . Proposition m
gives us explicit formulas for E(C) (F)), DE, (CY(F)) and DVE, (CY(F)). From and
(30D, we build (YN, ZepN erN) in the following way : (YOrN Z0pN [702N) = (0,0, 0)
and

t

}/tq+l,p,N _ Et(céV(Fq,p,N)) . / f (8, Y;q,p,N’ Z;LP,N’ Ug,p,N) ds, (31)
0

Zit N — pO(E, (N (FerNY)),  UpteN — DO(E,(CN (FerN))), (32)

where FOPN .= ¢ 4 [T f(s YorN zapN [7arN) (s,

It is not necessary here to use predictable projections of Z¢1PN and ULV In fact,
ZaH1p N and UatLeN are adapted and cadlag, and from their explicit representation given
above one concludes that the predictable projections are the left-continuous modifications:
B, zZ PN — fol’p’N and E,- U7 PN = thfl’p’N. Moreover, the integral in does not
change if one uses left-continuous modifications.

3.2.2. Monte Carlo approzimation

Let F denote a r.v. of L?(Fr). In practise, when we are not able to compute exactly
dy and/or the coefficients dff of the chaos decomposition (25)-(26]) of F, we use Monte-
Carlo simulations to approximate them. Let {F™}i<,,<y be a M iid. sample of F' and

{(GT, QT), ety ( 713, Qﬁ)}lﬁmﬁM be a M i.i.d. sample of {(Gl, Ql), e, (GN, QN)}
We approximate the expectations of by empirical means

— 1 M - nBl M N
In the following, we denote
— p —
CyM(F)=do+ 3 ) df K,5(Gi)Cop (Qs, kh). (34)

E((C)M(F)) and Dy(E,(CY*(F))) denote the conditional expectations obtained in Propo-
sition when (do, {d}} }1<k<p,n|=k) are replaced by (do, {d})1<k<p,n|=k) :
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E, (CYM(F)) = dot

ng
t—1t._1\ 2 B, — B; _
> oy () R (t) Cup(Ny = Nyt~ Fr-1))

k=1 |n(r)|=k t'r—l

. <H K, (G)Cor (Qs mh)) ,

<r

VR (CM(F)) =

p =T\ T B, — B; )
IEDVEDS di‘( 7 ) Kop (t) Cup (Ne = Ny, w(t = T,-1)) A,
k=1 |n(r)|=k —
n2>0

P —~ (t—1,_ B, — B; -
-2 2 @ ( . ) Kop ( ) ny Cup 1 (Ne = Ny, K(t = T,-1)) Ar.
k=1|n(r)|=k t—t,_1
nL>0
Remark 3.1. As pointed out in [1, Remark 3.2/, when M samples of CI],“M(F) are needed,

we can either use the same samples as the ones used to compute ZZE and @1 or use new
ones. In the ﬁrst case, we only require M samples of F and (G1,--+ ,Gn,Q1, -+ ,Qn). The
coefficients d“ and dq are not independent of [Ty<;<n K B( )C, (Ql, kh). In this case, the

notation By (C)"M (F)) introduced above cannot be linked to E (CI])VM( )|]-"> In the second
case, the coefficients di} and do are independent of Iy <;<y K,5(G3)C,p(Qi; kh) and we have
E; (CI])V’M(F)) =E (CIJJVM(F)LE) This second approach requires 2M samples of F and
(Gy, -+ ,GN,Q1,- - ,Qn). Convergence results are proved when using the second approach.

We introduce the processes (Y4+t1pN-M - 7atlpN.M r7a+1.p,.N.MY “ygeful in the following. It

corresponds to the approximation of (Y4rt»N ZatheN {7atheN) when we use C)VM instead
of C;V , i.e. when we use a Monte Carlo procedure to compute the coefficients d}.
t
yarieNM Et(CéV’M(Fq’va’M)) _ / ¥ (Qg,pJV,M) ds, (35)
0

ZieNA = DB (M (Fer M), U = DI(E (M (FHP M), (36)

where FOPNM — ¢ [T (9rNM)gs and orNM = (3, yarNM - 740 NM U;W’N’M).
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4. Convergence results

We aim at bounding the error between (Y, Z) — the solution of (1) — and (Y4PN:M
ZePNMYy defined by ([B5)-(36). Before stating the main result of the paper, we introduce
some hypotheses.

Hypothesis 4.1 (Hypothesis H,,). Let m € N*. We say that F satisfies Hypothesis H,, if
F' satisfies the two following hypotheses

o Hl :VjeEN FeD™, je ||F|},; <.

o H2 : Vj e N* Vil € N such that | = Iy +1; + 1 < m there exist two positive
constants Br and kf'(j) such that for all multi-indices o = (aq,-+- ,qy,) € {0,1}%,
v=1, 1) € {0,104 and for a.e. t; € (0,7, s; € [0,T] it holds

eSS Sup s sup E|Df | g (D} F — D] B < k() [t — si?Pr.

tiySit1, 3Sitl Siyy8i4l
t1, tlo Sit1,Si41q ! T 1

In the following, we denote KE(j) = maxj<,, kf (5).

Remark 4.2. If I satisfies Hy,, for all 1 < m and for all multi-indices o = (a1, -+ ,q) €
{0,1} we have for a.e. (t1,---,t;) € [0,T] and (s1,--- ,s) € [0,T]" that
[E(D} . o F) = E(DS, . F)| < Ko (D(lty = 1]+ + [t = s0]%7). (37)
Hypothesis 4.3 (Hypothesis #3 ). Let (p, N) € N*. We say that a r.v. F satisfies 13 y
if
p B>| N
Vo (F) == V(F) + kZ:I Z_I ,—)|np| (Fi:HlKniB(Gi)Cnf(Quﬁh)> < 00,

where V(&) denotes the variance of a r.v. &.

Remark 4.4. If ' is bounded by K, we get V, n(F) < K*3%_, (2,]:) Hence every bounded
r.v. satisfies 1

nt
This remark ensues from E ( A K2 (G ) (Q“ ,{h)) @) (smy 1

@P)!

