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A space-time adaptive method is presented for the reactive Euler equations describing chemically reacting gas flow where a two species model is used for the chemistry. The governing equations are discretized with a finite volume method and dynamic space adaptivity is introduced using multiresolution analysis. A time splitting method of Strang is applied to be able to consider stiff problems while keeping the method explicit. For time adaptivity an improved Runge-Kutta-Fehlberg scheme is used. Applications deal with detonation problems in one and two space dimensions. A comparison of the adaptive scheme with reference computations on a regular grid allow to assess the accuracy and the computational efficiency, in terms of CPU time and memory requirements.

Introduction

Real world industrial or environmental problems, e.g., management of industrial risks, typically involve physical and chemical phenomena having a multitude of dynamically active spatial and temporal scales. Their direct numerical modelling thus leads to prohibitive computational cost. Introducing adaptivity can be understood in the sense that the computational effort is concentrated at locations and time instants where it is necessary to ensure a given numerical accuracy, while efforts may be significantly reduced elsewhere.

Adaptive methods are in many cases more competitive than schemes on regular fine grids, in particular for solutions of nonlinear PDEs exhibiting a non-uniformly distributed regularity of the solution. Reliable error estimators of the solution are essential ingredients of fully adaptive schemes. They are based for example on Richardson ideas of extrapolation, adjoint problems or gradient based approaches. For evolutionary problems, a major task is the time evolution of the grid and its reliable prediction for the next time step. However, to become efficient, adaptive methods require a significant effort on implementing data structures, which are typically based on graded trees, hash-tables or multi-domains. Moreover, the computational cost per cell is significantly increased with respect to uniform discretizations. Hence, an adaptive method is only efficient when the data compression is large enough to compensate the additional computational cost per cell. Fortunately, for problems exhibiting local discontinuities or steep gradients, adaptive computations are faster than fine grid computations.

Adaptive discretization methods for solving nonlinear PDEs have a long tradition and can be tracked back to the late seventies [START_REF] Brandt | Multilevel adaptive solutions to boundary value problems[END_REF]. Adaptive finite element methods have a long history, in particular for elliptic problems. For chemically reactive flow with detailled chemical reaction in three dimensions [START_REF] Braack | Stabilized finite elements for 3D reactive flows[END_REF][START_REF] Braack | Solving multidimensional reactive flow problems with adaptive finite elements[END_REF] proposed stabilized finite elements with adaptive mesh refinement. The equations are treated fully coupled with a Newton solver and the solution of large linear non-symmetric, indefinite systems becomes necessary for which a parallel multigrid solver is used. Moving grid techniques have been applied successfully to combustion problems [START_REF] Hyman | An adaptive moving mesh method with static rezoning for partial differential equations[END_REF]. A posteriori error estimators have also been studied for a long time to improve the grid, since the early work of Babuska and Rheinboldt [START_REF] Babuska | A posteriori error estimates for the finite element method[END_REF]. However, adjoint problems have to be solved which are linear although the original PDE can be nonlinear [START_REF] Becker | An optimal control approach to a-posteriori error estimation[END_REF]. Fully adaptive finite element discretizations of reaction-diffusion problems encountered in electrocardiology have been proposed in [START_REF] Lang | Two-dimensional fully adaptive solutions of reaction-diffusion equations[END_REF][START_REF] Franzone | Adaptivity in space and time for reaction-diffusion systems in electrocardiology[END_REF]. For time adaptivity a stepsize control with linearly implicit time integrators is used. In space a multilevel finite element method is combined with a posteriori local error estimators.

The main challenge is to estimate and control the error of adaptive schemes with respect to the exact solution, or at least with respect to the same numerical scheme on an underlying uniform grid. Self adaptive methods are preferred as they automatically adjust to the solution. The block-structured adaptive mesh refinement technique (AMR or SAMR) for hyperbolic partial differential equations has been pioneered by Berger and Oliger [START_REF] Berger | Adaptive mesh refinement for hyperbolic partial differential equations[END_REF]. While the first approach utilized rotated refinement grids that required complicated conservative interpolation operations, AMR denotes today especially the simplified variant of Berger and Collela [START_REF] Berger | Local adaptive mesh refinement for shock hydrodynamics[END_REF] that allows only refinement patches aligned to the coarse grid mesh. The striking efficiency of this algorithm, in particular for 3D instationary supersonic gas dynamics problems, has been demonstrated by Berger et al. in [4].

