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Abstract

Parallel implementation of an iterative determination of energy levels of large molecular systems

is presented. The basic step consists in acting the Hamiltonian operator H on a wavefunction

u, and is achieved by means of a Pseudo Spectral Split Hamiltonian scheme (C.leforestier et

al.,J.Chem.Phys.,106,8527(1997)). The potential term evaluation V.u, which corresponds by far

to the most time consuming part in the sequential code, has been distributed over all the processors.

Application to the water dimer (H2O)2 Vibration-Rotation spectrum shows a very good parallel

efficiency up to 64 processors.
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I. INTRODUCTION

Due to continuing progress in experimental methods, molecular spectra become more

detailed, but on the other hand more difficult to interpret. Among a few examples, one can

cite

- the isomerization of acetylene in vinyldiene[40];

- the Stimulated Emission Pumping spectrum of the fluoryl formide molecule HFCO[41];

these spectra revealed the existence of bright states which can be assigned as (0, n2, 0, 0, 0, n6, J,Ka, Kc)

in the range 13,000-20,000 cm−1 of internal excitation.

- the molecular beam experiments on water clusters[42]; using tunable far IR lasers, these

authors were able to characterize clusters (H2O)n up to the heptamer (n=7).

The traditional approach to molecular spectra calculations consists in first expressing

the Hamiltonian operator in some basis set, and then diagonalizing the resulting matrix.

Such a method can only be used for molecular systems comprising a few thousands states at

most (N ≤ 104), due to core memory limitations. These dimensions hardly suffice to handle

highly excited triatomic molecules[43], as typically 10-30% of the eigenvalues are converged

with respect to the molecular basis set size.

In recent years, an alternate approach called the direct method has emerged as a powerful

tool. By direct one means here a method which only requires acting the Hamiltonian operator

H on some wavefunction, without the need of the associated matrix. First implementations

were made by Feit and Fleck[44] using the Split Operator method, followed by Kosloff and

Kosloff[45] by means of the Chebychev time propagator[46]. This approach relies on using

two different representations of the wavefunction, and has been shown able to achieve very

high accuracy[47]. Another route has been followed by Cederbaum and coworkers[48], and

by Wyatt and coworkers[49], both of them using the Lanczos algorithm[50]. These authors

used a unique normal mode description of the molecular system, which leads to an easy

computation of the missing terms
∑

i≤j≤k VijkQiQjQk+ . . .. In all these methods, only a few

vectors have to be kept in core memory, which allows one to consider ultra large basis sets.

The direct approach became very popular due to the emergence of the Discrete Variable

Representation (DVR) method of Light and coworkers[51]. In this method, one emphasizes

the grid representation in which the potential is diagonal. The direct DVR approach has

been used in conjunction with iterative schemes such as
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- the Lanczos algorithm[50] for low lying [52] or resonant states[53] of triatomic systems;

- the Filter Diagonalization method[54] for highly excited[55] or resonant states[56, 57]

of molecules;

- the GMRes linear solver[58, 59] for Cumulative Reaction Probabilities[60, 61] or pho-

todissociation spectra[62]

to cite only a few examples. The direct DVR method can result in a broad spectrum of the

Hamiltonian operator when use is made of curvilinear coordinates. The reason is due to

the presence of almost singular terms in the kinetic energy operator, such as 1/ sin2 θ∂2∂φ2.

A DVR representation of the θ variable will badly behave close to θ = 0 or θ = π, as the

correct asymptotic form of the solution is not enforced[63].

The next step in the development of direct methods is due to Corey and coworkers[64]. In

a very important paper, they showed how one can transform between a spherical harmonics

basis set and a two dimensional grid associated to the polar angles. The key point of

this transformation is that it treats exactly the apparent singularity of the kinetic energy

operator (1/ sin2 θ∂2/∂φ2) that appears in a pure grid description. As a result, the spectrum

of the kinetic energy operator displays the smallest possible range. This paper established an

efficient handling of a multidimensional grid associated to general non-direct product basis

sets. The essential departure from Light’s original formulation[51] is that one no longer seeks

a unitary transform between the two representations. As a result, the two representations

are no longer equivalent, the spectral representation becoming the primary one as it is more

compact[65–69].

