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Abstract

A space-time adaptive method is presented for the reactive Euler equations de-
scribing chemically reacting gas flow where a two species model is used for the chem-
istry. The governing equations are discretized with a finite volume method and dy-
namic space adaptivity is introduced using multiresolution analysis. A time splitting
method of Strang is applied to be able to consider stiff problems while keeping the
method explicit. For time adaptivity an improved Runge–Kutta–Fehlberg scheme is
used. Applications deal with detonation problems in one and two space dimensions.
A comparison of the adaptive scheme with reference computations on a regular grid
allow to assess the accuracy and the computational efficiency, in terms of CPU time
and memory requirements.

Keywords: multiresolution, adaptivity, wavelet, finite volume, detonation

1 Introduction

Real world industrial or environmental problems, e.g., management of industrial risks, typ-
ically involve physical and chemical phenomena having a multitude of dynamically active
spatial and temporal scales. Their direct numerical modelling thus leads to prohibitive
computational cost. Introducing adaptivity can be understood in the sense that the com-
putational effort is concentrated at locations and time instants where it is necessary to
ensure a given numerical accuracy, while efforts may be significantly reduced elsewhere.

∗Corresponding author: rousselo@coria.fr
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Adaptive methods are in many cases more competitive than schemes on regular fine grids,
in particular for solutions of nonlinear PDEs exhibiting a non-uniformly distributed regu-
larity of the solution. Reliable error estimators of the solution are essential ingredients of
fully adaptive schemes. They are based for example on Richardson ideas of extrapolation,
adjoint problems or gradient based approaches. For evolutionary problems, a major task
is the time evolution of the grid and its reliable prediction for the next time step. How-
ever, to become efficient, adaptive methods require a significant effort on implementing
data structures, which are typically based on graded trees, hash-tables or multi-domains.
Moreover, the computational cost per cell is significantly increased with respect to uniform
discretizations. Hence, an adaptive method is only efficient when the data compression
is large enough to compensate the additional computational cost per cell. Fortunately,
for problems exhibiting local discontinuities or steep gradients, adaptive computations are
faster than fine grid computations.

Adaptive discretization methods for solving nonlinear PDEs have a long tradition and
can be tracked back to the late seventies [12]. Adaptive finite element methods have a long
history, in particular for elliptic problems. For chemically reactive flow with detailled chem-
ical reaction in three dimensions [10, 11] proposed stabilized finite elements with adaptive
mesh refinement. The equations are treated fully coupled with a Newton solver and the
solution of large linear non-symmetric, indefinite systems becomes necessary for which a
parallel multigrid solver is used. Moving grid techniques have been applied successfully to
combustion problems [39]. A posteriori error estimators have also been studied for a long
time to improve the grid, since the early work of Babuska and Rheinboldt [2]. However,
adjoint problems have to be solved which are linear although the original PDE can be
nonlinear [3]. Fully adaptive finite element discretizations of reaction-diffusion problems
encountered in electrocardiology have been proposed in [42, 33]. For time adaptivity a
stepsize control with linearly implicit time integrators is used. In space a multilevel finite
element method is combined with a posteriori local error estimators.

The main challenge is to estimate and control the error of adaptive schemes with respect
to the exact solution, or at least with respect to the same numerical scheme on an under-
lying uniform grid. Self adaptive methods are preferred as they automatically adjust to
the solution. The block-structured adaptive mesh refinement technique (AMR or SAMR)
for hyperbolic partial differential equations has been pioneered by Berger and Oliger [7].
While the first approach utilized rotated refinement grids that required complicated con-
servative interpolation operations, AMR denotes today especially the simplified variant of
Berger and Collela [6] that allows only refinement patches aligned to the coarse grid mesh.
The striking efficiency of this algorithm, in particular for 3D instationary supersonic gas
dynamics problems, has been demonstrated by Berger et al. in [4].

Recently, multiresolution (MR) techniques have become popular for hyperbolic conser-
vation laws, going back to the seminal work of Harten [36] in the context of finite volume
schemes and cell-average MR analysis. Starting point is a finite volume scheme for hyper-
bolic conservation laws on a regular grid. Subsequently a discrete multiresolution analysis
is used to avoid expensive flux computations in smooth regions, first without reducing
memory requirements, e.g. for 1D hyperbolic conservation laws (Harten [30]), 1D con-
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servation laws with viscosity (Bihari [8]), 2D hyperbolic conservations laws (Bihari and
Harten [9]), 2D compressible Euler equations (Chiavassa and Donat [14]), 2D hyperbolic
conservation laws with curvilinear patches (Dahmen et al [19]) and unstructured meshes
(Abgrall and Harten [1], Cohen et al [16]). A fully adaptive version, still in the context
of 1D and 2D hyperbolic conservation laws, has been developed to reduce also memory
requirements (Gottschlich-Müller and Müller [35], Kaibara and Gomes [40], Cohen et al
[17]). This algorithm has been extended to the 3D case and to parabolic PDEs (Roussel
et al [48], Roussel and Schneider [47]), and more recently to self-adaptive global and lo-
cal time-steppings (Müller and Stiriba [45], Domingues et al [23, 24, 25]). Therewith the
solution is represented and computed on a dynamically evolving automatically adapted
space-time grid. Different strategies have been proposed to evaluate the flux without re-
quiring a full knowledge of fine grid cell-average values. Applications to shock waves in
compressible flows addressing the issue of shock resolution have been presented in [5], and
extensions to the Navier–Stokes equations in the weakly compressible regime can be found
in [49]. Adaptive MR methods with operator splitting have been proposed for multiscale
reaction fronts with stiff source terms in [28, 27]. The numerical analysis of the above
higher order operator splitting techniques has been performed in [20, 29] and it was shown
that the splitting time step can be even larger than the times scales involved in the PDEs.
Adaptive MR computations using the above method with complex chemistry and includ-
ing detailed transport can be found in [21], further applications involving various stiffness
levels have been presented in [30] [31].