Recently, multiresolution (MR) techniques have become popular for hyperbolic conservation laws, going back to the seminal work of Harten [START_REF] Harten | Multiresolution algorithms for the numerical solution of hyperbolic conservation laws[END_REF] in the context of finite volume schemes and cell-average MR analysis. Starting point is a finite volume scheme for hyperbolic conservation laws on a regular grid. Subsequently a discrete multiresolution analysis is used to avoid expensive flux computations in smooth regions, first without reducing memory requirements, e.g. for 1D hyperbolic conservation laws (Harten [30]), 1D con-servation laws with viscosity (Bihari [START_REF] Bihari | Multiresolution schemes for conservation laws with viscosity[END_REF]), 2D hyperbolic conservations laws (Bihari and Harten [START_REF] Bihari | Multiresolution schemes for the numerical solution of 2-D conservation laws I[END_REF]), 2D compressible Euler equations (Chiavassa and Donat [START_REF] Chiavassa | Point value multiscale algorithms for 2D compressible flow[END_REF]), 2D hyperbolic conservation laws with curvilinear patches (Dahmen et al [START_REF] Dahmen | Multiresolution schemes for conservation laws[END_REF]) and unstructured meshes (Abgrall and Harten [START_REF] Abgrall | Multiresolution representation in unstructured meshes[END_REF], Cohen et al [START_REF] Cohen | Multiresolution finite volume schemes on triangles[END_REF]). A fully adaptive version, still in the context of 1D and 2D hyperbolic conservation laws, has been developed to reduce also memory requirements (Gottschlich-Müller and Müller [START_REF] Gottschlich-Müller | Adaptive finite volume schemes for conservation laws based on local multiresolution techniques[END_REF], Kaibara and Gomes [START_REF] Kaibara | A fully adaptive multiresolution scheme for shock computations[END_REF], Cohen et al [START_REF] Cohen | Fully adaptive multiresolution finite volume schemes for conservation laws[END_REF]). This algorithm has been extended to the 3D case and to parabolic PDEs (Roussel et al [START_REF] Roussel | A conservative fully adaptive multiresolution algorithm for parabolic PDEs[END_REF], Roussel and Schneider [START_REF] Roussel | An adaptive multiresolution method for combustion problems: application to flame ball-vortex interaction[END_REF]), and more recently to self-adaptive global and local time-steppings (Müller and Stiriba [START_REF] Müller | Fully adaptive multiscale schemes for conservationlaws employing locally varying time stepping[END_REF], Domingues et al [START_REF] Domingues | An adaptive multiresolution scheme with local time stepping for evolutionary PDEs[END_REF][START_REF] Domingues | Space-time adaptive multiresolution methods for hyperbolic conservation laws: Applications to compressible Euler equations[END_REF][START_REF] Domingues | An adaptive multiresolution method for parabolic PDEs with time-step control[END_REF]). Therewith the solution is represented and computed on a dynamically evolving automatically adapted space-time grid. Different strategies have been proposed to evaluate the flux without requiring a full knowledge of fine grid cell-average values. Applications to shock waves in compressible flows addressing the issue of shock resolution have been presented in [START_REF] Bentaleb | Adaptive multiresolution methods for the simulation of shocks/shear layer interaction in confined flows[END_REF], and extensions to the Navier-Stokes equations in the weakly compressible regime can be found in [START_REF] Roussel | Coherent Vortex Simulation of weakly compressible turbulent mixing layers using adaptive multiresolution methods[END_REF]. Adaptive MR methods with operator splitting have been proposed for multiscale reaction fronts with stiff source terms in [START_REF] Duarte | New resolution strategy for multi-scale reaction waves using time operator splitting, space adaptive multi-resolution and dedicated high order implicit/explicit time integrators[END_REF][START_REF] Duarte | Adaptive numerical methods in time and space for the simulation of multiscale reaction fronts[END_REF]. The numerical analysis of the above higher order operator splitting techniques has been performed in [START_REF] Descombes | Adaptive time splitting method for multi-scale evolutionary PDEs[END_REF][START_REF] Duarte | Parareal operator splitting techniques for multi-scale reaction waves : numerical analysis and strategies[END_REF] and it was shown that the splitting time step can be even larger than the times scales involved in the PDEs. Adaptive MR computations using the above method with complex chemistry and including detailed transport can be found in [START_REF] Descombes | Analysis of operator splitting in the non-asymptotic regime for nonlinear reaction diffusion equations. Application to the dynamics of premixed flames[END_REF], further applications involving various stiffness levels have been presented in [START_REF] Duarte | Time-space adaptive numerical methods for the simulation of combustion fronts[END_REF] [START_REF] Duarte | A new numerical strategy with space-time adaptivity and error control for multi-scale streamer discharge simulations[END_REF].

The MR approach has also been used in other contexts. For instance, the Sparse Point Representation (SPR) method was the first fully adaptive MR scheme, introduced by Hölmstrom [START_REF] Holmström | Solving hyperbolic PDEs using interpolating wavelets[END_REF] in the context of finite differences and point-value MR analysis, leading to both CPU time and memory reduction. In the SPR method, the wavelet coefficients are used as regularity indicators to create locally refined grids, on which the numerical solution is represented and the finite difference discretization of the operators is performed. Applications of the SPR method have been published in [START_REF] Domingues | Adaptive wavelet representation and differenciation on block-structured grids[END_REF][START_REF] Pinho | Interpolating wavelets and adaptive finite difference schemes solving Maxwell's equations: gridding effect[END_REF]. Discontinuous Galerkin methods, they have been applied to hyperbolic conservation laws in [START_REF] Calle | Wavelets and adaptive grids for the discontinuous Galerkin method[END_REF] using Haar wavelet indicators to decide where to refine or to coarsen the meshes. These publications reveal that the multiresolution concept has been applied by several groups with success to different stiff problems. For comprehensive literature about the subject, we refer to the books of Cohen [START_REF] Cohen | Wavelet methods in numerical analysis[END_REF] and Müller [START_REF] Müller | Adaptive multiscale schemes for conservation laws[END_REF].