The Corey-Lemoine approach[64], adapted to spherical harmonics, has been generalized

by Leforestier[66] to the case of Wigner functions. It consists of a Jacobi transform followed

by a double Fourier transform. In order to maintain the variational principle within the

scheme, care has been taken to remove the aliasing terms resulting from evaluating the

potential on a grid. This has been realized by using a grid size significantly larger than the

spectral representation dimension. This Pseudo-Spectral Split Hamiltonian (PSSH) method

has been applied by one of us (C.L.)[66] to the computation of the VRT states of the Ar-H2O

van der Waals complex, and was shown to be both very efficient and versatile with respect to

the form of the potential, as well has having minimal storage requirements. This approach

has been further pursued in order to compute the Vibration-Rotation spectrum of the water

dimer[71, 72]. It consists in a generalization to two rotating rigid water molecules of the
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formulation previously developed for the Ar-H2O system.

In this paper, we describe the implementation on a massively parallel computer of the

PSSH code developed for the water dimer. Sec. II first introduces the basic algorithmic

structure of the PSSH method. It is then shown in Sec. III how this algorithm can be

efficiently implemented on a massively parallel computer. Finally, Sec. IV presents the

performance of the resulting code and concludes.

II. PSEUDO SPECTRAL SPLIT HAMILTONIAN METHOD

The PSSH scheme is presented below through its application to the determination of the

vibration-rotation energy spectrum of the water dimer. As the basic step of the algorithm

consists in acting the Hamiltonian operator H on some wavefunction, this method can

also be used in conjunction with other iterative schemes such as time propagation, filter

diagonalization or linear system resolution. Furthermore, a great many molecular systems

can be handled by this method.

A. Hamiltonian Operator

We used the Brocks et al rigid rotor formulation[73] which leads to the following Hamil-

tonian operator

H = − h̄2

2µAB

∂2

∂R2
+H

(A)
rot +H

(B)
rot +V(R,Ω(A),Ω(B)) (1)

+
1

2µABR2

{

J2 + j2 − 2j.J
}

where

• R is the distance between the centers of mass of the two monomers A and B, and µAB

their reduced mass,

• H
(α)
rot and jA are respectively the rotational Hamiltonian and angular momentum of

monomer α,

• j = jA + jB is the coupled internal rotational angular momentum,

• J = j+ L the total angular momentum (L is the angular momentum of the monomer

centers of mass),
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• and Ω(α) ≡ (ϕ(α), θ(α), χ(α)) represents the Euler angles defining the orientation of

monomer α in the body fixed axes.

B. Spectral Representations

The total spectral representation is first written as the direct product

Bang ⊗ {|Sn〉, n = 1, NS} , (2)

where the S’s correspond to functions adapted to describe the relative motion R.

In order to perform the calculations, several different angular bases Bang are used, which

are described below.

1. The uncoupled basis set Bunc

This basis is defined as the direct product of Wigner bases {|jα, kα, ωα〉} on each monomer

times a Wigner basis {|J,Ω,M〉} for the total angular momentum :

Bunc = {|jA, kA, ωA〉} ⊗ {|jB, kB, ωB〉} ⊗ {|J,Ω,M〉} (ωA + ωB = Ω). (3)

It will only be used as an intermediate between the coupled representation and the grid (see

Sec.II C).

2. The coupled basis set Bcpl

One can contract this angular basis by defining the coupled basis set

Bcpl = {|jAjBkAkB; jΩ〉|J,Ω,M〉} (|jA − jB| ≤ j ≤ jA + jB) (4)

where

|jAjBkAkB; jΩ〉 =
∑

ωA+ωB=Ω

〈jAjBωAωB|jAjBjΩ〉|jA, kA, ωA〉|jB, kB, ωB〉 (5)

〈jAjBωAωB|jAjBjΩ〉 being a Clebsch-Gordan coefficient. This representation is used to

compute the H
(A)
rot , H

(B)
rot , and Centrifugal+Coriolis terms as will be shown later on.
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3. The symmetry adapted bases B(Γ)
sym

The G16 Permutation-Inversion symmetry of the (H2O)2 complex[74] allows us to subdi-

vide the angular basis set into 10 symmetry adapted bases, corresponding to the different

