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Six-dimensional calculation of the vibrational spectrum
of the HFCO molecule

Alexandra Viela) and Claude Leforestierb)

Laboratoire de Structure et Dynamique des Syste`mes Mole´culaires et Solides (UMR 5636),
UniversitéMontpellier 2, Bât. 15 cc 014, 34095 Montpellier Cedex 5, France

~Received 10 August 1999; accepted 21 October 1999!

Bound energy levels, up to 5000 cm21 of internal excitation, have been computed for the HFCO
molecule. An exact six-dimensional~6D! quantum Hamiltonian, expressed in terms of Jacobi
vectors, has been used. It is shown to lead to a compact form of the kinetic energy operator, easy
to implement in the calculations. The primary discrete variable representation~DVR! basis set has
been contracted by means of the adiabatic pseudospectral method of Friesneret al. @J. Chem. Phys.
99, 324 ~1993!#. Two different, global, potential energy surfaces have been considered. The
calculated energy levels have been successfully assigned by an automatic labeling procedure. These
levels have been compared to the experimental results, providing a test of the accuracy of the
existing surfaces. ©2000 American Institute of Physics.@S0021-9606~00!01503-8#
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I. INTRODUCTION

The spectroscopy of the methyl fluoride molecule HFC
has been the subject of intensive experimental studies
ducted by Moore and co-workers.1,2 This molecule is of par-
ticular interest as it displays a relatively low dissociati
threshold, circa 14 000 cm21, as compared to formaldehyd
~;28 000 cm21!. Using stimulated emission pumping~SEP!
experiments, they have been able to observe and charact
energy levels~bright states! in the range 13 000–23 00
cm21, which correspond to metastable states displaying p
dissociation widths. The equilibrium geometry of theS1 ex-
cited electronic state reached by the pump laser strongly
vors highly excited states in the out-of-plane H bend
mode (n6), up to 22 quanta, during the dump step. Mod
ately excited states of the CO stretching mode (n2) were also
observed.

The main experimental finding concerns the increas
decoupling, with respect to internal energy, of then6 mode
from the other modes, and in particular from those leading
dissociation into HF1CO. As a consequence, Moore an
co-workers were able to fit the~bright! energy levels to a
spectroscopical Hamiltonian involving only then2 and n6

modes,

Esp~n2 ,n6!5v2~n21 1
2!1v6~n61 1

2!1x22~n21 1
2!

2

1x26~n21 1
2!~n61 1

2!1x66~n61 1
2!

2

1y222~n21 1
2!

31¯ . ~1!

These studies have stimulated the determination of twoab
initio global six-dimensional potential energy surfaces,
cluding the dissociation pathway, by Wei and Wyatt3 and by
Yamamoto and Kato.4

a!Present address: Department of Chemistry, University of California, B
keley, CA 94720-1460; electronic mail: viel@lsd.univ-montp2.fr

b!Electronic mail: lefores@lsd.univ-montp2.fr
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In this paper, we report the exact quantum calculation
the lowest 150 vibrational states of the HFCO molecule. T
calculation and analysis of highly excited states of suc
tetra-atomic molecule still represents a challenging task.
cause the number of internal coordinates doubles as c
pared to triatomics, the size of the basis set roughly squ
as a consequence. Such a huge increase in the dimensi
the quantum system under study implies the revisiting of
successive steps entering the calculation.

The first point concerns the choice of the coordinate s
tem used in order to represent the molecule. If valence co
dinates appear to be a natural choice due to their phys
meaning, they often lead to an intricate expression of
associated kinetic operator.5 Furthermore, this choice shoul
be guided by their closest resemblance to the actual mot
which take place in the energy regime considered. At l
energy, it corresponds to curvilinear normal coordinates
fined along theG matrix formulation of Wilson.6 At high
energy, especially close to the dissociation thresho
collision-type coordinates might lead to the best descripti
For that reason, we have chosen to use Jacobi coordinat
represent the HFCO molecule, as our final goal consists
the study of the dissociative states observed experiment

The second direction along which we have worked
this study concerns the contraction of the molecular basis
Because of the very large bases to be handled, one ha
resort to iterative methods in order to extract the energy l
els of interest. It is well known that the convergence of su
methods directly depends on the width of the spectrum a
ciated with the Hamiltonian operator.7 The sequential adia
batic reduction ~SAR! method of Bac˘ić and Light has
emerged as an optimal contraction scheme for the stud
triatomic molecules8,9 and of Van der Waals complexes suc
as ~HCl!2.