The objective of the paper is the extension of the adaptive multiresolution method [START_REF] Roussel | A conservative fully adaptive multiresolution algorithm for parabolic PDEs[END_REF][START_REF] Domingues | Space-time adaptive multiresolution methods for hyperbolic conservation laws: Applications to compressible Euler equations[END_REF] to the numerical simulation of detonation waves. As model we use here a one-step chemical reaction involving two chemical species only. Since the chemical source term is stiff, a time splitting has to be made between the convective and source terms and each term needs to be computed with a different time step and a different time integration method. An error-controled time step based on a Runge-Kutta-Fehlberg approach is used for the source term integration. The application concerns Chapman-Jouguet detonations in one dimension with different stiffness values and instabilities of detonations waves due to an interaction with a pocket of partially burnt gases in two dimensions. These detonation problems motivate the use of the Euler equations, although extensions of the method to compute viscous flows using the Navier-Stokes equations is straightforward, as proposed in [START_REF] Roussel | Coherent Vortex Simulation of weakly compressible turbulent mixing layers using adaptive multiresolution methods[END_REF].

The outline of the paper is the following: first, we present the set of reactive Euler equations for a simplified detonation model. Then we describe the finite volume discretization. A Strang splitting technique is utilized to account for temporal scales in the source term that do not influence the hydrodynamics. We also briefly summarize the multiresolution strategy. Finally, we show the numerical results for the test problems in one and two space dimensions and we set the conclusions together with some perspectives for future work.

Governing equations

For modelling the combustion process, we use the reactive Euler equations, as described in [START_REF] Courant | Supersonic flow and shock waves[END_REF][START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF]. The simplest description of a chemically reacting gas flow assumes that the gas mixture is made only of two chemical species, the burnt gas, denoted with subscript b and the unburnt gas, denoted with subscript u. The unburnt gas is converted to burnt gas via a single irreversible reaction. We represent the mixture state by a single scalar variable Z corresponding the mass fraction of the unburnt gas. We also assume gases in the mixture to be ideal polytropic gases with equal specific heat ratio γ and specific gas constant r. The system of equations in two dimensions, which has been non-dimensionalized in a suitable way, may be written as

∂Q ∂t + ∂F ∂x + ∂G ∂y = S, (1) 
where Q = (ρ, ρv x , ρv y , ρe, ρZ) T and

F =         ρv x ρv 2 x + p ρv x v y (ρe + p)v x ρv x Z         , G =         ρv y ρv x v y ρv 2 y + p (ρe + p)v y ρv y Z         , S =         0 0 0 0 -K(T )ρZ         (2)
Here ρ denotes the mixture density, V = (v x , v y ) T the mixture velocity, e the mixture total energy per unit of mass, p the pressure, T the temperature and k the chemical reaction rate. The two equations of state completing the model are

p = ρrT (3) 
and

e = p ρ(γ -1) + V 2 2 + Q 0 Z (4) 
where Q 0 denotes the amount of heat per unit of mass released in the chemical reaction. The reaction rate k(T ) of the irreversible chemical reaction is expressed in Arrhenius form as

k(T ) = A exp - T A T (5) 
where the pre-exponential coefficient A and the activation temperature T A are empirical constants. When the reaction source term is stiff, however, the reaction rate may be simplified by adopting the so-called ignition temperature kinetic model, i.e.

k(T ) = 1 τ if T ≥ T i 0 if T < T i (6) 
where T i denotes the ignition temperature and τ the characteristic time of the chemical reaction, which determines the stiffness of the problem. This formulation has been chosen in the applications presented in the numerical results section. However, the numerical method is not limited to this simplified model and its extension to the Arrhenius law or even more complex chemical reactions is possible.

Numerical method

In this section, we first describe the classical Strang splitting and the space discretization of the convective terms. Subsequently, the time integration is discussed and, first, for the convective terms, a time step depending on the CFL is chosen, then, for the source term, we split the convective time step into error-controlled time steps using an explicit Dormand-Prince method. A different choice has been proposed by Duarte et al in [START_REF] Duarte | New resolution strategy for multi-scale reaction waves using time operator splitting, space adaptive multi-resolution and dedicated high order implicit/explicit time integrators[END_REF], based on implicit and explicit Runge-Kutta methods and a posteriori error estimators. We also briefly recall the multiresolution method, previously published in [START_REF] Roussel | A conservative fully adaptive multiresolution algorithm for parabolic PDEs[END_REF][START_REF] Domingues | An adaptive multiresolution scheme with local time stepping for evolutionary PDEs[END_REF].