Remark 4.5. Let X be the R-valued solution of
t t t ~
Xt:x+/ b(s,Xs)der/ U(S,Xs)st+/ (s, X, )dN,, te[0,T],
0 0 0

where by, : [0,T] x R — R are C®™ functions such that all partial derivatives w.r.t. ©
of order 1 < k < m are bounded, and all partial derivatives w.r.t. x of o and vy of order
0 < k < m are Hélder continuous in time (uniformly in x) with exponent o, and c.,

respectively. Then every random Uam'able ¢ of type g(Xr) or g (fOT Xsds) with g € C°(R)
satisfies Hr, with Be = oy N AL 5, and 7-[3 ~ Jor allp and N.
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To prove that H,, is satisfied one can use [20), Theorem 3], while H%,N is implied by Remark
) We sketch how to compute B¢ of Hypothesis H2, for & = g(X7). We have

DO Xy = /u " 9ub(s, X.)DO X, ds
+o(u, X)) + /u " 9y (s, X,) DO X dB,
+ /uT 8Sp’y(s,Xs,)Dgo)Xs,dNS
and

(I)XS) —b(s, Xy))ds

u

T
+ [ (os, X, + DVX,) = o(s, X.))dB,
T -
+y(u, Xy )+ | (v(s, Xs + DX, ) — (s, X, ))dN.

u

In order to show ' '
E|D;!g(Xr) — D3lg(Xr)[ < K{(5)|t, — s1]7%

notice first that in view of Remark[2.5 it holds

1D 9(Xr) = DStg(Xr)| < Nlg'lloo| D X — DG X

1

For the estimate of E|Dy!' Xp — D?llXTP we apply for the integrals w.r.t. the Brownian
motion the Burkholder-Davis-Gundy inequality, and for the integrals w.r.t. the compensated
Poisson process a Kunita-Watanabe inequality (see [1, Formula (4.21)]). Finally, similar
considerations as in the proof of Lemma and Gronwall’s Lemma tmply that B¢ = oy N
ay A % The general case can be shown by induction.

Theorem 4.6. Let m be an integer s.t. 1 < m < p+1. Assume that £ satisfies Hpyqr1 and
Ho y and f € CpPrarbptatlptatt pe hage

(Y — yorNM 7 zap M g genih |2,
S é + Al(qam>
20 (p+2—m)---(p+1)

TN As(q,p, N
+ As(q, p) (N) + 3(M)’

where Ay is given in Section Ay is given in Proposition[{.9, A is given in Proposition

and As is given in Proposition [{.15
If f € CY™°° and € satisfies Hy, for all m € N* and H n for all (p, N) € N*, we get

lim lim lim lim ||(Y —YoPNM 7 — zepNM @7 grap Ny 2, — )
q—00 p—00 N —o00 M —00

Proof of Theorem[{.6. We split the error into 4 terms :
1. Picard’s iterations : £1= |[(Y =Y, Z — Z%, U — U?)|}., where (Y4, Z4,U1) is defined
by @7)-(29),
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2. the truncation of the chaos decomposition : £9? = ||(Y4—-Y@P 29— 79 U1—-UP)||3,,

where (Y2, Z%P U9?) is defined by (29)-(B0),
3. the truncation of the L2(0,T) basis : %N = |(Yo? — YarN zar — 79PN rrap _
USPNY|12,, where (YN, ZarN arN) s defined by (31)-(32),

4. the Monte-Carlo approximation to compute the expectations : £9PNM = |(YarN —
N N,M N N,M :
Yq,p,N,M’ ngpy _ Zg’p’ ) ,Ugap7 _ U27p7 ) )Hi?? where (Yq’p’N’M, Zq’p’N’M, Uq’p’N’M) is

defined by —.
We have

(Y — Y orNM 7 zap XM gap N2, < 4(E9 4 €77 4 g2PN 4 gAY,

It remains to combine (38)), Proposition [{.9] Proposition and Proposition to get
the first result. O

4.1. Picard’s iterations

The first type of error has already been studied in [23] (see the proof of Lemma 2.4), we
only recall the main result.

From [23, Lemma 2.4], we know that under Hypothesis , the sequence (Y, Z9,U1),
defined by ([27)-(28) converges to (Y, Z,U) dP x dt a.e. and in S%(R) x H4(R) x H3(R).

Moreover, we have

A
E=||(Y =Y, Z = 20U~ U < 5,

where the constant Ay depends on T, [[£||* and on || f(-, 0,0, O)||i? -
0,T

(38)

4.2. Error due to the truncation of the chaos decomposition

We assume that the integrals are computed exactly, as well as the expectations. The
error is only due to the truncation of the chaos decomposition C, introduced in (3)).

For the sequel, we also need the following Lemmas. We postpone their proofs to the
Appendix [Appendix A.T]

Lemma 4.7. Let m € N*. Assume that £ satisfies H,,,, and f € CmremEemta - Thep

Vg <q,VpeN, (Y, 29 U7 and (YI?, 24P UTP?) belong to S™>. Moreover,
107, 29, Uy < O el s (10l hcomsa):

Lemma 4.8. Assume that § satisfies H, and f € CVPIVRYE - Then gt holds for any
J=>1

1Y e?, 242, ULP)|5, 5 < O, 5 1€ llpas (105 llooizmva)-

Proposition 4.9. Let 1 <m < p+1. Assume that £ satisfies H,,,, and f € Cpmremtamta,

We recall 97 = ||(Y1 = Y%, Z9 — ZP U1 — UTP)||2,. We get

Kl(q7m)
(p+2—m)---(p+1)

EMWP < O\T(T + 1) L3EM + (39)
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where Cy is a scalar and the constant Ki(q,m) depends on T, m, ||€]| . oonia-1y and on
= (m—1)!

(||a§pf||oo)1§k§m+q

Since E"? = 0, we deduce from that £17 < M)) where Ay(q,m) =

(p+2—m)-(p+1
2\q_
((217;,(8111))2’;):1 X maxi<j<g K1(l,m). Then, (YP4, ZP1 U%P) converges to (Y9,29,U9) when
2 <<

p tends to oo in ||(+,-,)||lLz (see (2) for the definition of the norm).