10 In its present formulation it, however, require
the ultimate storing of a full matrix whose dimension corr
sponds to the final contracted basis. We have used ins
the related adiabatic pseudospectral~APS! method of

r-
2 © 2000 American Institute of Physics
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1213J. Chem. Phys., Vol. 112, No. 3, 15 January 2000 Vibrational spectrum of HFCO
Friesneret al.11 specifically designed in order to avoid th
bottleneck. As a counterpart, one has to accept losing s
of the contraction efficiency of the SAR method. Howev
for the system considered here, which has been show
display a preferentially highly excited mode (n6), the APS
method can be guided in order to tune the contract
scheme accordingly.

The last point we have particularly considered in th
work deals with the assignment of energy levels coming
of the calculations. In the case of triatomic molecules, s
an assignment is often made by visual inspection of the w
function plots. Such a procedure can hardly be envisio
when dealing with a tetra-atomic molecule due to the num
of coordinates. In the present study, we have used and
proved an automatic labeling procedure which has been
viously proposed by one of us.12

The paper is organized as follows. Section II deals w
the description of the HFCO molecular system, that is
coordinates used, the resulting Hamiltonian operator and
zero order approximation, and finally the two potential e
ergy surfaces which have been considered. The primary
lecular basis set and its contraction by means of the adiab
pseudospectral method11 are described in Sec. III. Section IV
presents the automatic procedure used for analyzing the
ergy levels and the resulting labels for the lowest 150 sta
Finally, Sec. V concludes.

II. DESCRIPTION OF THE HFCO MOLECULAR
SYSTEM

In this section, we first present the Jacobi coordina
which were used to describe the HFCO molecular syst
We then give the resulting kinetic energy operator, in a co
pact algebraic form and in the associated differential fo
From this last expression, we also define a zero-order
proximation to be used for analysis later on. Finally, the t
potential energy surfaces available for the HFCO molec
are briefly presented.

A. Jacobi coordinates

In a space-fixed~SF! frame attached to the center o
mass of the molecule, three Jacobi vectors are neede
order to describe its shape and its orientation. We chose t
vectorsOC, gF, andGH, as represented in Fig. 1, whereg
and G correspond to the OC and OCF centers of mass,
spectively. For sake of simplicity, these vectors will be d
notedR3 ~[OC!, R2 ~[gF!, andR1 ~[GH!. This choice of
Jacobi vectors leads to a good correspondence with the
lence coordinates as shown now.

The body-fixed~BF! frame has been defined by takin
the z axis parallel to theR3 vector, and choosing theR2

vector to lay in the upperxGzhalf-plane (x.0). The result-
ing six internal Jacobi coordinates correspond to the th
vectors’ lengthsR1 , R2 , andR3 , the polar anglesu2 asso-
ciated with R2 , and the polaru1 and azimuthalw angles
associated withR1 .
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B. Algebraic kinetic energy operator

In order to obtain the kinetic energy operatorT in a very
compact form we used the Gattiet al. vector formalism,13

which results in the expression

T5
2\2

2m1

]2

]R1
22

\2

2m2

]2

]R2
22

\2

2m3

]2

]R3
2

1S 1

2m1R1
2 1

1

2m3R3
2DL1

†
•L11S 1

2m2R2
2 1

1

2m3R3
2DL2

†

•L21
1

2m3R3
2 ~L11L221L12L21!1

1

m3R3
2 L1zL2z

1
1

2m3R3
2 J†

•J2
1

m3R3
2 JzJz2

1

2m3R3
2 ~J1@L121L22#

1J2@L111L21# !. ~2!

In the above formula,L i stands for the angular momentu
associated with theRi vector, andJ is the total angular mo-
mentum.L i 6 and J6 correspond to the associated ladd
operators. The volume elementdv is given by dv
5dR1dR2dR3 sinu1du1 sinu2du2dw, and the reduced masse
m’s have values given by

m35
mC•mO

mC1mO
, ~3!

m25
mF•~mC1mO!

mC1mO1mF
, ~4!

m15
mH•~mC1mO1mF!

mC1mO1mF1mH
. ~5!

