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A piecewise-affine approach to the analysis of non-linear cordl laws
for pneumatic systems

Omar Ameur, Paolo Massioni,&Bard Scorletti, Xavier Brun and Mohamed Smaoui
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Abstract— This paper concerns the control of pneumatic ac- : : : i [ — Desired position
tuators, which are nowadays of widespread use in the industry. : : § A gggz;

A problem related to the use of such actuators is the so-called 52

“stick-slip”, due to the presence of dry friction on the system.

A switching control law has been proposed in the literature in 5.1

order to avoid this phenomenon, without giving a formal proof

of the closed-loop stability of the system; the absence of a proof =

was due to the difficulty of finding a Lyapunov function, and ‘g_
5
O

to the fact that the state converges not to a single point but
to a set. In this article, we prove stability by modelling the
pneumatic system and its switching control law as a piecewise
affine system. This formalism allows the use of a variety of
specific techniques, which we have extended in order to cast
the proof of the convergence of the state as a Linear Matrix
Inequality (LMI) test. The paper contains the description of
our experimental setup and the results obtained by applying 46
the aforementioned method.
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|. INTRODUCTION Fig. 1. Stick-slip phenomenon on a pneumatic cylinder.

Electropneumatic systems are widely used in industry,
especially in the form of pneumatic actuators or cylinders.

Their efficient use depends on good control laws, which sojution has been proposed recently in [19]. This solution
are often non frivial to synthesize as their dynamics argonsists in a classic feedback linearization, which getsdus
nonlinear. of the nonlinearities, together with an appropriate sviitgh
One of the major problems in the use of pneumatigay, The controller switches from a trajectory tracking €on
cylinders for precise linear actuation is the “stick-slipfie-  tro| to a pressure control after the rod has come to a rest,
nomenon [12], [4]. Stick-slip occurs typically in the prese iy order to reduce the pressure difference between the two
of dry friction combined with an integration effect (eitherchambers, avoiding an uncontrolled evolution that eveiytua
in the control law or in the system itself). In pneumaticcoyld make the rod restart.
cylinders, the phenomenon consists in a displacement of th@js control law has been verified to be quite effective in
rod a while after it has come to a rest; this is due to the fagjactice. However, there is no formal proof of its effective
that the force acting on the rod initially becomes smallet th ness, or even of its stability. The research work presented
the threshold which is necessary for a motion in presence f this paper aims at giving an answer to this problem, i.e.

dry friction, but later on this threshold is overcome due to finding a theoretical tool able to prove the stability of the
slowly growing integrator. Fig. 1 shows the records of Waswitching law applied to the cylinder.

experiments on a pneumatic cylinder, from which stick-slip 1o hressure dynamics in the pneumatic chambers and the
can be clearly seen: the position of the rod stays constagfogence of friction make the electropneumatic actuator a
for a Wh||_e, then it starts moving again, with no changes fogtrongly non-linear system. Typically, feedback lineatian
the SetPO'”t- . o can be used to overcome the nonlinearities, with the “caveat
In this case, stick-slip is caused by the presence of dyat an uncertainty in the model can lead to catastrophic
f”Ct'_On and by the pressure (_:iynamlcs |n.the ch_ambers, whiclkects. For this reason, in this study we will analyze a aint
continue to evolve (integrating the net incoming mass ﬂo%w, based on the one in [19], which cancels all the nonlinear
from the servovalves) even after the rod has stopped.  gtacts through feedback linearization with the exceptn

The stick-slip phenomenon is highly undesirable in the,e most difficult to model quantitatively, namely the frt.
applications, it can even lead to limit cycles. For this ceas This leads to a model where the friction force can be

O. Ameur and G. Scorletti are with Laboratoire Aémp, UMR CNRS approx_ima_ted as a piecewise linear funCtion; together with
5005, Ecole Centrale de Lyon, Univeréitde Lyon, {omar.ameur,  the switching law, it leads to a model belonging to the class

geeral\r/Ig-sssigr?ir ')(etBtrngz'l\'/IYg:q-afoLi are with Laboratoire fore UMR of the piecewise affine (PWA) systems, for which a rich liter-
CNI.?S 5005, ]NéA de Lyon, 'Univeréitde Lyon,{paol 0. nessi oni , ature exists [8], [16], [10], [15], [17], [14]. The formalis of

xavi er. brun, nohaned. smaoui }@ nsa- | yon. fr PWA systems will let us find a systematic method for proving



the stability of feedback systems like the ones considered,
through the solution of a convex optimization problem. The
solution proposed here can be considered as an extension
of [11] and [9], with the difference that the main result of
this paper is less conservative with respect to the methods i
these former references. Moreover, it allows the analykis o
the convergence of the system state to a whole set, which is

necessary for our specific application.