Remark 4.10. We deduce from Pmposz’tion that for allT and Ly, we have limy, o ETP =
0. When C\T(T+1)L3 < 1, i.e. forT small enough, and if ¢ satisfies H', and f € C;*,

1-CiT(T+1)L% (p+2—m)—(p+1)

and sup; Ky(j,m) < oo since from the proof of Propositz’on one concludes that K1(j, m) =
60([E B +T fo 1 (5,YS, ZL, UDDmds) < C(Tym, (€]l pcmssmrns (105, Fllkcmes))-

+ie
(m—1)!
Proof of Proposition[{.9. In the following, we denote AY,*" := Y P -Y! AZ}* .= ZPP—Z],
AUP? .= UPP — Ul and AfFP .= f(t, Y, 2P, ZPP UPP) — f(t, Y, Z], Uf). Firstly, we deal with
E[supo<;<r |AY77|2]. From and (29)) we get

we also get limy,_olimg_.oEPP = 0. Indeed, it holds lim,_,o, EP <

m—+j,2

t
AYtqH,p :Et[cp(Fq,p) _ Fq] _/0 Afg’pds,
T T
:Et[cp(f) - 5} + Et [Cp (/ f(SJ Y;],p) Z;Lpa U§7p)d8> - / f<87 )/8117 Zg7 Ug)ds
0 0

t
- / Afids,
0

We introduce +C, ( I f(s,Ya, z9, Ug )ds) in the second conditional expectation. This leads
to

T t
AYSYP ZR[C,(€) — €] + E, lcp < / A fsflvpdsﬂ - / Afovds
0 0
T
+]Et [/ Cp(f(S,Y;q,Zg,Ug)) _f<3>Y;q>Z§7Ug)d8‘| )
0
where we have used the second property of Lemma to rewrite the third term on the

right-hand side (r.h.s. for short).
From the previous equation, we bound E[supy<;<r |AY;7*5P|2] by using Doob’s maximal

inequality and the Lipschitz property of f
T
C, ( / A fg’pds>
0

T
+2 [, Y2, Z2,U8)) = (5, Y, 28, UD)lads
0

| sup [AYS < 2,(6) — €lla + 2

2

T
Ly [ NIAYE] 4 |AZ8) 4 | AU ods.
0

To bound the second term on the r.h.s. of the previous inequality, we use the first property
of Lemma and the Lipschitz property of f. Then, we bring together this term with the
last one to get
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T
Il sup. [AY [l < 2(IC, () — €l + 2/0 1Co(f (s, Y, Z8,U) — f(s, Y, 22, Ud)|ods
<t<
T
3Ly [ IIAYS?] + |AZ27] + |AUS|ds. (40)

0

Let us now upper bound [ |AZZP|12ds + & [ | AUZHP||3ds. To do so, we use the Ito
isometry [i [|AZE5P||2ds + k [y ||AUSHP|3ds = || fo AZ9HPdB, + AUITPAN, |2,

Using the Definitions ([28)-(30) of (Z¢™, Uf*") and (Z#", U# ") and the Clark-Ocone
Formula (see [16, Theorem 1.8]) leads to

T T -
/ AZIHPIB, + / AUTPIN, = F1 — E(FT) — (C,(F) — E(C,(F))),
0 0
T
=V [ (s Y, 22 U — Y
0

T
- (Yﬁ“’p [ f v ze ugyds - Y) .

Rearranging this summation makes appear AV — (AYZTP). We get

T T
| Iazet s k[ AUZ s < 4] sup AV
0 0 0<t<T

T 2
21 ( [ 1y, + jazes), + ||AU;7P||2dS> |
(41)

Since (fOT |AY 2P|y 4+ |AZ2P]], + ||AU§”’H2ds)2 < 3(lilzLN)T(T—i- 1)E%P, by computing 5 X
2 + we obtain

T
qurl,p S 60HCP<€) - 5”3 + GOT/ ||Cp(f<57 Y;q7 ng Ug)) - f(sa Y'qu Zg7 Ug)HgdS
0
3(1+ k)
K

Since ¢ and f(s,Y4, 2%, U%) belong to D™2 (¢ satisfies HL . | f € CP"Temtemta 4nq
s s s m+q b
(Y4,29,U7) € 8™ (see Lemma [4.7))), Lemma [2.4] gives

+ 137 T(T + 1) L5E%P.

60]I€]|Hm 60T T
5q+1,p < D —+ / f 57}/?1, 2217 Usq 2 ds
(p+2—m)(p+1) (p—|—2_m)(p+1) 0 H ( )HD
411(1
+ MT(T—I— 1)L?5q,p_

K

Since fy'[|f(s, Y1, Z2, U{)|[Bds is bounded by C(T,m, (|04, flloo)ems | (Y7, Z9, U |37,
(see (A1), in the proof of Lemma [4.7]), Lemma [1.7] gives the result.
0
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4.3. Error due to the truncation of the basis
Fix N € N* and put h = % Use {po,p1} = {1{0},ﬁ1{1}} as orthonormal basis of
L2({0,1}, 201§y + kd;) and fix an orthonormal basis {ey }ren- for L2([0, 7], B([0,T]), \)
such that ¢; = ih for i = 0,1,..., N and
1
- ﬁlﬁl—laiz] (t)7

Lemma 4.11. Assume F = E[F| + 3%, I,(g,) € L*(Fr) satisfies (37) with m = p. Then

N ) _ T 26}7‘ p ,zTi _ T 26}7‘ T
=1 :

where KI' =30 (KI')? (with KI':= KF(1) from (37)).