Strang splitting

We denote by C(Q) the operator of the convective terms. Equation (1) becomes

∂Q ∂t = C(Q) + S(Q). (7) 
Discretizing explicitly with first order in time, we get

Q n+1 = Q n + ∆t [C(Q n ) + S(Q n )] (8) 
where n denotes the time instant and ∆t the convective time step.

The splitting relies on the separation of the convective and source terms operators. To get a first-order discretization, it writes

Q = Q n + ∆t S(Q n ) (9) Q n+1 = Q + ∆t C(Q ) (10) 
i.e.

Q n+1 = C o1 ∆t S o1 ∆t Q n ( 11 
)
where S o1 ∆t denotes the first-order accurate source term operator with time step ∆t and C o1 ∆t the first-order accurate convection operator with time step ∆t.

To get second-order accuracy, which corresponds to the classical Strang, the following procedure can be applied

Q n+1 = S o2 ∆t/2 C o2 ∆t S o2 ∆t/2 Q n ( 12 
)
where S o2 ∆t/2 denotes the second-order accurate source term operator with time step ∆t/2 and C o2 ∆t the second-order accurate convection operator with time step ∆t. We note that the splitting time step in the above method is fixed. Techniques to introduce adaptive splitting time steps based on a posteriori error estimators have been introduced in [START_REF] Descombes | Adaptive time splitting method for multi-scale evolutionary PDEs[END_REF][START_REF] Duarte | Adaptive numerical methods in time and space for the simulation of multiscale reaction fronts[END_REF] allowing automatic error control.

Space discretization of the convective terms

Discretization in space is made using a finite volume method, to ensure conservative flux computations. Convective terms are discretized using the AUSM+ scheme [START_REF] Liou | A sequel to AUSM: AUSM+[END_REF]. In this procedure, pressure terms are computed separately. The Euler flux F writes

F =         ρv x ρv 2 x + p ρv x v y (ρe + p)v x ρv x Z         = M c         ρ ρv x ρv y ρh ρZ         +         0 p 0 0 0         (13) 
where M denotes the Mach number, c the speed of sound and h the enthalpy per unit of mass. Denoting by Φ the purely convective term and by Π the pressure term, we discretize the Euler flux F in space following

F i+ 1 2 = M i+ 1 2 c i+ 1 2 Φ i+ 1 2 + Π i+ 1 2 ( 14 
)
where the indices refer to nodal values.

The interface speed of sound is c i+ 1 2 = √ c i c i+1 and the interface convective term is

Φ i+ 1 2 = Φ i if M i+ 1 2 ≥ 0 Φ i+1 otherwise (15) 
The terms M i+ 1 2 and p i+ 1 2 follow

M i+ 1 2 = M + i + M - i+1 ( 16 
)
p i+ 1 2 = P + i p i + P - i+1 p i+1 (17) 
where

M ± i = 1 2 (M i ± |M i |) if |M i | ≥ 1 ± 1 2 (M i ± 1) 2 ± 1 8 (M 2 i -1) 2 otherwise ( 18 
)
and

P ± i = 1 2 (1 ± sign(M i )) if |M i | ≥ 1 1 4 (M i ± 1) 2 (2 ∓ M i ) ± 3 16 M i (M 2 i -1) 2 otherwise (19) 
Third-order accuracy of the spatial discretization far from discontinuities is obtained using a MUSCL interpolation [START_REF] Van Leer | Towards the ultimate conservative difference scheme V: a second order sequel to Godunov's method[END_REF], together with a Koren slope limiter [START_REF] Koren | A robust upwind discretisation method for advection, diffusion and source terms[END_REF]. Denoting by q one of the conservative quantities (i.e. density, momentum, energy, partial mass of the unburnt gas), the corrected value via a MUSCL interpolation is

q i = q i + 1 6 φ (r i ) (q i -q i-1 ) + 1 3 φ 1 r i (q i+1 -q i ) (20) 
and

q i+1 = q i+1 - 1 3 φ (r i+1 ) (q i+1 -q i ) - 1 6 φ 1 r i+1 (q i+2 -q i+1 ) (21) 
where

r i = q i+1 -q i q i -q i-1 (22) 
and φ(r) = max 0, min 2r,

1 + 2r 3 , 2 (23) 
Nevertheless, since we use a second-order accurate Strang splitting in time, the global accuracy of the scheme remains second-order.

Time integration of the convective terms

Time integration of the convective term is made using a classical third-order TVD Runge-Kutta scheme, i.e.

Q = Q n + ∆t C (Q n ) (24) Q = 1 4 [3 Q n + Q + ∆t C (Q )] (25) 
Q n+1 = 1 3 [Q n + 2 Q + 2 ∆t C (Q )] (26) 
The corresponding Runge-Kutta tableau is given in Table 1.