where

The paper is organized as follows. Section Il contains the
model of a pneumatic actuator, and the description of the
proposed switching control law. Section IIl introduces the
PWA class and the tools that can be used for the stability
study. Section IV contains the main theoretical result, i'%\/ith Vo = Vp + Sk, and whereF; (v) is the dry friction
the method for proving stability, whereas Section V showgy e whose nonlinear model is given in the literature by
its application to our test bench model. The conclusions ag,eral relations [1], [7], [20], [6]. In our case, we corsid

the model of the dry friction forces in a saturation form such

given in Section VI.

II. PNEUMATIC ACTUATOR SYSTEMS

a acceleration (m s2)

Fs stiction friction force (N)

k gas polytopic constant

l length of stroke (m)

M load (carriage and rod mass) (kg)

PP, PN pressure in the cylinder chambers (Pa)

£S

qmp, ¢mN  Mass flow rate provided by the servovalv
to the cylinder chambers (kg$)

r perfect gas constant (J kg K—1)

S area of cylinder bore (#)

T temperature (K)

v velocity (m s1)

\% volume (n?)

Vb dead volume of cylinder chamber ¢in

Y position of the piston rod (m)
TABLE |
NOTATION.

as:

Frv) =4 Lo

Y=
o = 37 (S(pp — pn) — Fr(v))

pN = V{j\,r(jr;) (%pN’U + qu)

)

pp = VIZ(E) (=2pPv + qmp)

Ve(y) = Vo + Sy
Vn(y) = Vo — Sy

I, forv>e

for —e<v<e (2)

€

I, forv< —¢

The inputs to the system are the two mass flow rates

and g, .

In order to overcome the stick-slip phenomenon, a switch-

ing control

law has been proposed in [19]. This law is

based on a feedback linearization of the model in (1), and it
switches between the two following modes:

#1 a trajectory tracking mode, which allows the tracking of
a given time-varying position reference (i.e., a desired
positiony,, a desired velocity,, a desired acceleration
aq and a desired jerliy);

#2 a pressure control mode, activated when the position

has to

vg =0,

be brought to a standstill (fg;; constant, and
aq = 0, jg = 0); in this mode, the pressures in

the chambers are controlled and brought to their desired
setpoints g4, ppq) iN order to avoid stick-slip.

We consider a pneumatic cylinder test bench like the one

shown in Fig. 2. The setup is intended for applications in

According to this, we define the errors between the

rectilinear motion [5], [3], [18], and it comprises an ad@ra position, velocity, acceleration, pressures and theiiregs

in the form of a pneumatic cylinder (double acting) wit

hvalues:

a rod connected to a carriage on rails. The test bench is
powered by compressed air and it contains two servovalves
for controlling the flow supplied to both the chambers of the

cylinder. Two sensors measure the pressures in the chambers

Il 9dmp

dmN ﬂfL_
1

™ carriage
Chamber P Chamber N

Fig. 2. Electro-pneumatic actuator.

guiding rails

€y =Y —Yd
€y =V — Vg
€y =0 — Qg
€p = PP — PPd
EN = PN — PNd

The switching control law that we consider is the follow-

ing.