We refer to Section [Appendix A.2]for a proof of Lemma [£.11]

Lemma 4.12. Assume & satisfies H, (i.e. Hypothesis and f € CYPPP. Then, for
all integers ¢ > 0, 1,, = fOT f(s,YOP ZTP U2P)ds satisfies H, so that by Remark
for all 1 < r < p and multi-indices i, € {0,1}" and for a.e. (t1,---,t.) € [0,T]" and
(s1,-+,s.) €10, 7] we have

E(Dy; .. 1, 1ap) = E(D; ... o, Tap)l < K77 ([t — 81|70 o [ty — 5,|7100),

where B, = 5 A\ B¢, and the constant Klo» depends on K¢, ||€||p.1, T and on (0% f|lso)1<k<p-

We refer to [Appendix A.3| for the proof of Lemma [£.12]

Proposition 4.13. Assume that £ satisfies H, and f € CyPPP. We recall E9PN = ||(YoP —
yarN gav — zoPN grar _ gy 12, We get

T 1N28¢
) (12)

LN < CLT(T + l)L?cé’q’p’N + Ka(q, p) (N

where Cyis a scalar and the constant Ky(q, p) depends on Eﬁ, T, ||€|lp.1 and on (|OF, f|l0)1<k<p-
1A2
Since E9PN = 0, we deduce from that £9PN < As(q,p) (%) " Bg, where Ay(q,p) =

2yq_
Kg(q,p)T(T—i—l)eT%. Then, (YPoN  z0ON 9PNy copverges to (Y0P, Z9P U9P)
in||(+,-,)||Lz when N tends to oc.

Proof of Proposition[4.13. In the following, we denote
A}/;q,p,N — Y;q,p,N _ Ytq,p

N N N N
AZ;ML — Zflp’ _th,p, AU;ML — th_,p, _th,p’

and
AP = f(, YN, 2PN U — [ (1Y, ZEP U,
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Firstly, we deal with || supy<;<r AV, From and we get
t

AYIHERN — E([C) (F9PN) — C (FoP)] + / AfPNds,
0

By using the second property of Lemma 2.14] by following the same steps as in the proof of
Proposition and by introducing iCéV(fOT f(s, YoP Z2P UTP)ds), one gets

T
cy ( | a fg’pds>

T
v2ie -6 ([ (e vem. 2z vsmyas)

| sup |AY PNy < 200N (6) = Cp(©) 2 + 2

2

2

T
Ly [ NAYEY] 4 |AZEN| 4 | AU |ads.
0

It remains to apply the first property of Lemma [2.14] to get

2

T
I sup 1AV <216 (©) - @) + 263~ &) [ (.2 227,037y
T
3Ly [ AYIPN| 4 |AZIN] 4 [ATEN|ods. (43)
0

Let us now upper bound [ |AZIT1PN|2ds + s [ ||AUZHPN||2ds.
Following the same steps as in the proof of Proposition [£.9] one gets

T T
| Iazer N 2as 1w [ AU |3ds
0 0
2

T
<)) sup |AYR|3 4 213 (/ HAY;”’”’NIIHIIAZE””NH2+\IAU;”p’NIIzds>- (4
0<t<T 0

Adding 5 x 2 and gives
2

T
e < 06 6+ 00 ey - ¢ ([ (v 2o vz

411(1 + k)
+7
K

2

T(T + 1) L3N,

Since ¢ and [, satisfy (see Remark [£.2 and Lemma [£.12)), Lemma [4.11] gives

411(1 + k)

T 2B N1 - -
eroN <60 () T+ (K + (i) + T(T + 1) 1299,

N
and follows. O
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4.4. Error due to the Monte-Carlo approximation

We are now interested in bounding the error between (Y42N z%PN 797Ny defined by
BD-@2) and (yorn, z2p M g2r ) defined by B3)-@6). ¢ s defined by
and . In this Section, we assume that the coefficients dj} are independent of the vector
(Gy,---,Gx), which corresponds to the second approach proposed in Remark .

Before giving an upper bound for the error, we recall the following Lemma, which mea-
sures the error between Cév and CZ])V M for a r.v. satisfying ’Hf;’ ~ (see Hypothesis .

Lemma 4.14. Let F' be a r.v. satisfying Hypothesis Hg’N. We have

1

E(/(C) =) = 57

p

Von (F).

Moreover, we have E(|CYM(F)[?) <E(|FJ?) 4+ 35 Vo (F).

We refer to Section [Appendix A.4] for the proof of the Lemma.

Proposition 4.15. Let & satisfy Hypothesis Hi,N and f be a bounded function. Let E9PNM .=
[(YarN —yapNM zapN _ 7zapNM rrapN _ 7apNMY|12, 0 e get

EXHIPNM < CuT(T 4 1) L2EWPNM 4 Kg(quN)
where C3 is a scalar and the constant K3(q,p, N) := Cy (Vp,N(é) + T2\ f112 by (QIJCV)) for
some Cy > 0.

Since EOPNM = (0 we deduce from the previous inequality that E4PNM < As(a.p.N)

M
2\q_
As(q,p, N) = Ks(q,p, N) (%337;((7;111))?2):1' Then, (YPaNM - 7zpaNM [7ap.NMY - conperges to
f

(YarN ZapN 74PNy n || (-, -+, +)||L2 when M tends to oo .

, where

The proof of Proposition is the same as the proof of [7, Proposition 4.17], except
that we consider jumps. The jump part is treated as in (44]).

5. Implementation

5.1. Pseudo-code of the Algorithm

In this section, we describe in detail the algorithm. We aim at computing M trajectories
of an approximation of (Y, Z,U) on the grid T = {t; = i%,i =0,---,N}. Starting from
(YO N.M - 700, NM 700, N.MY — (0, 0,0), — enable to get (Y4PNM 7ap.NM [7a.p.N.M)

for each Picard’s iteration ¢ on 7. In practice, we discretize the integral f; f (Gg’p’N M ) ds

which leads to approximated values of (Y4PN-M - 7Zap.N.M 17ap.N.MY computed on a grid. Let

7Q+17P7N7M 7Q+17P7N7M 7q+17p7N7M

Yy, » 23, ,Ug )
3 2 3

us introduce ( 1<i<n, defined by

(T 7

0,P7N,M 70,p7N)M
U )

=(0,0,0)
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and for all ¢ >0

Yt _ g oo (per i) - h (@, v zgr Tty
=1
7y = DY (s (e (T ")

K3

—q+1,p,N,M 0, N,M
of P = DO (B (M (FTM), (45)

’pyNM 7p7NM 7p7NM »p7NM)

where F’ =E+hYN [5G, YT 723 Ul

Remark 5.1. Instead of studying the error between (Y, Z,U) and Hq’p’NM = (Yq’p’NM
74P NM (1apNMY e could have studied the error between (Y, Z,U) and grr = (YY" M

Zq’p’N’M,Uq’p’N’M). The main difference between §9PN-M qnd "M s that we conszder a
discrete sum in the implemented scheme. In that case, the scheme of the proof is the same,

and in order to get the same convergence rate we just need to add another assumption: f
has to be Holder-(Be A 5) in time.