0 1 1 1 4 1 4 1 4 0 1 6 1 6 2 3
Table 1: Butcher tableau corresponding to the compact TVD third-order Runge-Kutta method.

The convective time step ∆t is chosen to satisfy the Courant-Friedrichs-Levy (CFL) condition. In the computations, CF L = 0.5 is used.

Time integration of the stiff source terms

Due to the stiffness of the chemical source terms in case of detonation computations, a high order time integration is chosen to ensure the numerical stability. As the chemical time scale is much smaller than the convective one we apply a much smaller time step ∆t d than for the convection terms. However, this is only required in a small area of the computational domain, i.e. in the reaction zone. In the rest of the computational domain, the source term is almost equal to zero.

For this reason, we introduce an adaptive local time step ∆t d = ∆t 2N , N being the number of substeps required by the source term computation. In order to adapt this local time step with time, a fourth-fifth order embedded Runge-Kutta method is used. The computational error between the fourth-order and the fifth-order method enables to decide wether the local time step needs to be increased or decreased, as proposed by Fehlberg [START_REF] Fehlberg | New high-order Runge-Kutta formulas with step size control for systems of first order and second order differential equations[END_REF].

Q n+1 o4 = Q n + ∆t d s i=1 b i,o4 k i ( 27 
)
Q n+1 o5 = Q n + ∆t d s i=1 b i,o5 k i (28) (29) 
where

k i = S   t n + c i ∆t d , Q n + ∆t d s i=1 s j=1 a i,j k j   (30) 
In this article, an embedded explicit Dormand-Prince method [START_REF] Dormand | A family of embedded Runge-Kutta formulae[END_REF] was chosen. The coefficients are computed in order to minimize the error of the fifth-order solution. This is the main difference with the Fehlberg method, which was constructed so that the fourth-order solution has a small error. For this reason, the Dormand-Prince method is more suitable when the higher-order solution is used to continue the time integration. The coefficients are given in Table 2. The local relative error of the quantity q is denoted by e and the accepted tolerance by ε. The optimal time step σ ∆t d can be determined by multiplying the scalar σ times the current time step ∆t d . The scalar σ is given by

σ = ε ∆t d 2 e ∆t max 1 4 = ε ∆t d e ∆t 1 4 (31) 
In practice, however, the new time step ∆t d is determined in function of σ, following

∆t d =      2 ∆t d if σ > 2 ∆t d 2 if σ < 1 ∆t d otherwise (32)

Multiresolution method

The principle in the multiresolution (MR) setting is to represent a set of function cell averages as values on a coarser grid plus a series of differences at different levels of nested grids. The differences contain the information of the function when going from a coarse to a finer grid.

A tree data structure is an efficient way to store the reduced MR dataas it allows to reduce the memory with respect to a finite volume (FV) scheme on the finest level. This representation could also increase the speed-up during the time evolution because it reduces the time-searching of the elements.

In the following we consider a hierarchy of regular grids in 2D, Ω , 0 ≤ ≤ L. The root cell is Ω 0,0,0 = Ω and corresponds to a rectangle with side lengths h x and h y . The different node cells at a level > 0 forming Ω are denoted by Ω ,i,j where (i, j) ∈ Λ . The ensemble of indices of the existing node cells on the level is Λ . Note that Ω ,i,j are rectangles with side lengths h x, = 2 -h x and h y, = 2 -h y . In the tree terminology, the refinement of a parent node cell Ω ,i,j at level produces four children nodes Ω +1,2i,2j , Ω +1,2i,2j+1 , Ω +1,2i+1,2j and Ω +1,2i+1,2j+1 at level + 1, as illustrated in Figure 1. The cell-average value of the quantity u on the cell Ω ,i,j is given by ū ,i,j = 1 |Ω ,i,j | Ω ,i,j u(x, y) dx dy. and correspondingly the ensemble of the existing cell-average values at level by Ū = (ū ,i,j ) (i,j)∈Λ . The projection (or restriction) operator

P +1→l : Ū +1 → Ū .
estimates the cell-averages of a level from the ones of the level + 1. The parent cellaverage is the weighted average of the children cell-averages

ū ,i,j = 1 4 (ū +1,2i,2j + ū +1,2i,2j+1 + ū +1,2i+1,2j + ū +1,2i+1,2j+1 )
and thus the projection operator is exact and unique. To predict the cell-averages of a level + 1 from the ones of the level , we use a prediction (or interpolation) operator