Trajectory tracking mode (#1)

dmpP =

Under a set of simplifying assumptions [19], the physical

model of the system is given by the following equations (see

Table | for the notation)

dmN =

% .
,fr(jl«’) [-Zvpp + Ppa — kpep)
MVn(y) [ _SkrT S2k

skt 3rve dmP T o3 G T )

—Jd + ka€a + kvey + kyey]



Pressure control mode (#2) w2 w1 # THa | #2

o

N

a
T

o
)
T

Vi (v)

{ qmp = V,fr(qgwl) [>vpp + pra — kpep)
Gmn = o2 [~ ZupN + Ppnva — knen]

[=}
s
3

Switching law
#l— #2: v =0 A ley| <e1 A ley| < e
#H2— #1110 £ 0V |ey| > 1V |ey| > €2

position [m]

o

o

a
T

= rod position

The constants,, k,, k., kp and ky are the state feed- = : : T o pos
back gains, which can be chosen, for example, by a pol 00 T T 15 2 25 3 35 4 a5 s
placement on the linearized model; ands, are small ar- t[s]

bitrary constants. The application of this switched cdigro

leads to the following switching closed-loop model. Fig. 3. Evolution of position with respect to the desired ifios. The
Trajectory tracking mode (#1) background colors are related to the active control mode (#12h

€,y = €y
! The search for a stability proof requires the use of proper
A3) tools. We can point out that the closed-loop system in (3)
baf = —ka€as — kve, — kye, + 52 Fy(v) and (4), together with the friction model in (2), is a state-
dependent switching system, with one switching possybilit
due to the chosen friction model, and the other due to the
Pressure control mode (#2) chosen law. In the presence of such switching criteria, the
model fits into the class of piecewise affine (PWA) [15]
dynamical systems. As a consequence, we can try and adapt
€y = €qf — ﬁFf(v) the several results which can be found in the literature for
(4)  this class of systems to our stability study. In particuee,

will focus on the approach of [11] and [9].

év = eaf — ﬁFf(’U)
ép = —kpep
€y = €y

éar = 2 (kn — kp)ep — kneas

ép = —kipep
_ . Ill. PROPOSED APPROACH
with eq; = Ca + 3y (v). . Let us introduce a partition d&™ into N polyhedral cells
Remark 1:the chosen control law is based on a feedbac . . . )
i (1 = 0,...,N — 1) with disjoint interior. We assume

linearization that cancels out all .th_e nonlmean_ues oé tho € Xo, and0 ¢ X; for 1 < i < N — 1; this means thak,
system but the ones caused by friction. We avoid cancelin . O
the only cell that includes the origin.

th_er_n because there is a high degree of uncertainty on the_l_he domain of each celk; is defined by:
friction forces.

The controllers have been synthesized to provide a desired FEoxr >0 for x € X
behavior in each mode, but no formal analysis has been I (5)
carried out on the effects of the switchings. Nevertheltss, E; M >0 forreX;,;,1<i<N-1
above switching control law has been verified to be stable

both in simulation and on the test bench. In particular, thighere £, € Rlo*" and E; € Ri*(+1)_ Let the boundary

law has never caused the occurrence of stick-slip during &lktweenX; and X; be given by:

of our experiments. Fig. 3 shows the simulated trajectory

obtained using this control law for a given reference trajec Lij={0G,5) | Xin X; #DANi>j}

tor_y; the system switches to pressure control (#2) when tl'g% there exists matriceB,; such that:

trajectory becomes constant.
Nevertheless, no formal stability proof has been given in . = |z

[19] for this control law, even if it has been quite succebsfu V(i j) € Tyg, Xi N X; = { v | B {1] =0 }

in the practice. In the follow-up of this article, we aim at

compensating for this lack. One of the issues that we willf

need to face is that the stability of the system has to be

proven for a special kind of convergence of the state, not to{ z(t) = Aox(t) for z € X

the setpoint, but to a whole set in its neighborhood. Thisisy . . .

due to the well-known fact that moving systems subject to 3(t) = Aiw(t) +a; foreeX,l<isN-1

dry friction cannot be easily brought to a stop at a desiredtherexz € R™ denotes the state space vector.

point, but they will rather stop in its proximity (this can be We consider a class of PWA systems such that:

seen for example in Fig. 3, when the rod stops just after Assumption 3:for 1 < i < N — 1, Vo € X,

t=25s). Aix+ a; # 0.

Definition 2: we call a system “piecewise affine” (PWA)
it has the following dynamics:

(6)



Assumption (3) implies that there are no equilibrium points 4) The derivative of the Lyapunov function must be null
outside of X,,. The set of equilibrium pointE,, is inside in Eeq, i.€. _
Xy, that is: Vo(z) =0, z € Eq. (13)

Definition 6: the decay rate is defined as the largest pos-
itive numbera such that for any initial condition:

. at _
tgrgoe d(z(t), Eeq) = 0.