The MR approach has also been used in other contexts. For instance, the Sparse
Point Representation (SPR) method was the first fully adaptive MR scheme, introduced
by Hölmstrom [38] in the context of finite differences and point-value MR analysis, leading
to both CPU time and memory reduction. In the SPR method, the wavelet coefficients
are used as regularity indicators to create locally refined grids, on which the numerical
solution is represented and the finite difference discretization of the operators is performed.
Applications of the SPR method have been published in [22, 46]. Discontinuous Galerkin
methods, they have been applied to hyperbolic conservation laws in [13] using Haar wavelet
indicators to decide where to refine or to coarsen the meshes. These publications reveal that
the multiresolution concept has been applied by several groups with success to different
stiff problems. For comprehensive literature about the subject, we refer to the books of
Cohen [15] and Müller [44].

The objective of the paper is the extension of the adaptive multiresolution method [48,
24] to the numerical simulation of detonation waves. As model we use here a one-step
chemical reaction involving two chemical species only. Since the chemical source term is
stiff, a time splitting has to be made between the convective and source terms and each
term needs to be computed with a different time step and a different time integration
method. An error-controled time step based on a Runge–Kutta–Fehlberg approach is used
for the source term integration. The application concerns Chapman-Jouguet detonations
in one dimension with different stiffness values and instabilities of detonations waves due to
an interaction with a pocket of partially burnt gases in two dimensions. These detonation
problems motivate the use of the Euler equations, although extensions of the method to
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compute viscous flows using the Navier–Stokes equations is straightforward, as proposed
in [49].

The outline of the paper is the following: first, we present the set of reactive Euler equa-
tions for a simplified detonation model. Then we describe the finite volume discretization.
A Strang splitting technique is utilized to account for temporal scales in the source term
that do not influence the hydrodynamics. We also briefly summarize the multiresolution
strategy. Finally, we show the numerical results for the test problems in one and two space
dimensions and we set the conclusions together with some perspectives for future work.

2 Governing equations

For modelling the combustion process, we use the reactive Euler equations, as described in
[18, 34]. The simplest description of a chemically reacting gas flow assumes that the gas
mixture is made only of two chemical species, the burnt gas, denoted with subscript b and
the unburnt gas, denoted with subscript u. The unburnt gas is converted to burnt gas via
a single irreversible reaction. We represent the mixture state by a single scalar variable Z
corresponding the mass fraction of the unburnt gas. We also assume gases in the mixture
to be ideal polytropic gases with equal specific heat ratio γ and specific gas constant r. The
system of equations in two dimensions, which has been non-dimensionalized in a suitable
way, may be written as

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
= S, (1)

where Q = (ρ, ρvx, ρvy, ρe, ρZ)T and

F =


ρvx

ρv2
x + p
ρvxvy

(ρe+ p)vx
ρvxZ

 , G =


ρvy
ρvxvy
ρv2

y + p
(ρe+ p)vy
ρvyZ

 , S =


0
0
0
0

−K(T )ρZ

 (2)

Here ρ denotes the mixture density, V = (vx, vy)
T the mixture velocity, e the mixture total

energy per unit of mass, p the pressure, T the temperature and k the chemical reaction
rate. The two equations of state completing the model are

p = ρrT (3)

and

e =
p

ρ(γ − 1)
+
V 2

2
+Q0Z (4)
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where Q0 denotes the amount of heat per unit of mass released in the chemical reaction.
The reaction rate k(T ) of the irreversible chemical reaction is expressed in Arrhenius

form as

k(T ) = A exp
(
−TA
T

)
(5)

where the pre-exponential coefficient A and the activation temperature TA are empirical
constants. When the reaction source term is stiff, however, the reaction rate may be
simplified by adopting the so-called ignition temperature kinetic model, i.e.

k(T ) =

{
1
τ

if T ≥ Ti
0 if T < Ti

(6)

where Ti denotes the ignition temperature and τ the characteristic time of the chemical
reaction, which determines the stiffness of the problem. This formulation has been chosen
in the applications presented in the numerical results section. However, the numerical
method is not limited to this simplified model and its extension to the Arrhenius law or
even more complex chemical reactions is possible.

3 Numerical method

In this section, we first describe the classical Strang splitting and the space discretization
of the convective terms. Subsequently, the time integration is discussed and, first, for
the convective terms, a time step depending on the CFL is chosen, then, for the source
term, we split the convective time step into error-controlled time steps using an explicit
Dormand-Prince method. A different choice has been proposed by Duarte et al in [28],
based on implicit and explicit Runge-Kutta methods and a posteriori error estimators. We
also briefly recall the multiresolution method, previously published in [48, 23].