The total angular basis set which is naturally associa
with this operator reads as

$P
l 1

m1~cosu1!P
l 2

V2m2~cosu2!eim1wDMV
J* ~v,b,g!%, ~6!

and leads to a simple analytical representation. In the ab
expression,V corresponds to the projection of the total a

FIG. 1. Definition of the three Jacobi vectorsR1 , R2 , and R3 used to
describe the HFCO molecule.
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gular momentumJ onto thez BF axis, andDMV
J* stands for

the Wigner rotation function of the three Euler anglesa, b,
andg.

Although very compact, expression~2! cannot be di-
rectly used for a semirigid molecule such as HFCO. T
reason comes from the fact that basis set~6! is delocalized
over the whole angular configuration spaceu1P@0,p# ^ u2

P@0,p# ^ wP@0,2p#. As will be shown in the next section
e

only a small part~;3%! of this space is actually sampled fo
excitation energies up to the dissociation limit into CO1HF.
One then has to forgo this delocalized basis set and use
stead a basis restricted to the energetically allowed ang
space. This in turn implies switching to the differential for
of the kinetic operatorT, as described now.

Using the expressions of the angular momentum ope
tor L i in the BF frame,13,14 one ends up with the new form
restricted here to theJ50 case,
rrington

r

mal
TJ505
2\2

2m1

]2

]R1
22

\2

2m2

]2

]R2
22

\2

2m3

]2

]R3
22

\2

2 F 1

m1R1
2 1

1

m3R3
2GF 1

sinu1

]

]u1
sinu1

]

]u1
1

1

sin2 u1

]2

]w2G
2

\2

2 F 1

m2R2
2 1

1

m3R3
2GF 1

sinu2

]

]u2
sinu2

]

]u2
1

1

sin2 u2

]2

]w2G
2

\2

m3R3
2 H cosw

]

]u1

]

]u2
2Fcotu2

]

]u1
1cotu1

]

]u2
Gsinw

]

]wJ 1
\2

m3R3
2 @11cotu1 cotu2 cosw#

]2

]w2 . ~7!

The last two terms of this new expression are, however, not Hermitian when considered individually. As noted by Ca
and Bramley,15 this feature precludes using the discrete variable representation approximation16 to handle them. Following
their suggestion, these terms have been rewritten in an equivalent Hermitian form leading to the final expression foT,

TJ505
2\2

2m1

]2

]R1
22

\2

2m2

]2

]R2
22

\2

2m3

]2

]R3
22

\2

2 F 1

m1R1
2 1

1

m3R3
2GF 1

sinu1

]

]u1
sinu1

]

]u1
1

1

sin2 u1

]2

]w2G
2

\2

2 F 1

m2R2
2 1

1

m3R3
2GF 1

sinu2

]

]u2
sinu2

]

]u2
1

1

sin2 u2

]2

]w2G2
\2

m3R3
2 H 2

]2

]w22cotu1 cotu2Fcosw
]2

]w22sinw
]

]wG
2cotu2F ]

]u1
2

1

2
cotu1GFsinw

]

]w
1

1

2
coswG2cotu1F ]

]u2
1

1

2
cotu2GFsinw

]

]w
1

1

2
coswG

1coswF ]

]u1
1

1

2
cotu1GF ]

]u2
1

1

2
cotu2G1

1

4
cotu1 cotu2 coswJ . ~8!

C. Zero-order Hamiltonian operator

In order to perform the eigenstate analysis~Sec. IV!, a zero-order description will be needed. We resorted to a nor
mode approximation defined in the following way. Introducing the reduced coordinates

r i5Ri2Ri eq
,

t i5cosu i2cosu i eq
, ~9!

f 5w2weq,

and setting the variables appearing in Eq.~7! to their equilibrium values, one ends up with the harmonic approximation

H05(
i 51

3
2\2

2m i

]2

]r i
22

\2

2 F 1

m1R1eq

2 1
1

m3R3eq

2 GF ~12cos2 u1eq
!

]2

]t1
2 1

1

sin2 u1eq

]2

] f 2G
2

\2

2 F 1

m2R2eq

2 1
1

m3R3eq

2 GF ~12cos2 u2eq
!

]2

]t2
2 1

1

sin2 u2eq

]2

] f 2G2
\2

m3R3eq

2 sinu1eq
sinu2eq

cosweq

]

]t1

]

]t2

2
\2

m3R3eq

2 sinweqFcotu2eq

]

]t1
1cotu1eq

]

]t2
G ]

] f
1

\2

m3R3eq

2 @11cotu1eq
cotu2eq

cosweq#
]2

] f 2 1Vharm~r 1 ,r 2 ,r 3 ,t1 ,t2 , f !,

~10!
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associated with the volume element dt
5dr1 dr2 dr3 dt1 dt2 d f , and where Vharm(r 1 ,r 2 ,r 3 ,
t1 ,t2 , f ) corresponds to a quadratic expansion of the m
lecular potential around the equilibrium geometry.