Eeq:{(IJGXo|A0£B:0}. (7)

Assumption 4:A, has a null eigenvalue.

Assumption (4) implies that the set of equilibrium points
E., is not necessarily reduced t0, i.e. we can have
E.q # {0}. Corollary 7: the decay rate of system in (6) is larger then
In the Sequel, assuming thﬁro has a null eigenvalue with « if the conditions in (12) are rep|aced by
Z, € R™*1 an associated eigenvectotdZ; = 0), then: .

Vo(z) < —2aVo(IlllTz), z € Xo \ Eeq
©®) -

Vi(z) < —2aVi(z), x € X;, 1<i<N-1
We also defindl € R"*("~1) the orthogonal complement which means, if (10), (11), (14) and (13) hold, then every

Eeq:{ l‘EXQ‘Hf, l‘ZZlf }

of Z1, normalized such all” 1T = . continuous piecewise trajectonyt) € R", satisfying (6) for
The objective is to propose a condition ensuring the > o, tends toE,, exponentially.
exponential convergence of the system trajectosigg to Remark 8:in the case ofE,, = {0} anda = 0 the

the set of equilibrium pointsZ,, for this class of systems. proposed problem reduces to the one treated in [11] or [9].
For eachz, we can define the smallest distance d to any
point in E,, [13] as IV. MAIN RESULT

Given the previous considerations and using the S-
procedure [2], we can arrive at the following theorem, which
reveals that the Lyapunov function can be computed through
an LMI optimization.
Jim d(z(t), Eeq) = 0. Theorem 9:let us assume that the system in (6) satisfies
éssumption 3, > 0 is a given scalar. If there exist

UW € Rixtiand 7;, 7/ € RY% with non-negative

d(z, Eeq) = yé%f [z—yll.
eq

Subsequently, the convergence can be defined as

To ensure this objective, a hatural approach is to introdu

a piecewise quadratic Lyapunov function: ° /
entries;
V(x) = Vi(z) for z € X; ) o P, e ROHX(n+D) for 1 < < N—1, P, € R"*" and
with Lij € RUmxp
zT Pyx for x € X such that
T = = , =T - o
V;(Z‘) - |:£U:| F |:£U:| for re X, 1<i<N_1 Pj = PZ + EZ]LZ; + LijEij7 for (Z,j) e Fij (15)
1 3 1 (3 — — N
nralpz, =0 (16)

In order to ensure the continuity of the Lyapunov function _
on the boundary between two cell§ and X, (i,j) € T';;, and the following LMis hold

the following condition has to be satisfied: Py>0
17
Vi(z) = Vj(z) Vo € X; 0 X;. (10) { 7 (A Py + Py Ag)TT + 20117 RyIT < 0 -
To prove the convergence, we rely on the following result, — N =T —
which is a direct consequence of La Salle’s theorem ([13] Pi = Qu(T{) — E; Wiki = 0
44 page 128). - A P+ PiA; + Qi(Ti) + B, UiE; + 20P; < 0
Lemma 5:for the system in (6), the convergence i, (18)
is assured under the following conditions: for 1<i< N —1 with 4 — A a; q
1) the Lyapunov function is continuous, i.e. it satisfies” - = /=N LW i=lo ol @
(10);
2) the Lyapunov function must be positive outsiflg,, Qi(T) = {TgE} + [O E;‘Fﬂ (19)
ie. i i ’
Vo(z) >0, z € Xo \ Eeq then the trajectories(t) of the system (6) converge expo-
_ _ . (11) nentially to the equilibrium sek.,, with a decay rate larger
Vi(z) >0, z € X;, 1<i< N -1 thana, with Lyapunov function (9).

3) the derivative of the Lyapunov function must be neg-  Proof: consider the Lyapunov function candidatéz)
ative outsideE., i.e. defined by (9).
. Forz € X;NX;, E;jz = 0. Then (15) implies that for €
"/O(x) <0,z € Xo\ Eeg (12) XinXj, T P;z = 2T P;z, that is (10), i.e. the Lyapunov
Vi(e) <0, z€ X;, 1<i<N-1 function V(z) is continuous.