P →l+1 : Ū → U +1 .
This operator yields an approximation U +1 of Ū +1 at the level + 1. In this paper, we use third order interpolation given by a tensor product approach [START_REF] Bihari | Multiresolution schemes for the numerical solution of 2-D conservation laws I[END_REF]. For n, p ∈ {0, 1}, we define

u +1,2i+n,2j+p = ū ,i,j + 1 8 (-1) n (ū ,i+1,j -ū ,i-1,j ) + 1 8 (-1) p (ū ,i,j+1 -ū ,i,j-1 ) (33) 
+ 1 64 (-1) np [(ū ,i+1,j+1 -ū ,i+1,j-1 ) -(ū ,i-1,j+1 -ū ,i-1,j-1 )] .
First, this prediction is local, since it is made from the cell average ū ,i,j and the eight nearest uncles ū ,i±1,j±1 . Second, it is consistent with the projection, i.e. P +1→ • P → +1 = Id. The difference between the exact and the predicted values at three children cells yields the wavelet (or detail) coefficients. The sum of the four details in the children cells is equal to zero [START_REF] Bihari | Multiresolution schemes for the numerical solution of 2-D conservation laws I[END_REF] 

d +1,2i,2j+1 = ū +1,2i,2j+1 -u +1,2i,2j+1 d +1,2i+1,2j = ū +1,2i+1,2j -u +1,2i+1,2j (34) 
d +1,2i+1,2j+1 = ū +1,2i+1,2j+1 -u +1,2i+1,2j+1 .
This implies that the knowledge of the cell-average values on the children Ū +1 is equivalent to the knowledge of the cell-average values on the parents Ū and the wavelet coefficients D +1 = ( d +1,2i,2j+1 , d +1,2i+1,2j , d +1,2i+1,2j+1 ) (i,j)∈Λ . The so-called multiresolution transform on the cell-average values is obtained by repeating this operation recursively on L levels [START_REF] Harten | Multiresolution algorithms for the numerical solution of hyperbolic conservation laws[END_REF],

ŪL ←→ ( DL , DL-1 , . . . , D1 , Ū0 ).

In conclusion, knowing the cell-average values of all the leaves ŪL is equivalent to knowing the cell-average value of the root Ū0 and the details of all the other nodes of the tree structure.

In the MR scheme, instead of using the representation on the full uniform grid Ω L , the numerical solution Ū n M R = Ū n L,M R is formed by cell averages on an adaptive sparse grid Γ n = Γ n L . Grid adaptivity in the MR scheme is related with an incomplete tree structure, where cell refinement may be interrupted at intermediate scale levels. This means that Γ n is formed by leaf cells Ω ,i,j , 0 ≤ ≤ L, (i, j) ∈ L(Λ ), which are cells without children.

Here L(Λ ) denotes the ensemble of indices for the existing leaf cells of the level .

Three basic steps are undertaken to evolve the solution from

Ū n M R to Ū n+1 M R , Refinement: Ū n+ M R ← R Ū n M R Evolution: Ǔ n+1 M R ← E M R Ū n+ M R Coarsening: Ū n+1 M R ← T( ) Ǔ n+1 M R
The refinement operator R is a precautionary measure to account for possible translation or creation of finer scales in the solution between two subsequent time steps. As the regions of smoothness or irregularities of the solution may change with time, the grid Γ n may not be convenient anymore at the next time step t n+1 . Hence, before doing the time evolution, the representation of the solution should be extended onto a grid Γ n+ , which is expected to be a refinement of Γ n , and to contain Γ n+1 . Then, the time evolution operator

E M R = E M R (∆t) is applied. The subscript MR in E M R
means that only the cell-averages on the leaves of the computational grid Γ n+ are evolved in time, and that an adaptive flux computation

F M R ( Ū n+ M R
) is adopted at interfaces of cells of different scale levels. Finally, a thresholding operation T( ) (coarsening) is applied in order to unrefine those cells in Γ n+ that are unnecessary for an accurate representation of Ū n+1 M R . The choice of the threshold value is motivated by an error analysis equilibrating the perturbation and discretization errors. For details we refer to [START_REF] Cohen | Fully adaptive multiresolution finite volume schemes for conservation laws[END_REF][START_REF] Roussel | A conservative fully adaptive multiresolution algorithm for parabolic PDEs[END_REF].

To compress data in an adaptive tree structure, while still being able to navigate through it, gradedness is required. For instance, for a given node in the dynamic tree structure we assume that:

• its parent and eight nearest uncles are in the tree (if not, we create them as nodes);

• for flux computations, if Ω ,i,j is a leaf, its four nearest cousins Ω ,i±2,j and Ω ,i,j±2 in each direction are in the tree (if not, we create them as virtual leaves);

• if a child is created, all its brothers are also created;

For more details of these procedures, we refer to [START_REF] Roussel | A conservative fully adaptive multiresolution algorithm for parabolic PDEs[END_REF].

In the tree structure, the thresholding operator T( ) is defined by removing leaves where details are smaller than a prescribed tolerance , while preserving the gradedness property, and the refinement operation R adds one more level as security zone, in order to forecast the evolution of the solution in the tree representation at the next time step. These two operations are performed by the following procedure.