Rewriting expression~10! under the general form

H052
\2

2 (
i j

Ti j

]2

]qi]qj
1

1

2 (
i j

Vi j qiqj , ~11!

one can then proceed along the WilsonG matrix
formulation,6 and define the normal modes$Qa% in terms of
the Jacobi coordinates

Qa5(
i

L iaqi , ~12!

where theL= matrix is obtained from the generalized eige
system

V= .L= 5l= T= 21.L= , ~13!

va5Ala. ~14!

D. Potential energy surfaces

Two, global, six-dimensional potential energy surfac
are available for the description of the HFCO molecule,

~i! usingab initio calculations at the MP4 level, Wei an
Wyatt3 have fitted a Simon–Parr–Finlan-type surfa
~WW! from 3855 geometries;

~ii ! similarly, using about 4000 geometries computed
the restricted Hartree–Fock~RHF!/MP2 level, Yama-
moto and Kato4 designed an analytical representati
~YK ! of the HFCO system, based on a partition of t
configuration space into three different~equilibrium,
transition state, and asymptotic! regions.

Both of these surfaces include the dissociation pathway
HF1CO.

Using the formulation introduced in Sec. II C abov
@Eqs. ~11! and ~13!#, we have computed the harmonic fr
quenciesv’s as given in Table I. Motions taking place i
normal modesn2 andn6 are depicted in Fig. 2.

TABLE I. Comparison of harmonic frequencies computed on the two
tential surfaces with experiments, values being given in cm21. The experi-
mental values reported here correspond to transition frequencies as
sured in the experiments. For each mode, an analysis in terms o
principal motion is given.

Normal mode Expt. frequenciesa WWb YKc

n1 ~CH stretch! 2981 3020 3141
n2 ~CO stretch! 1837 1808 1843
n3 ~CH bend! 1347 1389 1403
n4 ~CF stretch! 1065 1038 1074
n5 ~FCO bend! 662 631 670
n6 ~out-of-plane H bend! 1011 974 1038

aReference 2.
bReference 3.
cReference 4.
-

s

t

to

III. ADIABATIC CONTRACTION SCHEME

In this section, we first describe the different discre
variable representations16 which were used in the primary
~uncontracted! basis set. We then briefly recall the adiaba
pseudospectral~APS! method,11 and finally, we present its
application to the HFCO molecule.

A. Primary basis set

The primary basis set consists of the direct product o
DVR along each coordinate

$uR1a&uR2b&uR3c&uu1a&uu2b&uwg&%, ~15!

restricted to grid points where the potential energy is low
than some thresholdVmax,

V~R1a ,R2b ,R3c ,u1a ,u2b ,wg!<Vmax. ~16!

FIG. 2. Atomic displacements associated with normal modesn2 andn6 , the
molecule laying in thexz plane.

-

ea-
he



R

e
-
-
-

y

ed

–

a

er

n
e
te

ec
t
o

iss

nts
n-

n

t
-
, the

the
trix

ng
nd

rge

the

ely
e
an

s
s-

le,

rs in
ndre

o
r-

1216 J. Chem. Phys., Vol. 112, No. 3, 15 January 2000 A. Viel and C. Leforestier
For each radial coordinate, we used a sine based DV17

associated with a uniform grid

$Rp5R,1pDR, p51,...,N%, ~17!

such that

^RuRp&5 (
n51

N

Upn sin
np~R2R,!

~R.2R,!
, ~18!

Upn5A 2

N11
sin

np~Rp2R,!

~R.2R,!
, ~19!

K RpU2 ]2

]R2 URp8L 5 (
n51

N

UpnS np

R.2R,
D 2

Unp8 . ~20!