Then, the first expression in (18) implies V. APPLICATION TO THE PNEUMATIC ACTUATOR

T
m (Pi — Qi(T?) —ETWiE) {z] > 0 According to (3) and (4), the dynamic behavior of the
1 1 pneumatic system described in Section Il can then be cast
T R into the form of a piecewise affine system presented in (6).
meaning (S-procedure) th{ﬂ P; [ﬂ > 0 when For our test bench, we havwel = 17 kg, Fx, =40 N, § =
727-107* m?, ¢ = 0.1 m/s,e; = 0.005 m andey =
A Ty 0.01 m/s. Through a pole placement, according to the system
[J E; WiE; L] >0 specifications, we have sg} = 84.5 573, k, = 92.69 52,
ko =51.82 s kp =10 st andky = 10 s 1.
17 " The switching criteria divide the state-space into seven
[ } Qi(T) [ } >0 cells (see Fig. 4): a central celty, for which 0 € Xy,
and six external cellsX, X, X3, X4, X5 and Xg. Certain
which in turn implies that/;(z) > 0 for z € X;, 1 <i < couples of cells are symmetric to each other with respect
N —1, i.e. the second expression in (11). Similarly, it can b&o the origin: X; with X5, X5 with X, and X5 with X.
shown that the second expression in (18) implies the secoRge can use this property by imposing conditions only for a
expression in (14). single cell of each couple, and by symmetry these conditions
Let us now consider (17). The first expression in (17Wwill necessarily be verified for the other ones. So, we need
implies the first expression in (11). For what concernso impose the conditions of Theorem 9 only for the central
the second expression in (17), remember thg{z) = cell and fori = 1,3,5. We can then define the dynamics
2T (Af Py + PyAf)xz. Moreover, we can always write a and construct théZ; matrices defining each cell through the
decomposition forz, of the kindz = Z,{ + II¢, where relation in (5). As we study the convergence of the state
¢ € RM=Dx1 and ¢ is scalar. Then we hav&,(z) = to E.,, we consider a static setpoint, i.g; constant and
(Z1€+ )T (AT Po+ Py AT ) (216 +11C) = ("I (AF Po+  wq = 0, ag = 0 (which impliese, = v, e, = a).
PyAT)IIC thanks to (16). So the second in (17) implies
Volz) < —2aVy(MI"z) for = ¢ E., which is the first
in (14), andVy(z) = 0 for = € E., (i.e. z = Z¢),
which is (12). So we have shown that the conditions required
by the theorem imply (10), (11), (14) and (13), satisfying
the hypotheses of Corollary 7, which proves the theorem
statement. ]
Remark 10:besides the linear matrix inequalities (LMIs)
in (17) and (18), Theorem 9 features some linear matrig. ol Xg Xoo Kol Xg o Xs
equalities (LMEs) as well, (16) and (15). Such LMEs can be
resolved by an appropriate parameterization of the ineblve -
matrices.
Remark 11:an interesting problem is to find the largest €1 B
« such that (10), (17) and (18) hold. This problem can be
solved through a dichotomic search with respectvto
Corollary 12: consider Theorem 9, in the case @ 0. :
If the hypotheses of the theorem are satisfied, then therayste -€ ~€28) €
in (6) converges asymptotically tB,. ey
Remark 13 (comparisons to former methods):
Theorem 1 in [11] is a special case of our Theorem 9, for Fig. 4. The cellsX;.
E.q = {0}, T; = 0 anda = 0. Also the method presented in
[9] is a special case of Theorem 9, fék, = {0}, U; =0
and o = 0. In this sense, Theorem 9 is an extension of
these previous results; it is less conservative as it featar
more general condition, and at the same times it allows the
analysis of the convergence to equilibrium sets other than
the origin alone. We can also remark that condition (15),

X

L X2

o The central cell X,
In this cell the control law is #2, i.e. the pressure control.
With respect to friction, we have the lal; (v) = Lz,
(force proportional to velocity). So in this cell

: - 3 €y 0 1 0 0 ey
which ensures the continuity of the Lyapunov function, é 0 _F 1 0 e
is the same as the one in [9]. This relation parameterizes = Me s !

. . . . . . Eaf 0 0 —kN ﬁ(k]v —]{:p) €af
all the possible piecewise-quadratic continuous funstion ép 0 0 0 “kp ep

and it is more general than the relations defined in the
work of [11], which only offer sufficient conditions for the Ao
continuity.