3.1 Strang splitting

We denote by C(Q) the operator of the convective terms. Equation (1) becomes

∂Q

∂t
= C(Q) + S(Q). (7)

Discretizing explicitly with first order in time, we get

Qn+1 = Qn + ∆t [C(Qn) + S(Qn)] (8)

where n denotes the time instant and ∆t the convective time step.
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The splitting relies on the separation of the convective and source terms operators. To
get a first-order discretization, it writes

Q? = Qn + ∆t S(Qn) (9)

Qn+1 = Q? + ∆t C(Q?) (10)

i.e.
Qn+1 = Co1

∆t S
o1
∆t Q

n (11)

where So1∆t denotes the first-order accurate source term operator with time step ∆t and Co1
∆t

the first-order accurate convection operator with time step ∆t.

To get second-order accuracy, which corresponds to the classical Strang, the following
procedure can be applied

Qn+1 = So2∆t/2 C
o2
∆t S

o2
∆t/2 Q

n (12)

where So2∆t/2 denotes the second-order accurate source term operator with time step ∆t/2

and Co2
∆t the second-order accurate convection operator with time step ∆t.

We note that the splitting time step in the above method is fixed. Techniques to
introduce adaptive splitting time steps based on a posteriori error estimators have been
introduced in [20, 27] allowing automatic error control.

3.2 Space discretization of the convective terms

Discretization in space is made using a finite volume method, to ensure conservative flux
computations. Convective terms are discretized using the AUSM+ scheme [43]. In this
procedure, pressure terms are computed separately. The Euler flux F writes

F =


ρvx

ρv2
x + p
ρvxvy

(ρe+ p)vx
ρvxZ

 = M c


ρ
ρvx
ρvy
ρh
ρZ

+


0
p
0
0
0

 (13)

where M denotes the Mach number, c the speed of sound and h the enthalpy per unit of
mass. Denoting by Φ the purely convective term and by Π the pressure term, we discretize
the Euler flux F in space following

Fi+ 1
2

= Mi+ 1
2
ci+ 1

2
Φi+ 1

2
+ Πi+ 1

2
(14)

where the indices refer to nodal values.
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The interface speed of sound is ci+ 1
2

=
√
cici+1 and the interface convective term is

Φi+ 1
2

=

{
Φi if Mi+ 1

2
≥ 0

Φi+1 otherwise
(15)

The terms Mi+ 1
2

and pi+ 1
2

follow

Mi+ 1
2

= M+
i +M−

i+1 (16)

pi+ 1
2

= P+
i pi + P−i+1 pi+1 (17)

where

M±
i =

{
1
2

(Mi ± |Mi|) if |Mi| ≥ 1

±1
2

(Mi ± 1)2 ± 1
8

(M2
i − 1)

2
otherwise

(18)

and

P±i =

{
1
2

(1± sign(Mi)) if |Mi| ≥ 1
1
4

(Mi ± 1)2 (2∓Mi)± 3
16
Mi (M

2
i − 1)

2
otherwise

(19)

Third-order accuracy of the spatial discretization far from discontinuities is obtained
using a MUSCL interpolation [51], together with a Koren slope limiter [41]. Denoting by
q one of the conservative quantities (i.e. density, momentum, energy, partial mass of the
unburnt gas), the corrected value via a MUSCL interpolation is

q′i = qi +
1

6
φ (ri) (qi − qi−1) +

1

3
φ
(

1

ri

)
(qi+1 − qi) (20)

and

q′i+1 = qi+1 −
1

3
φ (ri+1) (qi+1 − qi)−

1

6
φ

(
1

ri+1

)
(qi+2 − qi+1) (21)

where

ri =
qi+1 − qi
qi − qi−1

(22)

and

φ(r) = max
[
0,min

(
2r,

1 + 2r

3
, 2
)]

(23)

Nevertheless, since we use a second-order accurate Strang splitting in time, the global
accuracy of the scheme remains second-order.
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3.3 Time integration of the convective terms

Time integration of the convective term is made using a classical third-order TVD Runge-
Kutta scheme, i.e.

Q? = Qn + ∆t C (Qn) (24)

Q?? =
1

4
[3 Qn +Q? + ∆t C (Q?)] (25)

Qn+1 =
1

3
[Qn + 2 Q?? + 2 ∆t C (Q??)] (26)

The corresponding Runge-Kutta tableau is given in Table 1.

0

1 1

1
4

1
4

1
4

0

1
6

1
6

2
3

Table 1: Butcher tableau corresponding to the compact TVD third-order Runge-Kutta
method.

The convective time step ∆t is chosen to satisfy the Courant-Friedrichs-Levy (CFL)
condition. In the computations, CFL = 0.5 is used.

3.4 Time integration of the stiff source terms

Due to the stiffness of the chemical source terms in case of detonation computations, a
high order time integration is chosen to ensure the numerical stability. As the chemical
time scale is much smaller than the convective one we apply a much smaller time step
∆td than for the convection terms. However, this is only required in a small area of the
computational domain, i.e. in the reaction zone. In the rest of the computational domain,
the source term is almost equal to zero.

For this reason, we introduce an adaptive local time step ∆td = ∆t
2N

, N being the
number of substeps required by the source term computation. In order to adapt this local
time step with time, a fourth-fifth order embedded Runge-Kutta method is used. The
computational error between the fourth-order and the fifth-order method enables to decide
wether the local time step needs to be increased or decreased, as proposed by Fehlberg
[32].
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Qn+1
o4 = Qn + ∆td

s∑
i=1

bi,o4ki (27)

Qn+1
o5 = Qn + ∆td

s∑
i=1

bi,o5ki (28)

(29)

where

ki = S

tn + ci∆td, Q
n + ∆td

s∑
i=1

s∑
j=1

ai,jkj

 (30)

In this article, an embedded explicit Dormand-Prince method [26] was chosen. The coeffi-
cients are computed in order to minimize the error of the fifth-order solution. This is the
main difference with the Fehlberg method, which was constructed so that the fourth-order
solution has a small error. For this reason, the Dormand-Prince method is more suitable
when the higher-order solution is used to continue the time integration. The coefficients
are given in Table 2.