Similarly, the azimuthalw angle was described by a sin
based DVR$uwg&,g52Q,...,Q% associated with equidis
tant points,wg5p1gDw, distributed around the equilib
rium valuew05p. No periodic boundary condition was en
forced as thew50 and 2p values are not energeticall
accessible below dissociation. TheCs symmetry was taken
into account by further defining two symmetry adapt
DVR’s,

$uwg
1&5

1

A2~11d0g
!
$uwg&1uwḡ&%, g50,...,Q%, ~21!

$uwg
2&5

1

&
$uwg&2uwḡ&%, g51,...,Q%. ~22!

The polar anglesu1 andu2 were described by a Gauss
Legendre DVR16

$uu i&,i 51,...,L%, ~23!

i.e., corresponding to the abscissas of anL points Gauss–
Legendre quadrature

^uuu i&5 (
l 50

L21

Ui l P̄l ~cosu!, ~24!

Ui l 5Av i P̄l ~cosu i !, ~25!

^u i u2
1

sinu

]

]u
sinu

]

]u
uu i 8&5 (

l 50

L21

Ui l l ~ l 11!U l i 8 ,

~26!

wherev i represents the weight associated with abscissu i

and P̄l a normalized Legendre polynomial.
Most of the calculations described later on were p

formed using a potential energy thresholdVmax of 1.62 eV
for the definition of the primary grid. The resulting variatio
domain for the six coordinates is given in Table II for th
WW surface as an example. Keeping only the points loca
below this energy threshold results in nondirect productA8
and A9 grids of dimensions 595 000 and 515 000, resp
tively. The restriction of the angular space with respect
total energy can be seen in Table II. Roughly, about 1/36
the total angular space is sampled at energies below d
ciation threshold.
-

d

-
o
f
o-

Care must be taken when evaluating the matrix eleme
of kinetic angular terms in the DVR basis sets. Let us co
sider as an example the product

cotu2S ]

]u1
2

1

2
cotu1D S sinw

]

]w
1

1

2
cosw D ~27!

appearing in Eq.~8!. It corresponds to the product of a
Hermitian term cotu2 by two anti-Hermitian ones (]/]u1

2(1/2)cotu1) and (sinw]/]w1(1/2)cosw). Each of these las
two terms will be anti-Hermitian provided its different com
ponents are evaluated in the same basis set. Accordingly
two components sinw]/]w and (1/2)cosw are first evaluated
in the sine basis set, and their sum is then transformed to
DVR basis set by means of the associated collocation ma
U= .

As a benchmark which will be used later on for testi
the APS implementation, we computed the lowest 30 bou
states in the primary DVR basis sets. Due to the very la
size of these bases, we resorted to a Lanczos scheme,18

uun11&}~H2an!uun&2bnuun21&, ~28!

an5^unuHuun&, ~29!

bn115 1
2$^un11uHuun&1^unuHuun11&%. ~30!

These levels are to be compared to those obtained within
APS formulation in Table IV.

B. APS formulation

The APS method, initially proposed by Friesneret al.,11

has been used before for two tetra-atomic systems, nam
the 6D hydrogen peroxide H2O2

19 and the planar acetylen
C2H2.

20 We present below a general formulation which c
be applied to any tetra-atomic system.

Let us consider a molecule described by six variableq
5(q1 ,q2 ,...,q6), ordered by increasing adiabaticity, and a
sociated with the Hamiltonian operator

H5Tdiag1Toff1V~q1 ,q2 ,...,q6!, ~31!

Tdiag5 (
n51

N

f n~q!Tn
diag, ~32!

whereTdiag does not contain any cross derivative terms.

TABLE II. Variation domain and number of posts used for each variab
corresponding to an energy thresholdVmax of 1.62 eV. Values are given in
bohrs and radians for distances and angles, respectively. The numbe
parentheses refer to the dimensions of the underlying Gauss–Lege
quadratures used for the polar anglesu1 andu2 . These data correspond t
the WW surface~Ref. 3! but similar values were obtained for the YK su
face ~Ref. 4!.

Variable Variation domain Number of points

R1 @1.90, 4.10# 10
R2 @2.83, 4.51# 27
R3 @1.87, 2.85# 12
u1 @0.48, 1.54# 18~50!
u2 @0.26, 1.08# 22~80!
w @2.28, 4.00# 25
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TABLE III. Expansion of the normal modes in terms of the reduced Jacobi coordinates@Eqs.~12! and ~13!#.
These coefficients, calculated above for the YK surface, are very similar for the WW one.