We denote by Λ the ensemble of indices of the existing tree nodes in Γ n+ , by L(Λ) the restriction of Λ onto the leaves, and by Λ the restriction of Λ to a level , 0 ≤ < L. For the whole tree, from the leaves to the root:

• Compute the details on the nodes d ,i,j , (i, j) ∈ Λ -1 , by the multiresolution transform;

• Define the deletable cells, if the details on the corresponding nodes and their brothers are smaller than the prescribed tolerance.

For the whole tree, from the leaves to the root:

• If a node and its children nodes are deletable, and the children nodes are simple leaves (without virtual children), then delete their children.

• If the node and its parents are not deletable, and it is not at the maximum level, then create the children for this node.

To illustrate the adaptive flux computation, we consider the leaf Ω +1,2i+1,2j , sharing an interface with another leaf Ω ,i+1,j at a lower scale level, as illustrated in Figure 2. For the calculation of the outgoing numerical flux on the right interface, we use the cell width in the x direction h x, +1 as step size. The required right neighboring stencils are obtained from the cousins Ω +1,2i+2,2j and Ω +1,2i+3,2j+1 , which are virtual cells. For conservation, the ingoing flux on the leaf Ω ,i+1,j is set equal to the sum of the outgoing fluxes on the neighbour leaves of level + 1. For more details on the implementation of this procedure we refer to [START_REF] Roussel | A conservative fully adaptive multiresolution algorithm for parabolic PDEs[END_REF]. 

Non-stiff case

In this first part, we consider a detonation with a time coefficient τ = 10 -1 . As observed in Figure 3, the detonation front propagates from left to right with constant maximal values of density, pressure and velocity, which correspond to the von Neumann state. The slopes for the density, pressure, and velocity, are moderate on the left side of the shock, i.e. in the burnt gas zone, but become sharp on the right side, at the interface with the unburnt gases. For all the displayed quantities, the curves fit with the reference computation, which has been performed on a fine grid with L = 14 scales, i.e. with 16384 grid points. Table 3 assembles results for computations performed with different maximum number of scales for both the MR and the FV method. The relative error is computed on the von Neumann value of the density. The numerical value is averaged in time to damp its oscillations and is compared to the theoretical one. We observe for the MR computations a CPU time compression rate growing with increasing number of scales, while the relative error remains comparable with the one of the same computation on the regular fine grid. As expected, the error is reduced when increasing the number of scales L. 

Method

Influence of the stiffness

In this part, we perform computations of stiff problems and set τ first to 10 -2 , then to 10 -3 . In order to resolve correctly the detonation front, 13 scales are required for the case τ = 10 -3 . The results are shown in Figures 4 and5. We observe a much sharper and thinner reaction zone, reduced to a few computational points in the case τ = 10 -3 . We observe a good agreement with the reference computations, which were computed on a regular fine grid with L = 15 scales. Table 4 gives the results of the computations for τ = 10 -2 and τ = 10 -3 . As expected, a high compression rate is reached when 13 scales are used. But as it is seen in Figure 5, the error on the von Neumann density remains quite large, even if the detonation front is well tracked. 

Two-dimensional detonation

Now we consider a two-dimensional problem. The interaction between a detonation wave and a pocket of unburnt gas is simulated. The computational domain is [0, 4] × [-1, 1], the initial planar detonation front is located at x = 1.7 and the initial spot of unburnt gas is centered in (x 0 , y 0 ) = (2, 0). The radius of the circular pocket is r 0 = 0.1. The parameters of the detonation front are the same as in the non-stiff case, i.e. we choose τ = 10 -1 . The dimensionless final time is t = 1.3.

In Figure 6, we observe the destabilization of the planar front by the pocket of unburnt gas. We remark circular structures due to the expansion of the pocket in the three directions and their interaction with the detonation wave going from left to right. Recirculations are observed in the center of the pocket, which are advected by the flow. We also observe reflexions of the waves on the free-slip boundaries in y = -1 and y = 1.

On the right side of Figure 6, we observe that the adaptive mesh follows well the structures of the different waves that interact in the flow. A zoom in the center of the mesh (Figure 7) enables to see how well the mesh adapts to all the structures of the flow. The computation, performed on L = 10 scales i.e. a maximum of 2 2L = 1, 048, 576 points, requires 2 h 59 min of CPU time on a 16 Core PC. The same computation on the regular fine grid lasts 14 h 35 min. Hence the CPU time compression is around 20 %.

Figure 8 shows a cut of the density at y = 0. We observe an excellent agreement between the MR and FV computations with L = 10 scales, and a good agreement of both curves with the FV reference computation obtained with L = 11 scales, which validates the grid convergence of the computation. The total number of grid points in the FV computations is 2 2L .