0

1
5

1
5

3
10

3
40

9
40

4
5

44
45

−56
15

32
9

8
9

19372
6561

−25360
2187

64448
6561

−212
729

1 9017
3168

−355
33

46732
5247

49
176

− 5103
18656

1 35
384

0 500
1113

125
192

−2187
6784

11
84

5179
57600

0 7571
16695

393
640

− 92097
339200

187
2100

1
40

35
384

0 500
1113

125
192

−2187
6784

11
84

0

Table 2: Butcher tableau corresponding to the Dormand-Prince method. The first row of
b coefficients gives the fourth-order accurate solution, and the second row yields order five.
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The local relative error of the quantity q is denoted by e and the accepted tolerance by
ε. The optimal time step σ ∆td can be determined by multiplying the scalar σ times the
current time step ∆td. The scalar σ is given by

σ =
(

ε ∆td
2 e ∆tmax

) 1
4

=
(
ε ∆td
e ∆t

) 1
4

(31)

In practice, however, the new time step ∆t′d is determined in function of σ, following

∆t′d =


2 ∆td if σ > 2
∆td

2
if σ < 1

∆td otherwise
(32)

3.5 Multiresolution method

The principle in the multiresolution (MR) setting is to represent a set of function cell
averages as values on a coarser grid plus a series of differences at different levels of nested
grids. The differences contain the information of the function when going from a coarse to
a finer grid.

A tree data structure is an efficient way to store the reduced MR dataas it allows
to reduce the memory with respect to a finite volume (FV) scheme on the finest level.
This representation could also increase the speed-up during the time evolution because it
reduces the time-searching of the elements.

In the following we consider a hierarchy of regular grids in 2D, Ω`, 0 ≤ ` ≤ L. The root
cell is Ω0,0,0 = Ω and corresponds to a rectangle with side lengths hx and hy. The different
node cells at a level ` > 0 forming Ω` are denoted by Ω`,i,j where (i, j) ∈ Λ`. The ensemble
of indices of the existing node cells on the level ` is Λ`. Note that Ω`,i,j are rectangles
with side lengths hx,` = 2−`hx and hy,` = 2−`hy. In the tree terminology, the refinement
of a parent node cell Ω`,i,j at level ` produces four children nodes Ω`+1,2i,2j, Ω`+1,2i,2j+1,
Ω`+1,2i+1,2j and Ω`+1,2i+1,2j+1 at level `+ 1, as illustrated in Figure 1.

Figure 1: Dyadic grid refinement in 2D.
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The cell-average value of the quantity u on the cell Ω`,i,j is given by ū`,i,j = 1
|Ω`,i,j |

∫
Ω`,i,j

u(x, y) dx dy.

and correspondingly the ensemble of the existing cell-average values at level ` by Ū` =
(ū`,i,j)(i,j)∈Λ`

. The projection (or restriction) operator

P`+1→l : Ū`+1 7→ Ū`.

estimates the cell-averages of a level ` from the ones of the level ` + 1. The parent cell-
average is the weighted average of the children cell-averages

ū`,i,j =
1

4
(ū`+1,2i,2j + ū`+1,2i,2j+1 + ū`+1,2i+1,2j + ū`+1,2i+1,2j+1)

and thus the projection operator is exact and unique. To predict the cell-averages of a
level `+ 1 from the ones of the level `, we use a prediction (or interpolation) operator

P`→l+1 : Ū` 7→ Ũ`+1.

This operator yields an approximation Ũ`+1 of Ū`+1 at the level ` + 1. In this paper, we
use third order interpolation given by a tensor product approach [9]. For n, p ∈ {0, 1}, we
define

ũ`+1,2i+n,2j+p = ū`,i,j +
1

8
(−1)n (ū`,i+1,j − ū`,i−1,j)

+
1

8
(−1)p (ū`,i,j+1 − ū`,i,j−1) (33)

+
1

64
(−1)np [(ū`,i+1,j+1 − ū`,i+1,j−1)− (ū`,i−1,j+1 − ū`,i−1,j−1)] .

First, this prediction is local, since it is made from the cell average ū`,i,j and the eight
nearest uncles ū`,i±1,j±1. Second, it is consistent with the projection, i.e. P`+1→` ◦P`→`+1 =
Id. The difference between the exact and the predicted values at three children cells yields
the wavelet (or detail) coefficients. The sum of the four details in the children cells is equal
to zero [9]

d̄`+1,2i,2j+1 = ū`+1,2i,2j+1 − ũ`+1,2i,2j+1

d̄`+1,2i+1,2j = ū`+1,2i+1,2j − ũ`+1,2i+1,2j (34)

d̄`+1,2i+1,2j+1 = ū`+1,2i+1,2j+1 − ũ`+1,2i+1,2j+1.

This implies that the knowledge of the cell-average values on the children Ū`+1 is equiv-
alent to the knowledge of the cell-average values on the parents Ū` and the wavelet coef-
ficients D̄`+1 = (d̄`+1,2i,2j+1, d̄`+1,2i+1,2j, d̄`+1,2i+1,2j+1)(i,j)∈Λ`

. The so-called multiresolution
transform on the cell-average values is obtained by repeating this operation recursively on
L levels [36],

ŪL ←→ (D̄L, D̄L−1, . . . , D̄1, Ū0).
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In conclusion, knowing the cell-average values of all the leaves ŪL is equivalent to knowing
the cell-average value of the root Ū0 and the details of all the other nodes of the tree
structure.