Here are the notations we use in the algorithm.

q: index of Picard’s iteration

K;;: number of Picard’s iterations

e M: number of Monte—Carlo samples

N: number of time steps used for the discretization of Y and Z

p: order of the chaos decomposition

Y? € Mpy1(R) represents M paths of Y M computed on the grid T.

Z? € Myiim(R) (resp. U? € Mpyi1,m(R)) represents M paths of Zrn M (resp.
Uq’p’N’M) computed on the grid 7.

Since ¢ € L*(Fr), £ can be written as a measurable function of {By, N;}4<p. Then,

one gets one sample of £ from one sample of ((G1,@Q1), -+, (Gn,Qn)) (where G; represents
; —B;,
% and @); represents N, — Ny, ).
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Algorithm 1 Iterative algorithm
1: Pick at random N x M values of standard Gaussian r.v., stored in G, and N x M values
of Poisson r.v. of parameter kh stored in Q.

2: Using G and Q, compute {£™ }o<m<nr—1.

3:Y°=0,2°=0, U" =0.

4: forq=0: K;; —1do

5: for m=0: M —1do

6: Compute (F9)™ = &m +h YN f(E, (YDim, (Z9)im, (UD);0)

7 end for L

8: Compute the vector d = (dy, {dﬂ}lgkgp inj=k) of the chaos decomposition of F
0 doi= g SoSo (FO)™ df = iy Sae (FO™ I K,s (G7)Cor (QF, )
10: for j=1: N do

11: for m=0: M —1do

12: Compute (B, (CMF))™, (D (Eq (CY-M F2)))™, (D} (B, (CYM Fo)))™
13: (YT)j 0 = (B, (CYMFN))™ — A2y f (T, (Y i (Z)ims (U)im)

14: (Z4)jm = (D)7 (B, (CYM 7))

15 (UT)jm = (DL (B, (CYM Fa)))m

16: end for

17: end for

18: end for

19: Return (YK”) _ do’ (ZK”) 10N o1d (UKit)O’: — C'Zfl)N,m

. e
_Tl

Let us now deal with the complexity of the algorithm :
For each ¢:

e the computation of the vector F¢ (loop line [5)) requires O(M x N) computations,

e the computation of the vector d (line [§)) requires O(M x p x NP?) computations, and
the computation of each coefficient requires O(M X p) computations,

e for cach N and M (lines [LOH11])
— the computation of (Eg, (CYMEa))™, of (D§9) (B, (CYMET)))™ and of
(Dz(vl)(Egj (CYMF9)))™ (line [12) requires O(p x N?) computations

— the computation of (Y1), ,, (loop line requires O(N) computations, the
computation of ((Z9+1)} ) and ((Ueth)L ) requires O(1) computations.

The complexity of the algorithm is then O(Kj; x M x p x NPT1).

Remark 5.2. Given the complexity Cy of the algorithm, we can choose the parameters
p.q, N and M such that they minimize the error % + ’?;Jrqlp + As(q,p) ( ) +W7 where
a = 20¢ N'1. This boils down to solving the followmg constrained minimization problem

1 n o +C'q+Cqu

29 (p+1)!  Ne M ]

min
¢,p,N,M 8.t. qpMNP+1=Cy
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r+3

The Karush-Kuhn-Tucker theorem gives M ~ 22(p + DNEDED N ~ (p+ 1), ¢ ~

mp In(p+ 1) and p such that (p + 1)(2p+3)(1+§)p3 In(p +1) ~ alog(2C)Cy.

5.2. Numerical Examples
5.2.1. First example

The following example is borrowed from [I5]. We consider a Poisson process N with
x = 1 and the following BSDE

dY, = —cUdt + Z;dB; + Uy (dNy — dt),
&= Nr.

The explicit solution is given by
(Ys, Zi,Up) = (N + (1 + ) (T — t),0,1).

a,p;N,.M  r7q,p,N,M 771q,p,N,M
YE] 7ZO 7UO )

Figure |1| represents the evolution of ( with respect to M when

q=05p=2and N = 20.

Convergence of YO w.r.t. M

1.54

1,537 —y
2
1.50

1.49 \//
1.483

1.479
1.46-

1.45-

1.44
0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05 8e+05 9e+05 1e+06

Convergence of Z0 w.r.t. M

0.057

0.00

~0.057
—0.10]

-0.157 —Z

] ref
-0.2
0 O%+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05 8e+05 9e+05 1e+06

Convergence of U0 w.r.t. M

1.14
1.124 —Uu

1.107 ref
1.08—
1.067
1.04
1.024

1.00
0.98] \///

0.9
ge+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05 7e+05 8e+05 9e+05 1e+06

Figure 1: Evolution of (Yoq’p’N’]V[7 Zg’p’N’M, Ug’p’N’M) with respect to M whenp =2, N =20, ¢ =5, c = 0.5,
T=1

Table [T gives the computational time needed by the algorithm with this choice for ¢, p, N
and for different values of M. We notice from Figure I that the value of (Yr»"M ZzapNAM.
UZPNMy s close to the true solution from M = 2 x 10°. When M = 2 x 107, the CPU time

is about 1 minute, which is quite small.
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M 10 [ 5x 103 | 10* [ 5x10*| 10° |[2x10° | 5x 10° | 10°
CPU time (in s) || 0.253 | 1.277 | 2.567 | 13.24 | 26.81 | 56.91 | 142.75 | 283.65

Table 1: CPU time w.r.t. M whenp=2, N =20,¢=5,¢=05,T=1

5.2.2. Second example
We consider now the following BSDE

dY, = —(aY; + BZ, + yU,)dt + Z,dB; + U,dN,,
¢ = exp(aT + bBr + ¢Nr).