Conclusion and perspectives

We presented an extension of the adaptive multiresolution method for the reactive Euler equations, able to deal with fast chemical reactions. A finite volume scheme with second order shock capturing schemes is used for space discretization. Classical Strang splitting is applied to deal with the stiffness of the physical problem in time. Space and time adaptivity are then introduced using multiresolution analysis and Runge-Kutta-Fehlberg schemes, respectively. The implementation uses dynamic memory allocation with tree data Applications to detonation problems in one and two space dimensions validated the algorithm and illustrated the efficiency of the adaption strategy. The adaptive computations yield both speed-up of CPU time and memory compression with respect to uniform grid computations while the precision is automatically controlled using suitable thresholding techniques.

As perspective we plan the extension of the method to three space dimensions and also to include multi-species chemical reactions and viscous effects. The parallelization of the adaptive method using tree data structures to handle the adaptive grid remains a challenging task for the near future.

Table 2 :

 2 Butcher tableau corresponding to the Dormand-Prince method. The first row of b coefficients gives the fourth-order accurate solution, and the second row yields order five.

Figure 1 :

 1 Figure 1: Dyadic grid refinement in 2D.
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 2 Figure 2: Adaptive numerical flux computation in 2D.

Figure 3 :

 3 Figure 3: Chapman-Jouguet detonation front: density (top, left), pressure (top, right), temperature (middle, left), partial mass of the limiting reactant (middle, right), velocity (bottom, left) and adaptive mesh (bottom, right) at t = 2.2, L = 11 scales, = 2.5 • 10 -3 , τ = 10 -1 .

Figure 4 :

 4 Figure 4: Chapman-Jouguet detonation front: density (top, left), pressure (top, right), temperature (middle, left), partial mass of the limiting reactant (middle, right), velocity (bottom, left) and adaptive mesh (bottom, right) at t = 2.2, L = 12 scales, = 1.25 • 10 -3 , τ = 10 -2 .

Figure 5 :

 5 Figure 5: Chapman-Jouguet detonation front: density (top, left), pressure (top, right), temperature (middle, left), partial mass of the limiting reactant (middle, right), velocity (bottom, left) and adaptive mesh (bottom, right) at t = 2.2, L = 13 scales, = 6.25 • 10 -4 , τ = 10 -3 .

Figure 6 :

 6 Figure 6: Time evolution of the interaction between a detonation wave an a pocket of unburnt gas computed with the adaptive MR method. Numerical Schlieren of the density gradient (left) and corresponding meshes (right) at t = 0 (top), t = 0.65 (middle) and t = 1.3 (bottom).

Figure 7 :

 7 Figure 7: Adaptive MR computation of the interaction between a detonation wave an a pocket of unburnt gas: Zoom on the adaptive mesh at t = 1.3.

Figure 8 :

 8 Figure 8: Interaction between a detonation wave an a pocket of unburnt gas. Onedimensional cuts of density for y = 0 at t = 1.3. Comparison of the adaptive MR and the FV computations for L = 10 with the FV reference computation for L = 11. The total number of grid points in the FV computations is 2 2L .

Table 3 :

 3 Chapman-Jouguet detonation front: CPU time, CPU compression and relative error on the von Neumann density for different scales and for the FV and MR methods, τ = 10 -1 .

  -3 .

	Method	τ L	CPU time CPU comp.	rel. error
	MR	10 -2 12 1.25 • 10 -3	43 s	20,08 % 1.336 • 10 -1
	FV	10 -2 12	3 min 37 s	100,00 % 1.342 • 10 -1
	MR	10 -3 13 6.25 • 10 -4	2 min 03 s	7,56 % 3.057 • 10 -1
	FV	10 -3 13	27 min 13 s	100,00 % 3.057 • 10 -1

Table 4 :

 4 Chapman-Jouguet detonation front: CPU time, CPU compression and relative error on the von Neumann density for different values of the stiffness coefficient and for the FV and MR methods.
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Numerical results

In all numerical simulations, we consider an initially planar Chapman-Jouguet detonation moving with constant unitary speed through the unburnt gas to the right of the domain. Setting γ = 1.4, r = 1, Q 0 = 1 and T i = 0.22 and assigning the following burnt gas values

where

the corresponding von Neumann state past the shock wave is [START_REF] Tosatto | Numerical solution of under-resolved detonations[END_REF][START_REF] Helzel | A modified fracitonal step method for the accurate approximation of detonation waves[END_REF] 

and the unburnt gas values are

The resulting temperature of the unburnt gas T u = 0.215995 is only slightly lower than the chosen ignition temperature T i . The initial condition for an initial front at x = x 0 is

where a is set to 1 τ . Here q stands for ρ, v x , p, and Z, while v y = 0 everywhere. This way the initial condition is close to the classical Zeldovich-von Neumann-Dring (ZND) solution of the reaction Euler equations.

One-dimensional detonation

First we consider a one-dimensional setting. The computational domain is Ω = [-3, 1]. In this case, the location of the initial front is set to x 0 = -2. In order to follow the detonation wave and perform longer computations, a change of variables is made for v x . We set v x = v x -δ and omit the superscript everywhere. Since the initial transition happens in the segment [-3, -1], we only focus on the domain [-1, 1]. The dimensionless final time is t = 2.2.