In the MR scheme, instead of using the representation on the full uniform grid ΩL, the
numerical solution Ūn

MR = Ūn
L,MR is formed by cell averages on an adaptive sparse grid

Γn = ΓnL. Grid adaptivity in the MR scheme is related with an incomplete tree structure,
where cell refinement may be interrupted at intermediate scale levels. This means that Γn

is formed by leaf cells Ω`,i,j, 0 ≤ ` ≤ L, (i, j) ∈ L(Λ`), which are cells without children.
Here L(Λ`) denotes the ensemble of indices for the existing leaf cells of the level `.

Three basic steps are undertaken to evolve the solution from Ūn
MR to Ūn+1

MR ,

Refinement: Ūn+
MR ← RŪn

MR

Evolution: ˇ̄U
n+1

MR ← EMRŪ
n+
MR

Coarsening: Ūn+1
MR ← T(ε) ˇ̄U

n+1

MR

The refinement operator R is a precautionary measure to account for possible translation
or creation of finer scales in the solution between two subsequent time steps. As the
regions of smoothness or irregularities of the solution may change with time, the grid Γn

may not be convenient anymore at the next time step tn+1. Hence, before doing the time
evolution, the representation of the solution should be extended onto a grid Γn+, which is
expected to be a refinement of Γn, and to contain Γn+1. Then, the time evolution operator
EMR = EMR(∆t) is applied. The subscript MR in EMR means that only the cell-averages
on the leaves of the computational grid Γn+ are evolved in time, and that an adaptive flux
computation FMR(Ūn+

MR) is adopted at interfaces of cells of different scale levels. Finally, a
thresholding operation T(ε) (coarsening) is applied in order to unrefine those cells in Γn+

that are unnecessary for an accurate representation of Ūn+1
MR . The choice of the threshold

value is motivated by an error analysis equilibrating the perturbation and discretization
errors. For details we refer to [17, 48].

To compress data in an adaptive tree structure, while still being able to navigate
through it, gradedness is required. For instance, for a given node in the dynamic tree
structure we assume that:

• its parent and eight nearest uncles are in the tree (if not, we create them as nodes);

• for flux computations, if Ω`,i,j is a leaf, its four nearest cousins Ω`,i±2,j and Ω`,i,j±2 in
each direction are in the tree (if not, we create them as virtual leaves);

• if a child is created, all its brothers are also created;

For more details of these procedures, we refer to [48].
In the tree structure, the thresholding operator T(ε) is defined by removing leaves

where details are smaller than a prescribed tolerance ε, while preserving the gradedness
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property, and the refinement operation R adds one more level as security zone, in order
to forecast the evolution of the solution in the tree representation at the next time step.
These two operations are performed by the following procedure.

We denote by Λ the ensemble of indices of the existing tree nodes in Γn+, by L(Λ) the
restriction of Λ onto the leaves, and by Λ` the restriction of Λ to a level `, 0 ≤ ` < L. For
the whole tree, from the leaves to the root:

• Compute the details on the nodes d̄`,i,j, (i, j) ∈ Λ`−1, by the multiresolution trans-
form;

• Define the deletable cells, if the details on the corresponding nodes and their brothers
are smaller than the prescribed tolerance.

For the whole tree, from the leaves to the root:

• If a node and its children nodes are deletable, and the children nodes are simple
leaves (without virtual children), then delete their children.

• If the node and its parents are not deletable, and it is not at the maximum level,
then create the children for this node.

To illustrate the adaptive flux computation, we consider the leaf Ω`+1,2i+1,2j, sharing an
interface with another leaf Ω`,i+1,j at a lower scale level, as illustrated in Figure 2. For
the calculation of the outgoing numerical flux on the right interface, we use the cell width
in the x direction hx,`+1 as step size. The required right neighboring stencils are obtained
from the cousins Ω`+1,2i+2,2j and Ω`+1,2i+3,2j+1, which are virtual cells. For conservation,
the ingoing flux on the leaf Ω`,i+1,j is set equal to the sum of the outgoing fluxes on the
neighbour leaves of level ` + 1. For more details on the implementation of this procedure
we refer to [48].

Figure 2: Adaptive numerical flux computation in 2D.
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4 Numerical results

In all numerical simulations, we consider an initially planar Chapman-Jouguet detonation
moving with constant unitary speed through the unburnt gas to the right of the domain.
Setting γ = 1.4, r = 1, Q0 = 1 and Ti = 0.22 and assigning the following burnt gas values

ρb = γ , vx,b = δ , pb = 1 , Zb = 0 , (35)

where

δ =

√
2(γ − 1)

γ + 1
, (36)

the corresponding von Neumann state past the shock wave is [50, 37]

ρN =
γ

1− δ
, vx,N = 2δ , pN = 1 + γδ , ZN = 1 , (37)

and the unburnt gas values are

ρu =
γ

1 + δ
, vx,u = 0 , pu = 1− γδ , Zu = 1 . (38)

The resulting temperature of the unburnt gas Tu = 0.215995 is only slightly lower than
the chosen ignition temperature Ti. The initial condition for an initial front at x = x0 is

q(x, 0) =

{
(qN − qb) exp [a(x− x0)] + qB if x ≤ x0

qu if x > x0
(39)

where a is set to 1
τ
. Here q stands for ρ, vx, p, and Z, while vy = 0 everywhere. This way

the initial condition is close to the classical Zeldovich-von Neumann-Dring (ZND) solution
of the reaction Euler equations.