Mode n1 n2 n3 n4 n5 n6

WW surface
Frequencies~cm21! 3020 1808 1389 1038 631 974

YK surface
Frequencies 3141 1843 1403 1074 670 1038

r 1 .023 .005 .001 .004 .003 .0
r 3 2.002 .009 .000 .000 .0 .0
t1 .0 .0 2.007 .001 .002 .0
r 2 .0 .0 2.001 .006 2.005 .0
t2 .001 .0 .001 2.002 2.002 .0
f .0 .0 .0 .0 .0 .012
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The total wave functionC(q) is expanded onto the se
quential adiabatic basis set

C~q1 ,...,q6!5 (
n1 ...n6

cn1 ...n6
Fn1

~q1 ;q2 ,...,q6!

3Fn2n1
~q2 ;q3 ,...,q6!3¯3Fn6¯n1

~q6!,

~33!

where

step 1

$ f 1~q!T1
diag1V~q!%Fn1

~q1 ;q2 ,...,q6!

5«n1
~q2 ...q6!Fn1

~q1 ;q2 ,...,q6!, ~34!

step 2

$^n1u f 2~q!un1&T2
diag

1«n1
~q2 ,...,q6!%Fn2n1

~q2 ;q3 ,...,q6!

5«n2n1
~q3 ...q6!Fn2n1

~q2 ;q3 ,...,q6! ~35!

... ............................

step 6

$^n5¯n1u f 5~q!un5¯n1&T6
diag

1«n5¯n1
~q6!%Fn6¯n1

~q6!

5«n6¯n1
Fn6¯n1

~q6!. ~36!

In practice, these different functions are computed at
nodes of a six-dimensional grid. In the following, we w
use the lettersabcxyzas indices for the grid points associat
with variablesq1 ,...,q6 , respectively. At each step, the ne
adiabatic basis set is truncated according to some en
criterion. For example, at step 3, only th
Fn3n2n1

(q3 ;q4 ...q6) states satisfying the inequality

«n3n2n1
~q4x ,q5y ,q6z!2min

cxyz
$«n2n1

~q3c ,q4x ,q5y ,q6z!%<Ecut

~37!

will be retained.
e

gy

Once the adiabatic basis set@Eq. ~33!# has been built, the
Hamiltonian operator is acted ontoC(q) in the following
way. The wave function is sequentially expressed onto
six-dimensional grid

cn1¯n5z5(
n6

Rzn6

~n5¯n1!cn1¯n6
, ~38!

cn1¯n4yz5(
n5

Ryn5

~n4¯n1z!cn1¯n5z , ~39!

...... .......................... ~40!

ca¯yz5(
n1

Ran1

~b...z!cn1b¯z . ~41!

The above collocation matricesR= correspond to the eigen
vector matrices expressing the adiabatic states onto the
For step 3 mentioned before, it reads as

uFn3n2n1
~q4xq5yq6z!&5(

c
Rcn3

~n2n1xyz!uq3c&. ~42!

Once the wave function is finally transformed to th
$cabcxyz% representation, one applies all the terms of t
Hamiltonian operator, such as for example

f 2~q!
]2

]q2
2 C~q!U

abcxyz

5 f 2~q1a¯q6z!(
b8

K q2bU ]2

]q2
2Uq2b8L cab8cxyz. ~43!

The cumulated result is then transformed back to
$cn1 ...n6

% contracted representation by means of the tra
posed collocations matricesR= t.

It is clear from the above formulation that the APS ba
set is essentially used as a filter. The Hamiltonian operato
actually acted in the primary grid representation, as in
straight DVR approach. But the result is filtered when tra
forming back to the adiabatic basis set, removing the h
energy components.

C. Application to HFCO

The natural way to define the~increasing! adiabaticity
hierarchy consists of considering normal modes by decre
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ing frequencies. However, as our preconditioning scheme
lies on Jacobi coordinates rather than normal modes,
have to make the connection between these two sets o
ordinates. Table III gives the expression of the normal mo
in terms of reduced Jacobi coordinates@Eq. ~9!#. The relative
amplitudes allow us to make the following assignments:n1

→R1 , n2→R3 ,n3→u1 ,n4→R2 ,n5→u2 ,n6→w. We
choose to define the adiabaticity orderingR1,R3,u1,R2

,u2,w as then6 mode, associated with thew variable, was
shown to be strongly decoupled at high energy.