The explicit solution is given by

(b+8)%-p2 c
T+bBi¢+cN; +——= ) (T—t)+ —1 -+ T—t
Y, = ¢ t+eNe (@ 5 NT—=t)+(ec—1) (x+7)( )’

Zy =B (DYY;) = bY,-, Uy =E, (D}Y;) = (e“ —1)Y,_

We choose a = =03, 7v=02,a=-0.1,b=0.1,¢c=02, k =3 and T = 2. For
these values, we get (Y, Zy, Up) = (6.599,0.66,1.4612). For M = 4 x 105, p = 2, N = 50
and ¢ = 10, we get (Y»NM zapNM apNMy — (6 560,0.56,1.294). We plot one path of
(Y,2PNM Y e, (28PN Z) 1< and (UFPNM UL <r in Figures , 3| With M =4x10°,
p=2, N=50and qg=10.

one path of (Yapp,Yth)
6.5 4

— Yapp
— Yth

5.5 4

4.5 4

3.5 4

Figure 2: One path of (Y ¢P-N-M y)
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=
v

0.5

-0.5

-1.5

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

one path of (Zapp,Zth)

— Zapp
] — Zth
T T T T T T T T T T T T T 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Figure 3: One path of (Z9PN:M 7)
one path of (Uapp,Uth)
] — Uapp
— Uth
T T T T T T T T T T T T T T T T T 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 4: One path of (U4PN:M )
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Appendix A. Technical results

Appendiz A.1. Proof of Lemmas[{.7 and[{.§

Appendiz A.1.1. Proof of Lemma[{.7]
Let #; := max{t;,---,t}. First, we prove by induction that V¢’ < ¢, (Y, Z7,U?)
belongs to ™, i.e. Vj > 2

. ’os T i
1Y, 27, UL, = Y ZeSSSUP{ sup |Dy .. Y |J]+/t~ E(|Dy;... ., Z Pldr
l

1<Ii<m i 4 <r<T

+/ E[\Dilh,,,vtlU,?/P]dr} < oo.
t

Let r» > t;. Using gives

Dl oY =By [Df oy P = [ DI f(01 " )ds, where 071 = (s, Y1, 201 Ud ),
t
Using the Definition of F'¢~! and applying Doob’s inequality leads to

. . . , . T o
Bl sup, 1D} ¥ <€) (BID gt + B ( [ 1060 pas) )
l

t; <r<T

where C/(7) is a generic constant depending also on 7. Analyzing the outcome of the repeated
Malliavin derivative where for D\ f (67-1) the chain rule holds while

DIV FOTY) = f(s, VI 4 DIVYIL 207 4 DV 20 Ud - DU — Fe7 Y

(see, for example, [9, Lemma 3.2]), one can see that the term | D}’ .., f(67~')| is bounded
by a sum of terms of type

lo+11+1
N o" Doy d -1\ | pki z¢' =1} pkapre'~1
Z H sprOO to * s t1 “s to Vs )

where k; € {0,1}% are vectors of size [; and Iy + l; + I < . Then, Hélder’s inequality gives

T . o ! ,
B ([ 1D s pas) < o (S ok )l 2o, )
l k=1
and

Z Z ess sup E[ sup |Dt1 terqllj]

1<I<m 116{0 1}1 t1,,t t <r<T

ot (et +Z(ZH R e S A P
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From (28)), we get Di§7...,tlZ =E, [D]g1 i1:0) f + /r Dt(i'ltl”ro) (93’—1)du]1{r2t~l}. Then

by,

T i

|| EIDE. 2 Plar

l
T (i1, ,i1,0) ¢ 14 T I

<G| [ EID e lr + [ E dr .

l 1

Using (A.1]) yields

>y esssup [|D A ¢ ] dr

1<i<mie{o1}t ‘1

(11 -,i1,0) qu )d

tr

m +1
/7 /7 /7 ll y
<>(Hsnmﬂj+z(z 1 frv) (VoL 701 g 1>|15;1§?a+1>j)-

The same type of result holds for fg]EHD;’ltl U4 ]dr. Combining this result with (A.2))

gives
&= k S (+1)7
. /_1 1_1 /_1
I, 29 U < <>(||§||m+1] (znaspfnz,o)zan 7 e >||<l+1)7(l+1>j)-
k=1 =1

[terating this inequality yields the result.

Appendiz A.1.2. Proof of Lemma[{.§
We prove it by induction on q. Let r > #;:= max{t{,--- ,#;} and 9P := (s, YIP Z9P U%P).
From we get that

D} . YT =K, [D}t _,C,(F™P)] — [ Dp ., f(09")ds
= E,[Cpy(D} . FTP)|1cy) — /t Di ., F(6°7)ds,
1

where we have used Lemma to get the second equality. Applying Doob’s maximal
inequality leads to

E[ sup D}, Y0P SC(J‘><EHCpz(Dii,...,tqu’p)P]l{zgp}

L<r<T
T . ,
([ Ihempa) ) @)
t

where C(j) is a generic constant depending also on T. Let us first deal with the first
term of the r.h.s. of (A.3), we assume [ < p. Following Proposition , we know that
Faor =35  1,(gn). Then

o0

DY L F =3 n(n—1)--(n— 1+ 1)L y(gn(+, 21, , 2)),

n=l
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with zx = (tg, 1) and

M*@

Cp_l(Dlifll,---,tlF%p) = TL(TL - 1) e (TL —1 + 1)]n—l(gn(*7 21yt 7Zl>>a

=S
1L

n+1)!
= ( ] ) [n(gn+l<*721,"' 721))'
0 n:

3
|

Let us denote gy, (%) := gn,+1(*, 21, -+ , z). From Proposition [2.9) we get
E(|Co(Di,..., F*7)I]

p ) w0 (ny+ D)