The cell is active for

\ey\ﬁal
leo| < e2
which implies
-1 0 0 0
1 0 0 0
Eo=119 _1 0 0
0 1 0 0

e Cells X7 and X3

In this case, the active control mode is #1 (position
tracking), and the friction model By (v) = %eu (force
proportional to velocity). The dynamics in both these g

cells can be written as follows.

€1
€1
€2
€2

€y 0 1 0 0 ey
év _ 0 - Iﬁsi 1 O €y
€af —ky ko + % ke 0 | |eas
ép 0 0 0 -k, |ep
A=Az
These cells are active if
€y > €1 f
or X
{ ‘61;| S &2 !

ey <v<e for X3
so the matrices defining them are

B 1 00 0

E,=|0 -1 0 0

0 1 00

and 0 -1 0 0

Es=1o 1 0 o0
.Ce||X5

In this cell, the control mode is #1 (position tracking), ;
and the friction is constant, i.&;(v) = F,. Then, the

dynamics of this cell can be written as

éy 0 1 0 0 ey 0
| |0 0 1 0 ey —Le
éaf o _ky _ku _ka 0 eaf * k?\;'s
ép 0 0 0 —k‘p ep 0
N——
A5 as
This cell is active for
v>€
SO B
Es=[0 1 0 0 —¢
By applying Theorem 9, we find
1.0696 0.0455 0.0045 0
Po— * 0.1788 —0.005 6.89-10~*
0= * * 2.64-107% —4.23-107°
* * * 0.2

r1.069  0.045 0.004 0 —1.86 - 1067
* 0.178 —0.005 6.89-104 9.34-1077
P=| ~ * 2.64-107% —4.23-107° 0
* * * 0.2 0
L * * * * 1.86 - 108
[1.069 0.088 0.0045 0 —4.32-1074]
* 0.136  —0.0038 8.99.10~% 2.18 - 104
Py=1 « *  264-100% —4.23.107% -1.23.107%
* * * 0.2 —2.1-10-6
* * * * 9.44.10~8
r1.06  0.17 0.004 0 —0.009 1
% 0.0900 0.0020 —1.25-1072 —0.0044
= | % * 2.64-10"% —4.23-107° —5.89-10"%
* * * 0.2 8.91-10~°
L * * * 0.0014

with a lower bound value on the decay rate of
a=14.

Fig. 5 presents the 2-dimensional section of the obtained
Lyapunov function in the(e,,e,) plane, whereas Fig. 6
shows its level curves. From Fig. 6, we can clearly see that
the level curves do not have a simple ellipsoidal shape; this
implies that a simple common quadratic Lyapunov function
(i.e., the same matri for all the cells) is not sufficient to
obtain such shapes. In fact, we have run our test also in order
to look for a common quadratic Lyapunov function, and the
test failed to find any. This justifies the effort in finding $es
conservative conditions as the ones of Theorem 9.

Fig. 7 shows the evolution of the value of the Lyapunov func-
tion during several simulations, compared to the estimated
decay rate.

06—

~u
S’
eml s~
Fig. 5. Intersection of the Lyapunov function with tie,, e,) plane.

Fig. 8 shows the result of other simulations, for different
initial positions errors. From the value of = 1.4, we can
estimate that the error is reduced to less thafzaof its
initial value aftertsy, = =% ~ 9 4 s; in fact we can see
that in all the cases the system comes to a stop in @beut

VI. CONCLUSIONS

In this paper, we have investigated the problem of proving
the stability of a electropneumatic system in closed-lodp w
a switching control law. The use of a feedback linearization
hides some of the nonlinearities of the system leaving only
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Fig. 6. Lyapunov function level curves.

— — — Lower bound on the decay rate
Lyapunov functions

tfs]

w
N
o

Fig. 7. Evolution of the Lyapunov function with respect te ttlecay rate,
for different trajectories stemming from different initiabreditions.
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Fig. 8. Evolution of position error for different initial oalitions.

inequalities. We have shown that this method is able to prove
stability for a model of a real pneumatic test bench.

As a final remark, it should be noted that the same
ideas in this paper can be extended to include the study of
performance indices other than the decay rate, or to robust
analysis. This will be the subject of future research.
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