In order to test the APS formulation as presented abo
we performed a series of calculations ofA9 levels on the
WW surface, in which the energy cutoffEcut @Eq. ~37!# has
been systematically increased. In each calculation, the
mensionNAPS of the APS basis set is defined as the num
of (n1n2n3n4n5n6) sextets@Eq. ~33!# finally retained at the
end of the preconditioning procedure. These results are c
pared in Table IV to the Lanczos calculations performed
the primary DVR basis set, as described in Sec. III A. O
can first note that, for the states presented in this tabl
similar accuracy is achieved for cutoff values of 1.7 eV
greater. This accuracy ranges from better than 1 cm21 for the
lowest states, to a few wave numbers for the 30thA9 state. In
the following, we used an energy cutoff value of 1.9 eV.

IV. RESULTS

In this section, we first present the automatic label
procedure which was used. The resulting energies and la
as computed from the two potential surfaces, are then c
pared to the experimentally assigned energy levels.

TABLE IV. Convergence of the energy levels~in cm21! with respect to the
cutoff Ecut used during the construction of the APS basis set.NAPS indicates
the size of the basis,EAPS, andDEAPS the resulting energy and excitatio
energy, respectively.EDVR makes reference to values obtained using
same primitive DVR basis set by means of a Lanczos scheme.uDEAPS2
.DEDVRu gives the APS error on the excitation energy.

Ecut NAPS EAPS DEAPS EDVR ugDEAPS2DEDVRu

0.9 202 5391.1
1.3 1048 5381.1

E0 1.7 3634 5380.2
1.9 5998 5380.1
2.1 9446 5380.1

5379.6
0.9 202 6412.7 1021.6 11.49
1.3 1048 6393.3 1012.2 2.00

E2 1.7 3634 6390.9 1010.7 .54
1.9 5998 6390.7 1010.6 .44
2.1 9446 6390.6 1010.5 .40

6389.7
0.9 202 6791.5 1400.4 22.55

E4 1.3 1048 6762.6 1381.5 3.60
1.7 3634 6758.9 1378.7 .85
1.9 5998 6758.7 1378.6 .71
2.1 9446 6758.6 1378.5 .64

6757.4
1.7 3634 8639.8 3259.6 4.3

E30 1.9 5998 8638.4 3258.3 3.0
2.1 9446 8638.0 3257.9 2.6

8634.9
e-
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A. Automatic labeling procedure

We used the method initially proposed by Menou a
Leforestier in their study of the HCN molecule,12 and im-
proved it in order to handle the increased complexity o
tetra-atomic molecule. Starting from the dispersion relat
associated with the harmonic oscillator

^fnuQ22Q̄2ufn&}~n1 1
2!, ~44!

one generates an initial guessv5(v1 ,v2 ,...,v6) from the
similar relations

^CNuQa
22Q̄a

2 uCN&5Ka
0~va1 1

2!, ~45!

Ka
052^C0uQa

22Q̄a
2 uC0&. ~46!

In the above expression,CN stands for an eigenstate, andQa

corresponds to a normal mode@Eqs. ~12! and ~13!#. Due to
the anharmonicity and intermode couplings, the labelsv are
no longer integers, but take real values. In order to match
setv to some set of labelsn5(n1 ,n2 ,...,n6), two criteria are
used:

~i! the first one consists of comparing the energyEN with
those of levels in a waiting list. This list is initially
composed of the six states with a single quantum
excitation, and is updated each time a new levelEN

has been assigned. The energies of the states in
waiting list are computed from the spectroscopic
Hamiltonian,

Esp~n!5(
a

va~na1 1
2!1 (

a<b
xab~na1 1

2!~nb1 1
2!

1 (
a<b<g

yabg~na1 1
2!~nb1 1

2!~ng1 1
2!. ~47!

In the above expression, only the frequenciesv’s are
nonzero at the beginning of the labeling procedu
these values being taken as the normal frequenc
Each time a new level is assigned, all thev’s, x’s and
y’s parameters are updated by means of a least-sq
fit over all the already assigned levels. Waiting sta
with energies too far from the energyEN are not con-
sidered as candidates.

~ii ! the second criterion is a similarity factor between t
set v and each setn of the waiting list, defined as
follows:

)
a

va
21/2exp@2~va2na!2#. ~48!