Irreducible Representations (Irrep) Γ’s. The way to construct symmetry adapted vectors

|jAjBkAkB; jΩ,Γ〉 from the coupled basis vectors,

|jAjBkAkB; jΩ,Γ〉 = c
(Γ)
1 |jAjBkAkB; jΩ〉+ c

(Γ)
2 |jBjAkBkA; jΩ̄〉 (6)

+ c
(Γ)
3 |jAjBk̄Ak̄B; jΩ̄〉+ c

(Γ)
4 |jBjAk̄Bk̄A; jΩ〉

where k̄ ≡ −k, is given in reference 71. In the following, we will use {|ν〉Γ, ν = 1, NΓ} as

a shorthand notation for the elements of the symmetry adapted basis corresponding to the

Irrep Γ.

C. Grid Representation

The different spectral representations defined just above allows one to easily compute

the effect of the various parts of the Hamiltonian operator, except for the potential. The

complete scheme will be presented in the next subsection. We now discuss how the potential

term is handled.

The way to evaluate the potential term consists in using a general pseudo-spectral method,

as defined by Friesner[75] for the case of electronic structure calculations. This method re-

sorts to an intermediate grid representation, tantamount to making use of a quadrature

rule in order to compute the matrix elements in the spectral representation. The potential

function depends on the 6 coordinates {ϕ = ϕA−ϕB, χA, χB, θA, θB, R}, where (ϕA, θA, χA)

represents the three Euler angles orientating monomer A in the BF frame. The grid repre-

sentation corresponds to the set of values {Ψgqsαβz} taken by the wave function Ψ on the

6D grid {ϕg ×χA
q ×χB

s × θAα × θBβ ×Rz}, restricted to grid points where the potential energy

is lower than some threshold Vmax :

V (ϕg, χ
A
q , χ

B
s , θ

A
α , θ

B
β , Rz) ≤ Vmax . (7)

The most convenient basis set to start from, in order to transform to the grid represen-

tation, corresponds to the uncoupled one Bang ⊗ {|Sn〉, n = 1, NS}. That is, starting from a
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wave function expressed as

|ΨJM〉 =
∑

jA,kA,jB ,kB ,ωA+ωB=Ω,n

ΨJM
jAkAωAjBkBωBn|jA, kA, ωA〉|jB, kB, ωB〉|J,Ω,M〉|Sn〉 , (8)

one wants to compute its amplitudes {ΨJM(ϕg, χ
A
q , χ

B
s , θ

A
α , θ

B
β , Rz) ≡ ΨJM

gqsαβz} on the grid.

This spectral-to-grid transform is performed in several successive steps.

The first step consists in switching from the radial basis set {|Sn〉, n = 1, NS} to a grid

{Rz = Rmin + z∆R} by means of some orthogonal collocation matrix U (R)
zn = 〈Rz|Sn〉. This

matrix allows one to define the intermediate representation {ΨJM
jAkAωAjBkBωBz} by means of

the transformation

ΨJM
jAkAωAjBkBωBz =

∑

n

U (R)
zn ΨJM

jAkAωAjBkBωBz , (9)

the inverse (grid to spectral) transform being performed by using the transpose collocation

matrix.

The second step deals with the angular to Euler grid transformation. One can show[71]

that the transformation from the angular spectral representation to the five dimensional grid

can be realized by the following successive operations, performed at every values Ω = ωB+ωA

(−J ≤ Ω ≤ J) :

i) transform to the {θAα × θBβ } grid

ΨJMΩ
kAωAkBωBαβz =

∑

jA,jB

R
(ωA,kA)
αjA

R
(ωB ,kB)
βjB

ΨJM
jAkAωAjBkBωBz , (10)

by means of the orthogonal collocation matrices

R
(ω,k)
αj =

√

2j + 1

2
djωk(cosθα)

√
wα , (11)

cosθα and wα being respectively the abscissae and weights of a Nθ points Gauss-Legendre

quadrature;

ii) transform to the {φg × χA
q × χB

s } grid by a 3D inverse Fourier transform

{ΨJMΩ
gqsαβz} = F−1

ϕχAχB{ΨJMΩ
kAωAkBωBαβz} (12)

Going back to the {|jA, kA, ωA〉|jB, kB, ωB〉} representation is realized by applying the

inverse transforms in reverse order, i.e. i i) then i).
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D. The Split Hamiltonian Formulation

It consists in repetitively applying H on the wave function expressed in the B(Γ)
sym⊗{|Sn〉}

basis set,

|ΨJMΓ〉 =
∑

νΩn

ΨJMΓ
νΩn |ν,Ω〉|JΩM〉|Sn〉 , (13)

in order to propagate the Lanczos scheme. The choice of the symmetry adapted basis results

from the fact that it constitutes the most compact basis for expressing the Lanczos vectors

{|un〉}. We now briefly recall the Lanczos algorithm, and then discuss the different terms

into which the Hamiltonian is split, as well as their associated representations.