= Z E(Inl(gnl)"'lnj(gnj)) cee

N, ,n;=0

p! (m + l)' (le + l)' J
= M : |o| A IT+|o]
> Ly > (@)

JBE[N] (1,0)€l=2, >2(JBin1,...,n ) e

p—l ]
< Z (nl + l) . ny + l H ||gnz+l|]oo Z Z K\U\ T|TH“O’|‘ (A4)

|
ni,--,n;=0 e ! JBeln] (r,0)€ll_g >2(JB;n1,...,n;)

Thanks to the assumptions on f and & and induction hypothesis, we have F9? ¢ DP2,

Then, . ) gives that g, 1i(21, ,2n,41) = o +l> I[E(Dt(z1 ’:l":ll)(Fq’p)), then ||gn,+illooc <
(] +l 1| F9P | ,40,1- Since n; < p — 1, we get ||gn, 1|0 < (m-+l i P [[p.1- Then

. . . pil
EICoi(Dy} . o FIPIT < ([IFP[p0) > D > g7l TITH
ni,ni=0 JBe[n] (1,0)€ll=g >2(JB;n1,...,n;)
< C@: )EP[p1) (A.5)

We have ||F9P||, 1 = >, i eq0,13 €5SSUDy, . 4, E(|D}. ... , Fo?|) where
. . T .
E(|Dgy ., F971) S E(ID4. 1,€]) + E(/t~ | D f (07| ds).
1

By using (A1), we get E (7 [D}t .., f(032)|ds) < C (Zhey 105, Flloo) (Y9, 207, U22)]IF,
Then

l
17l < el + 2 (3 1051 ) 10772, 207, 0 (A5

I<p k=1

|23, < C(p. ) (ngn +zc(zu f||ﬂ)|| (vor, 707 qu>||”]). (A7)

I<p

Let us now deal with the second term of the r.h.s. of (A.3]). By using (A.1]), we get

T : ! , .
E(/ \Dza,...,tlfwzvp)vds) sc(z ||a§pfugo) [(yer, zom, U, (A8)
b k=1
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Combining (A.5), (A.7), (A.8) and (A.3]) yields

E[ sup |Dj .., Y, 10p]

L, <r<T

< Clp,) (an +Zc(z 1 f||]>|| (v Z”Umnw) Lie

I<p

+c(z|| . ) [(yor, zon, yan) |

and
ST Y esssupE[ sup Dy, YATP)]
1<i<miefoay ‘ot f<r<T
mvVp
<C(p.Jj) (Ifl! + C(ZH Il > [(yer, Zzor, UsP)||5 ) (A.9)
=1
From we get

11,0 i1, ,21,0 7 17,0
D1$1 Z)Znglp = Er[DzElan,tlfr )Cp(qup)] =E, [cp - 1<Dl§11 tllr )F%p)]]'{lﬁp—l}l{rzfl}'

Then
r i 1 T (z ,i1,0)
/t~ E[1D},. 20 V]dr < C ( [ ElC-a(D i F)Pldr | Lagyu.
1 t
Using (A.5)) and - leads to
> ) ess sup [\Dilly‘,,vtlZ,?H’pP]dr

1<1<myefoay ot i
< Cv.j) (ngn +ZO(Z|| f||]>|| (vue, zo0, o) | )
=1

The same type of result holds for ftlT E[\D;lltl Uattr|i]dr. Combining these results with
(A.9) gives

mVp

(Yoo, Zoie yriy i <O, ) (an Yy (Z 165 FIIL ) [(vor, zow, gany | )
=1

Iterating this inequality yields the result.

Appendix A.2. Proof of Lemma

We will prove the assertion by induction in p € N. Since (C)Y)(F) = (Co)(#) Lemma [4.11]
holds for p = 0. Assume that for p € N*

p—1 28F p—1 T
BICY ~ PP < SD2( ) Tt
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By using (5) and . we get
(C) = Cp)(F) = (G

Then, it suffices to show that

2Bk )
BI(RY PP < (17 (§7) w7

We have P,(F) = I,(g,) where we will assume that g, is symmetric. It holds
PY(F) = L(g,)

with
ggj)v((tlvil)u"' 7(tp7ip>) - Z <gp((721>7 7('72.17))76[]{71’"'7kp]>L2([0,T]p)
kpé{l,“-,N}p
X elky, .o, kpl(t1, -+, tp).
Then g]])V is constant w.r.t. (ti,- - ,t,) € Ak, == Ap, X -+ X Ay with A; :=]t;_1, %] since

e[ky, ..., kp] = h™ 21y, . We have by (1), and (37) that

E|(B, — P,)(F)?
= E’[p(g;]ov) - [p(gp)|2
- Z Z K|ip|p!|’h_%<gp(('v il)? Tty ('7 ip>)7 6[/{31, ) kaLQ([O,T]p) - gp(('? i1)7 Tty ('7 ip))”%g(Akp)

Ky ip
2
- Zzﬁhp'p" / 51721 ) 7<Sp7ip)) _gp<<'7i1)7”' 7('>ip))d51"'d5p
kp ip La(Ay,)
2
< Z Klirlplp=2P ( 19p((S1,21), -+ 5 (Spsip)) — gp((t1,41), - -+, (Tp, ip))|d81...dsp> dty - --dt,
kpip
2
< ZZHW' / (/ K ([ty = s1]7F 4+ |t — sp|ﬂF)dsl...dsp> dty ---dt,
kp ip Akp Akp
1,1\ 28
FN\2p 2= (-
< (KF)*TP(1 + K)Pp p!(N) .
Appendiz A.3. Proof of Lemma
We will show that if
(Y0P, ZPP UPP) satisfies H, for a.e. t € [0,T] (A.10)

(with 87, = % A B¢) then also I,, = [ f(s, Y, Z2P UsP)ds does satisty H,. As Iy,
is constant, it satisfies H,. For ¢ > 1 we will use the notation DD A% polittn) o
Dy i ”(D@ 00 F — Do) F) and prove that for 1 <r < p

t Si+1s° 8i5Si+1,

E| Dy VAR DI 1< K ()|t — sif P
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(that #H,, holds for I, is clear). Setting ts_; := max{ty, -+ ,t;_1,8i41, -, 5.} and 037 =
(u, YIP Z3P [UDP) we have