4.1 One-dimensional detonation

First we consider a one-dimensional setting. The computational domain is Ω = [−3, 1].
In this case, the location of the initial front is set to x0 = −2. In order to follow the
detonation wave and perform longer computations, a change of variables is made for vx.
We set v′x = vx − δ and omit the superscript ′ everywhere. Since the initial transition
happens in the segment [−3,−1], we only focus on the domain [−1, 1]. The dimensionless
final time is t = 2.2.
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4.1.1 Non-stiff case

In this first part, we consider a detonation with a time coefficient τ = 10−1 . As observed in
Figure 3, the detonation front propagates from left to right with constant maximal values
of density, pressure and velocity, which correspond to the von Neumann state. The slopes
for the density, pressure, and velocity, are moderate on the left side of the shock, i.e. in
the burnt gas zone, but become sharp on the right side, at the interface with the unburnt
gases. For all the displayed quantities, the curves fit with the reference computation, which
has been performed on a fine grid with L = 14 scales, i.e. with 16384 grid points.

Table 3 assembles results for computations performed with different maximum number
of scales for both the MR and the FV method. The relative error is computed on the
von Neumann value of the density. The numerical value is averaged in time to damp its
oscillations and is compared to the theoretical one. We observe for the MR computations
a CPU time compression rate growing with increasing number of scales, while the relative
error remains comparable with the one of the same computation on the regular fine grid.
As expected, the error is reduced when increasing the number of scales L.

Method L ε CPU time CPU compression relative error
MR 9 10−2 1 s 41,34 % 1.099 · 10−1

FV 9 3 s 100,00 % 1.109 · 10−1

MR 10 5 · 10−3 4 s 34,28 % 6.519 · 10−2

FV 10 13 s 100,00 % 6.601 · 10−2

MR 11 2.5 · 10−3 11 s 21,86 % 3.554 · 10−2

FV 11 54 s 100,00 % 3.617 · 10−2

MR 12 1.25 · 10−3 40 s 18,75 % 1.740 · 10−2

FV 12 3 min 37 s 100,00 % 1.783 · 10−2

Table 3: Chapman-Jouguet detonation front: CPU time, CPU compression and relative
error on the von Neumann density for different scales and for the FV and MR methods,
τ = 10−1.

4.1.2 Influence of the stiffness

In this part, we perform computations of stiff problems and set τ first to 10−2, then to
10−3. In order to resolve correctly the detonation front, 13 scales are required for the case
τ = 10−3. The results are shown in Figures 4 and 5. We observe a much sharper and
thinner reaction zone, reduced to a few computational points in the case τ = 10−3. We
observe a good agreement with the reference computations, which were computed on a
regular fine grid with L = 15 scales.

Table 4 gives the results of the computations for τ = 10−2 and τ = 10−3. As expected,
a high compression rate is reached when 13 scales are used. But as it is seen in Figure 5,
the error on the von Neumann density remains quite large, even if the detonation front is
well tracked.
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Figure 3: Chapman-Jouguet detonation front: density (top, left), pressure (top, right),
temperature (middle, left), partial mass of the limiting reactant (middle, right), velocity
(bottom, left) and adaptive mesh (bottom, right) at t = 2.2, L = 11 scales, ε = 2.5 · 10−3,
τ = 10−1.
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Figure 4: Chapman-Jouguet detonation front: density (top, left), pressure (top, right),
temperature (middle, left), partial mass of the limiting reactant (middle, right), velocity
(bottom, left) and adaptive mesh (bottom, right) at t = 2.2, L = 12 scales, ε = 1.25 · 10−3,
τ = 10−2.
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Figure 5: Chapman-Jouguet detonation front: density (top, left), pressure (top, right),
temperature (middle, left), partial mass of the limiting reactant (middle, right), velocity
(bottom, left) and adaptive mesh (bottom, right) at t = 2.2, L = 13 scales, ε = 6.25 · 10−4,
τ = 10−3.
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Method τ L ε CPU time CPU comp. rel. error
MR 10−2 12 1.25 · 10−3 43 s 20,08 % 1.336 · 10−1

FV 10−2 12 3 min 37 s 100,00 % 1.342 · 10−1

MR 10−3 13 6.25 · 10−4 2 min 03 s 7,56 % 3.057 · 10−1

FV 10−3 13 27 min 13 s 100,00 % 3.057 · 10−1

Table 4: Chapman-Jouguet detonation front: CPU time, CPU compression and relative
error on the von Neumann density for different values of the stiffness coefficient and for
the FV and MR methods.

4.2 Two-dimensional detonation

Now we consider a two-dimensional problem. The interaction between a detonation wave
and a pocket of unburnt gas is simulated. The computational domain is [0, 4]× [−1, 1], the
initial planar detonation front is located at x = 1.7 and the initial spot of unburnt gas is
centered in (x0, y0) = (2, 0). The radius of the circular pocket is r0 = 0.1. The parameters
of the detonation front are the same as in the non-stiff case, i.e. we choose τ = 10−1. The
dimensionless final time is t = 1.3.

In Figure 6, we observe the destabilization of the planar front by the pocket of unburnt
gas. We remark circular structures due to the expansion of the pocket in the three directions
and their interaction with the detonation wave going from left to right. Recirculations are
observed in the center of the pocket, which are advected by the flow. We also observe
reflexions of the waves on the free-slip boundaries in y = −1 and y = 1.