Starting from some initial vector |u0〉, the Lanczos algorithm[50] recursively generates

the Krylov space {|un〉n = 0, NL}

βn+1|un+1〉 = (H− αn)|un〉 − βn|un−1〉 , (14)

where αn = 〈un|H|un〉 and βn+1 = 〈un+1|H|un〉 are respectively the diagonal and off-diagonal

terms of H in this new basis set.

In order to perform the recursions, H as given by Eq.1, has been split into 4 terms,

namely

H = TR +HAB +Hcc +V , (15)

where each term has been handled as shown below.

1. Radial Kinetic Energy TR

This term, TR = −h̄2/2µAB.∂
2/∂R2, is associated to the [Tnn′ ] matrix in the initial

representation (Eq.13), resulting in the effect

TR|ΨJMΓ〉 =
∑

νΩnn′

Tnn′ΨJMΓ
νΩn′ |ν,Ω〉|JΩM〉|Sn〉 (16)

2. Monomer rotational terms HAB = HA +HB

The rotational kinetic energy term Hα displays analytic expressions in a Wigner basis

set {|jkω〉} given by

Hα|jkω〉 =
{

1

2
(Bx + By)

(

j(j + 1)− k2
)

+ Bzk
2
}

|jkω〉 (17)
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+
1

4
(Bx −By)F

+
jk|j k + 2 ω〉

+
1

4
(Bx −By)F

−
jk|j k − 2 ω〉

where F±
jk = [j(j ± 1)− k(k ± 1)]

1

2 [j(j ± 1)− (k ± 1)(k ± 2)]
1

2 . In order to exploit the

above relations, one has to switch to the coupled basis set Bcpl

|ΨJMΓ〉 =
∑

jAkAjBkBjΩn

ΨJMΓ
jAkAjBkBjΩn|jAjBkAkB; jΩ〉|J,Ω,M〉|Sn〉. (18)

As Eq.17 only involves changes in the k index, the Hα terms can be directly applied in this

representation.

3. Coriolis and centrifugal term HCC

This term, HCC = 1/2µABR
2
{

J2 + j2 − 2j.J
}

also displays simple analytic expressions

in the coupled angular basis set

HCC |jΩ〉|J,Ω,M〉 =
[

J(J + 1) + j(j + 1)− 2Ω2
]

|jΩ〉|J,Ω,M〉 (19)

+C+
JΩC

+
j Ω|j Ω + 1〉|J,Ω + 1,M〉

+C−
JΩC

−
jΩ|j Ω− 1〉|J,Ω− 1,M〉

where C±
jΩ = [j(j ± 1)− Ω(Ω± 1)]

1

2 . The 1/2µABR
2 factor in front of HCC is handled by

switching to the {Rz} grid, where it is diagonal, by means of Eq.9

{ΨJMΓ
jAkAjBkBjΩn} → {ΨJMΓ

jAkAjBkBjΩz} (20)

4. Potential term V

As discussed before, this last term is diagonal in the 6D grid times the total angular

momentum representation {ϕg × χA
q × χB

s × θAα × θBβ × Rz} ⊗ {|J,Ω,M〉} , which can be

reached, as discussed in Sec.II C, by means of Eq.(10-12)

{ΨJMΓ
jAkAjBkBjΩp} → {ΨJMΓΩ

αqβsgp .} (21)

Once a term of H has been applied in its own representation, the result is transformed

back to the symmetrized times the radial functions basis set Bsym ⊗ {|Sn〉} in which the

Lanczos vectors are expressed.
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III. PARALLEL IMPLEMENTATION OF THE PSSH SCHEME

Two distinct steps can be distinguished in the PSSH scheme :

(i) the first one concerns the determination of the effective six-dimensional grid to be

used according to the energy criterion (Eq. 7);

(ii) the second step consists in acting the Hamiltonian operatorH on a given wavefunction

un (Eq. 14).