T

Dy AR Dt = / DDA DI (627 du
tiVs;Vts_; Oé(l i— 1) o a(z+l T q,p
+ DD DT F(037 ) d (A1)

(ti/\si)\/ts_i

where + = — for ¢; > s;, and + = + for the opposite case. From the proof of Lemma [£.7 we
know that |D ol:i= 1)Dt s, DXL £(92P) | is bounded by a sum of terms of type

| D Z37 | | Dz US|,

(Z 10 f”oo) DY

where k; € {0,1}5 are vectors of size I; with ly + {1 + Iy < r and t; are sub vectors of
{t1,...;ti_1,ti A\ Si, Siv1, vy Sp}. HoOlder’s inequality and Lemma give

J

E < O, 1€lps (105, Flloo nsp)lts — sl

tiVs;Vts_; y .
/( D?(l.zfl)Dto;i/\SiDg(ler)f(GZJ’)du

ti/\si)\/ts_i

For the first term on the r.h.s. of (A.11]) we notice that

T . ,
[ DDA D) f (g7 du
t

iVs;Vts_;

is bounded by a sum of terms of type

T r
[ (Sl )ivgar
tS,i j:1

where (®2P WPP T'7P) stands for a permutation of {V,%7, Z%? Ud4P} and k; € {0,1}4 are
vectors of size ly,ly,ly + I3 + 1 < r while the t; denote the appropriate sub vectors of

{tl, z 1, tz, Siy Sid1y ey ST}.
By Holder’s inequality and assumption ((A.10) we conclude that

D& | | Dy AT DT | du,

T . , j .
E / Dg(ln_l)A?iD:(HLT)f(QZ’p)dU < K’r‘(])‘tz _ Si|351qvp,
t

iVs;Vts_;

We finish the proof of Lemma by arguing that assumption (A.10) holding for true
for a certain ¢, implies it for ¢ + 1 : We want to use and (30) and therefore we first
notice that in the same way as above for I, one can show that (A.10) implies that

t
/f(s,qu’p,Zg’p,Usq’p)ds satisfies H,.
0

It is also clear that satisfying H,, is stable with respect to linear combination and taking the
conditional expectation [E,. What we still need to check is whether satisfying H, is also stable
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with respect to the truncation C,. For this, let us assume that F' = Y°°  I,(g,) satisfies H,,.
Following the proof of Lemma we have

Da(l:i_l)A%Da(i—H:r)F

Z 7’L—1 n_r_l'l)jn—r(gn(*azla"' 72:7;’2;4-17"' 7Z7,')
n=r
_gn(*azh”' 7Z’i—17zzl"" 7’24’))7

where z; = (t;,4;) and 2} = (s;,i;). Like in (A.4) we get

E[IC, (D™ AT DL F)]

p—r | . |
. ny +r)! n; +r)!
SC(}?,],T) Z ( | ) ( ’ | )
1o =0 ny: le.
X H Hgm‘-l—?"(*’zl"" 7Zi7zz{+1"" 722) _gnri-r(*’zh"' ’zi—hZ;"' 7Z7,~))||OO

i=1
< Clp, 4, T) (K )[t; — s:|°7),
where we used that

(ni + T)!||gm+T<*7 Byttt Ry 22_;,_1, Tty 1,~) gnrl—?“(* R1y 5 Ri—1, Zz, e 7Z;)>||OO

F B
< K, (D[t — 5|77

Appendiz A.4. Proof of Lemma
Using the definitions and leads to

N
(G — M) (F) = do — do + Z > (dp = d) T] K,5(Gi)Cror (Qi, ).
k=1 |n|=Fk i=1
Since dA}c‘ is independent of (G}, Q;)1<i<n
E(|/(CY — cNM)(F dy — do|? —th) di — dp[?
(1€ = " )NE)P) = E(|dy — do| +ZZ nP)| E(] Rl
k=1 |n|=k
The definition of the coefficients dy and d} given in leads to
N N.M ’fh)ln n
E(|(C)' —CMM)(F)P) = V(do) +Z > —V(dk)'

k=1 |n|=k )

Using the definition of d? (see (33)) leads to the first result. To get the second result, we
write CM (F) = (CM — CY)(F) + CY (F). Since E (€M — CY)(F)CY(F)) = 0, we get

E(IC," M (F)?) = E(|(C,"" = C)(F)?) +E(IC,) (F)?).
Lemma ends the proof.
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Appendix A.5. The product of two multiple integrals

For the convenience of the reader, we cite here [I4, Theorem 3.6] from Lee and Shih
adapted to our simple situation where the multiple integrals I;(gx) are built using the process
B+ N like in Subsection[2.1.2] For this, we first introduce the ’contraction and identification
operator’ ®%. For symmetric functions g; € (L?)®*(\ ® (8 + x61)) and g, € (L*)®™(\ ®
(80 + K1) we define the function gy ®° g, : ([0, 7] x {0,1})*=27% x ([0, T] x {0,1})™*7° x
([0,7] x {0,1})* — R by

(90 @0 ) (x,.2) = | 91,2, W) g (W, 2.9) AN © (B + r01)|* (W) (A12)
([0,7]x{0,1})*

for (x,y,2) € ([0,T] x {0, 1})*=% x ([0, 7] x {0, 1)) x ([0, T] x {0,1})".

Theorem Appendix A.1. If g; € (L?)®*(A® (8 + k61)) and g, € (L?)®™(A® (0o + kd1))
are symmetric functions such that |gy| @2 |gm| s in (L?)®F+m=20=0 (X @ (55 + Kd})), then

(9 ) I (gm) = ]gk?:a!b! <§> (?) (k ; a) <m b_ a) Lsm—2a-(9k g gm)-

An immediate consequence is that if g, and g,, have disjoint support, then I (gx) L (gm) =
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