On the right side of Figure 6, we observe that the adaptive mesh follows well the
structures of the different waves that interact in the flow. A zoom in the center of the
mesh (Figure 7) enables to see how well the mesh adapts to all the structures of the flow.
The computation, performed on L = 10 scales i.e. a maximum of 22L = 1, 048, 576 points,
requires 2 h 59 min of CPU time on a 16 Core PC. The same computation on the regular
fine grid lasts 14 h 35 min. Hence the CPU time compression is around 20 %.

Figure 8 shows a cut of the density at y = 0. We observe an excellent agreement
between the MR and FV computations with L = 10 scales, and a good agreement of both
curves with the FV reference computation obtained with L = 11 scales, which validates
the grid convergence of the computation. The total number of grid points in the FV
computations is 22L.

5 Conclusion and perspectives

We presented an extension of the adaptive multiresolution method for the reactive Euler
equations, able to deal with fast chemical reactions. A finite volume scheme with second
order shock capturing schemes is used for space discretization. Classical Strang splitting
is applied to deal with the stiffness of the physical problem in time. Space and time
adaptivity are then introduced using multiresolution analysis and Runge–Kutta–Fehlberg
schemes, respectively. The implementation uses dynamic memory allocation with tree data
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Figure 6: Time evolution of the interaction between a detonation wave an a pocket of
unburnt gas computed with the adaptive MR method. Numerical Schlieren of the density
gradient (left) and corresponding meshes (right) at t = 0 (top), t = 0.65 (middle) and
t = 1.3 (bottom).
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Figure 7: Adaptive MR computation of the interaction between a detonation wave an a
pocket of unburnt gas: Zoom on the adaptive mesh at t = 1.3.

Figure 8: Interaction between a detonation wave an a pocket of unburnt gas. One-
dimensional cuts of density for y = 0 at t = 1.3. Comparison of the adaptive MR and the
FV computations for L = 10 with the FV reference computation for L = 11. The total
number of grid points in the FV computations is 22L.
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structures.
Applications to detonation problems in one and two space dimensions validated the al-

gorithm and illustrated the efficiency of the adaption strategy. The adaptive computations
yield both speed-up of CPU time and memory compression with respect to uniform grid
computations while the precision is automatically controlled using suitable thresholding
techniques.

As perspective we plan the extension of the method to three space dimensions and
also to include multi-species chemical reactions and viscous effects. The parallelization
of the adaptive method using tree data structures to handle the adaptive grid remains a
challenging task for the near future.
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R. Rannacher and J. Warnatz), 93112. Springer Berlin Heidelberg, 2007.

[12] A. Brandt. Multilevel adaptive solutions to boundary value problems. Math. Comp.,
31:333-390, 1977.

[13] J. D. Calle, P. R. Devloo, and S. M. Gomes. Wavelets and adaptive grids for the
discontinuous Galerkin method. Numer. Algor., 39:143-158, 2005.

[14] G. Chiavassa and R. Donat. Point value multiscale algorithms for 2D compressible
flow. SIAM J. Sci. Comput., 23(3):805-823, 2001.

[15] A. Cohen. Wavelet methods in numerical analysis. Elsevier, Amsterdam, 2000.

[16] A. Cohen, N. Dyn, S. M. Kaber, and M. Postel. Multiresolution finite volume schemes
on triangles. J. Comput. Phys., 161:264-286, 2000.

[17] A. Cohen, S. M. Kaber, S. Müller, and M. Postel. Fully adaptive multiresolution finite
volume schemes for conservation laws. Math. Comp., 72:183-225,2003.

[18] R. Courant and K. O. Friedrichs. Supersonic flow and shock waves. Springer-Verlag,
New York, 1985.

[19] W. Dahmen, B. Gottschlich-Müller, and S. Müller. Multiresolution schemes for con-
servation laws. Numer. Math., 88(3):399-443, 2001.

[20] S. Descombes, M. Duarte, T. Dumont, V. Louvet, and M. Massot. Adaptive time split-
ting method for multi-scale evolutionary PDEs. Confluentes Mathematici, Dedicated
to Michelle Schatzman, 3(3), 1-31, 2011.

[21] S. Descombes, M. Duarte, T. Dumont, F. Laurent, V. Louvet, and M. Massot. Analysis
of operator splitting in the non-asymptotic regime for nonlinear reaction diffusion
equations. Application to the dynamics of premixed flames. SIAM J. Num. Anal.,
52(3), 1311-1334, 2014.

23



[22] M. O. Domingues, S. M. Gomes, and L. M. A Diaz. Adaptive wavelet representation
and differenciation on block-structured grids. Appl. Num. Math., 47:421-437, 2003.

[23] M. O. Domingues, S. M. Gomes, O. Roussel, and K. Schneider. An adaptive multires-
olution scheme with local time stepping for evolutionary PDEs. J. Comput. Phys.,
227:3758-3780, 2008.

[24] M. O. Domingues, S. M. Gomes, O. Roussel, and K. Schneider. Space-time adaptive
multiresolution methods for hyperbolic conservation laws: Applications to compress-
ible Euler equations. Appl. Num. Math., 59(9):2303-2321, 2009.

[25] M. O. Domingues, O. Roussel, and K. Schneider. An adaptive multiresolution method
for parabolic PDEs with time-step control. Int. J. Numer. Meth. Engng., 78:652-670,
2009.