In fact, a PSSH calculation can be viewed as step (i) executed only once, followed by step

(ii) executed several times until convergence of the energy levels, as shown in Fig. 1.

————————

Figure 1 near here

————————

Before describing the parallel implementation of steps (i) and (ii), we first discuss the

general organization of the code. The Single Program Multiple Data (SPMD) model has

been used as it supports both the Parallel Virtual Machine (PVM) and Message Passing

Interface (MPI) protocols. Within this model, processor #0 is mainly used as a driver for the

whole program, and can also effectuate some very fast calculations which will be indicated

later on. Conversely, processors #1 to #N-1 are dedicated to parallel executions of steps (i)

and (ii) as described now.

A. Effective Grid Definition

In order to define the effective grid satisfying Eq. 7, a systematic sampling of the whole

six dimensional space has to be performed. Due to the two-step structure , Eq .9-10 followed

by Eq. 12, of the spectral to grid transformation the 6D grid {ϕg ×χA
q ×χB

s × θAα × θBβ ×Rz}
is partitioned into three dimensional subgrids {ϕg×χA

q ×χB
s }αβz, each one corresponding to

a given triplet (θAα , θ
B
β , Rz) ≡ (αβz) while the ϕ, χA and χB angles vary over their definition

ranges. The total number N2
θ × NR of subgrids (or triplets) to be searched is then evenly

distributed over the N−1 processors. This number is typically of the order of 103, far greater

than N − 1, which leads to an excellent load balancing between the different processors.

This primary partitionning of the six dimensional grid cannot be retained for step (ii),

as some effective subgrids (αβz) are essentially empty : all their grid points correspond to a
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potential energy greater than the threshold Vmax. It can be shown, from the structure of the

pseudo spectral algorithm, that the computational cost associated to acting H on a vector

u depends primarily on the number of non empty subgrids, and to a lesser extent on their

density ραβz. An empty subgrid is associated to a zero density, while a full one corresponds

to a density value of 1. Consequently, to each subgrid we assign an effective cost σαβz given

by

σαβz = ρηαβz . (22)

The dependence of this function on the η parameter is shown in Fig.2

————————

Figure 2 near here

————————

A second partitioning of the six dimensional grid is then performed, taking into account

this effective cost for each subgrid. That is, the global cost
∑

αβz σαβz is evenly split over

processors #1 to #N-1, with the additional constraint that no subgrid extends over two

processors. This latter requirement is only used for simplifying the implementation of the

scheme. It was found that a low value of the η parameter, η ∼ 0.2, leads to a better load

balancing of step (ii).

B. Acting the Hamiltonian Operator

The scheme, as presented in Sec.IID, consists in acting succesively the four terms of the

operator (Eq. 15). In order to decide if all terms have to be implemented in a parallel way,

Table I displays their relative CPU times in a sequential calculation. These times correspond

to a basis set size typically used in the calculations (0 ≤ j ≤ 10). It can be seen that for

J = 0 calculations only 1% of the CPU time is needed for acting the first three terms

TR+HAB+Hcc, while 99% is actually spent acting the potential term V. The reason stems

from the fact that acting V requires to reexpress the wavefunction on the six dimensional

grid as described in Sec. II C, while TR can be directly obtained in the initial representation

B(Γ)
sym and HAB +Hcc necessitate to switch to the closely related coupled angular basis set

Bcpl.

————————

Table I near here
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————————

The simplest way to implement a parallel version of the PSSH scheme consists in keeping

the evaluation of the TR + HAB + Hcc terms on processor #0, while devoting processors

#1 to #N-1 to the potential term V evaluation. The resulting structure, as illustrated in

Fig. 3, is the following :

————————

Figure 3 near here

————————

(a) the un vector, expressed in the compact, symmetry adapted basis set (Eq. 13), is

broadcasted to processors #1 to #N-1;

(b) each processor p (1 ≤ p ≤ N − 1) transforms the vector un to the grid representation

u(p)
n restricted to the actual subgrids (αβz) pertaining to this processor, as previously

assigned in step i); after applying the local potential V(p), the resulting vector V(p)u(p)
n

is transformed back to the symmetry adapted representation : → v(p)
n ;

simultaneously, processor #0 starts the evaluation of terms TR +HAB +Hcc :

un+1 := (TR +HAB +Hcc)un − αnun ; (23)

when this calculation is completed, processor #0 switches to a waiting mode for data

coming from any processor;

(c) as soon as completed, the v(p)
n vectors are sent to processor #0 which collects them in

the vector un+1 :

un+1 := un+1 + v(p)
n (1 ≤ p ≤ N − 1) . (24)

IV. PERFORMANCES AND DISCUSSION

Fig. 4 displays the evolution of the elapsed CPU time as a function of the total number

N of processors used. These calculations have been done on a Cray/T3E machine running

under the MPI protocol. Similar results, not shown here, have been obtained using PVM.

The number N of processors considered has been systematically doubled from N = 4 to

N = 128.

————————
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Figure 4 near here

————————

This figure displays the performances of the whole PSSH scheme, as well as that of the

grid definition step. On can first note that up to N = 32, the elapsed times decrease faster

than linearly with the number N of processors. The reason stems from the fact that only

N − 1 processors are actually used in the parallel calculations, processor #0 being assigned

the role of a driver. When going from N = 4 to N = 16 for example, there is a fivefold

increase in the number of processors in charge of the parallelized step. At larger values

of N , one can note that the grid definition step displays a better parallel efficiency. This

behavior results from the negligible amount of data transferred during this step. Conversely,

the whole set of of vectors {v(p)
n , p = 1 . . . N − 1} has to be sent to processor #0 once the

potential term V has been acted on the different processors. Using the built in procedure

Reduce did not show any significant improvement. This figure also shows that the grid

evaluation represents a minor part of the whole calculation, the reason being the simplicity

of the MCY potential[76] used in these tests. More intricate functions, such as the ASP

potentials of Stone and coworkers[77], would lead to a two order of magnitude increase in

CPU time for the grid evaluation step. One can consider that the global scheme displays an

excellent parallel efficiency up to 64 processors about.

As has been already mentioned, the PSSH scheme presented in this paper displays the

basic ingredients for many iterative methods used in Chemical Reaction Dynamics. Although

applied in this work to bound states calculations, the Lanczos algorithm can be applied to

photodissociation spectra[78]. Furthermore, in Fig. 1 the Lanzos scheme can be replaced by a

Chebychev propagator[46] control section in order to perform time dependent wavepacket[47]

or Filter Diagonalization[54, 55] calculations. Similarly, a GMRes[59] module would allow for

calculations of Cumulative Reaction Probabilities[60, 61] or of photodissociation spectra[62].

The versatility of the parallel scheme developed in this work should find many applications

in the study of molecular processes.
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FIG. 1. Simplified flow chart of the PSSH code : (i) determination of the effective grid {ϕg ×χA
q ×

χB
s × θAα × θBβ ×Rz} to be used later on; (ii) propagation of the initial vector u0.
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TABLE I. CPU times given in seconds for an IBM Risc 6000/397 computer.

Term J=0 J=1

TR ≤ 0.01 0.02

HAB +Hcc 0.21 1.40

V 18.9 61.0
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FIG. 2. Effective cost σαβz = ρ
η
αβz associated to a subgrid (αβz) as a function of the η parameter.

ρ represents the density of points kept in the calculation.
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FIG. 3. Parallel implementation of the propagation step (ii) :

(a) processor #0 : broadcast of the un vector; processors #1 to #N-1 : waiting for data.

(b) processor #0 : calculation of the local contribution (TR +HAB +Hcc)un − αnun to vector

un+1; processors #1 to #N-1 : after transforming the un vector to the locally defined grid, →

u
(p)
n , and applying the potential term, the resulting vector V(p).u

(p)
n is transformed to the initial

representation → v
(p)
n .

(c) processors #1 to #N-1 : sending the partial results v
(p)
n to processor #0 for summing up in

un+1.

1 10 100
Processor Number N

1

10

100

T
im

e 
(s

)

Grid calculation
PSSH calculation

FIG. 4. Evolution of the elapsed CPU time as a function of the number N of processors for both

the global scheme (PSSH) and the grid definition (Grid).
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Lanczos Algorithm

Control Section
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(c)
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