[26] J. R. Dormand and P. J. Prince. A family of embedded Runge-Kutta formulae. J.
Comput. Appl. Math., 6(1):19-26, 1980.

[27] M. Duarte. Adaptive numerical methods in time and space for the simulation of multi-
scale reaction fronts. Ph.D. Thesis, Ecole Centrale Paris, 2011.

[28] M. Duarte, M. Massot, S. Descombes, C. Tenaud, T. Dumont, V. Louvet, and F.
Laurent. New resolution strategy for multi-scale reaction waves using time operator
splitting, space adaptive multi-resolution and dedicated high order implicit/explicit
time integrators. SIAM J. Sci. Comput., 34(1), 76–104, 2012.

[29] M. Duarte, M. Massot and S. Descombes. Parareal operator splitting techniques for
multi-scale reaction waves : numerical analysis and strategies. M2AN, 45(5), 825-852,
2011.

[30] M. Duarte, S. Descombes, C. Tenaud, S. Candel and M. Massot. Time-space adaptive
numerical methods for the simulation of combustion fronts. Combust. Flame, 160(6),
1083–1101, 2013.

[31] M. Duarte, Z. Bonaventura, M. Massot, A. Bourdon, S. Descombes and T. Dumont.
A new numerical strategy with space-time adaptivity and error control for multi-scale
streamer discharge simulations. J. Comput. Phys., 231(3), 1002-1019, 2012.

[32] E. Fehlberg. New high-order Runge–Kutta formulas with step size control for systems
of first order and second order differential equations. Z. Angew. Math. Mech., 44:17-29,
1964.

[33] P. C. Franzone, P. Deuflhard, B. Erdmann, J. Lang, and L. F. Pavarino. Adaptivity
in space and time for reaction-diffusion systems in electrocardiology. SIAM J. Sci.
Comput., 28(3), 942-962, 2006 .

24



[34] E. Godlewski and P. A. Raviart. Numerical approximation of hyperbolic systems of
conservation laws. Springer-Verlag, New York, 1995.

[35] B. Gottschlich-Müller and S. Müller. Adaptive finite volume schemes for conservation
laws based on local multiresolution techniques. In R. Jeltsch and M. Frey, eds, Hyper-
bolic Problems: Theory, Numerics, Applications, Vol. 129. ISNM, Inter. Ser. Numer.
Math., 1999.

[36] A. Harten. Multiresolution algorithms for the numerical solution of hyperbolic con-
servation laws. Comm. Pure Appl. Math., 48:1305-1342, 1995.

[37] C. Helzel, R. J. LeVeque, and G. Warnecke. A modified fracitonal step method for
the accurate approximation of detonation waves. SIAM J. Sci. Comput., 22(4):1489-
1510,2000.

[38] M. Holmström. Solving hyperbolic PDEs using interpolating wavelets. SIAM J. Sci.
Comput., 21(2):405-420, 1999.

[39] J. M. Hyman, S. Li, and L. R. Petzold. An adaptive moving mesh method with static
rezoning for partial differential equations. Comput. Math. Appl., 46(10-11):1511-1524,
2003.

[40] M. Kaibara and S. M. Gomes. A fully adaptive multiresolution scheme for shock
computations. In E.F. Toro, ed, Godunov Methods: Theory and Applications. Klumer
Academic/Plenum Publishers, 2000.

[41] B. Koren. A robust upwind discretisation method for advection, diffusion and source
terms. In C. B. Vreugdenhil and B. Koren, eds, Numerical Methods for Advection-
Diffusion Problems. Vieweg, Braunschweig, p. 117, 1993.

[42] J. Lang. Two-dimensional fully adaptive solutions of reaction-diffusion equations.
Appl. Num. Math., 18(1), 223–240, 1995.

[43] M. S. Liou. A sequel to AUSM: AUSM+. J. Comput.Phys., 129:364–382, 1996.

[44] S. Müller. Adaptive multiscale schemes for conservation laws, Vol. 27 of Lectures Notes
in Computational Science and Engineering. Springer, Heidelberg, 2003.

[45] S. Müller and Y. Stiriba. Fully adaptive multiscale schemes for conservationlaws em-
ploying locally varying time stepping. J. Sci. Comput., 30(3):493-531,2007.

[46] P. Pinho, M. O Domingues, P. J. Ferreira, S. M. Gomes, A. Gomide, and J. R. Pereira.
Interpolating wavelets and adaptive finite difference schemes solving Maxwell’s equa-
tions: gridding effect. IEEE Transactions in Magnetics, 43:1013–1022, 2007.

[47] O. Roussel and K. Schneider. An adaptive multiresolution method for combustion
problems: application to flame ball-vortex interaction. Comp. Fluids, 34(7):817-831,
2005.

25



[48] O. Roussel, K. Schneider, A. Tsigulin, and H. Bockhorn. A conservative fully adaptive
multiresolution algorithm for parabolic PDEs. J. Comput. Phys., 188(2):493-523, 2003.

[49] O.Roussel and K. Schneider. Coherent Vortex Simulation of weakly compressible
turbulent mixing layers using adaptive multiresolution methods. J. Comput. Phys.,
229(6), 2267–2286, 2010.

[50] L. Tosatto and L. Vigevano. Numerical solution of under-resolved detonations. J.
Comput. Phys., 227:2317-2343, 2008.

[51] B. Van Leer. Towards the ultimate conservative difference scheme V: a second order
sequel to Godunov’s method. J. Comput. Phys., 32:101-136, 1979.

26