This term is somewhat similar to a Franck–Cond
factor between the two statesuv& and un&.

These two criteria are then combined in a single fact

h5exp$2suEN2Esp~n!u%)
a

va
21/2exp@2~va2na!2#,

~49!

wheres is a constant to be adjusted~a value of 1022 cm11

has been used in our fit!. Very often, the sole energy com
parison between the waiting states and the level under s
suffices to assign the label, as the first example shown
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Table V. The second example of the table corresponds
case where the energy criterion does not lead to the r
labels. Theh factor @Eq. ~49!# allows one to single out the
second state of the waiting list as the best candidate
should be noted from this last example that the setn can be
far from v. The main reasons come from anharmonicity a
intermode couplings.

B. Calculated energy levels

The APS formulation is basically designed to be us
within an iterative scheme such as the Lanczos or the fi
diagonalization method.21 The basic operation consists o
acting the Hamiltonian operatorH on a wave function ex-
pressed in the APS basis set@Eq. ~33!#. In the study pre-
sented here, we were essentially interested in the low-ly
levels in order to compare them to experimental results.
simplicity of the calculations, we chose to directly gener
the Hamiltonian matrices~of A8 andA9 symmetries! by ap-
plying H onto each element of the APS basis sets. The
sulting matrices have been diagonalized by a direct met
in order to obtain the 100 lowest states of each symme
Previous tests~see Table IV! have shown that most of th
excitation energies should be converged within a few w
numbers for these levels.

Obtaining theA8 andA9 levels as coming out from two
different calculations renders the assignment easier. AsA8
and A9 states correspond to an even and odd numbe
quanta in then6 mode, respectively, this feature is used wh
screening the waiting list. It is important to remark thatA8
andA9 sets should be labeled at the same time: the spec
scopical Hamiltonian, which is used during the labeling p
cedure, can only be fitted if the two symmetries are hand
together.

The lowest 150 energy levels have all been successf
labeled for the two surfaces. At the end of the fitting proc
dure, standard deviations between the calculated levels

TABLE V. Examples of screening of the waiting list during the labelin
procedure. The first example corresponds to a case where the energyEN of
the state to be assigned exactly matches the predicted valueEsp(n) of one of
the states in the waiting list. The mismatch in energy of the second exa
is corrected for by theh factor.

EN ~cm21! v Esp(n) n h

8360.5 .1 .0 .9 .1 .7 1.5
→ 8360.5 0 0 1 0 1 2 .34 1029

8384.0 0 0 2 0 2 0 .90 10211

8403.7 1 0 0 1 0 0 .10 10211

8413.3 0 0 1 2 1 0 .17 10211

8435.6 0 1 0 1 2 0 .16 10212

8453.5 0 0 0 4 0 0 .15 10213

8483.7 0 0 3 0 0 0 .11 10212

8716.8 .1 .5 .2 .2 .5 1.4
8718.5 0 0 1 1 0 2 .64 10210

→ 8727.6 0 1 0 0 1 2 .17 1029

8757.3 1 0 1 0 0 0 .71 10211

8765.7 0 0 2 1 1 0 .27 10211

8803.9 0 1 1 0 2 0 .25 10211

8810.4 0 0 1 3 0 0 .39 10212

8823.1 0 1 0 2 1 0 .14 10211

8835.7 0 0 0 0 7 0 .17 10213
a
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the associated spectroscopical Hamiltonian energies@Eq.
~47!# displayed values of 1.85 and 1.18 cm21 for the WW
and YK surfaces, respectively. These deviations constitute
indicator of the accuracy of the assignment procedure. Ta
VI presents a comparison of the assigned experime
levels22 with the calculated ones.

From this table, one can see that the WW surface te
to underestimate then2 , n4 , n5 , andn6 frequencies, while
the n1 and n3 ones are overestimated. Then1 frequency is
pretty well described. By comparison to experimental resu
this surface leads to a standard deviation of 92 cm21.

Concerning the YK surface, then2 , n4 , andn5 frequen-
cies are slightly underestimated, then6 slightly overesti-
mated, while then1 andn3 are more strongly overestimated
The corresponding standard deviation displays a value o
cm21.

V. DISCUSSION

In this study, we have presented an exact quantum
dimensional calculation of the energy levels of the HFC
molecule. The choice of Jacobi vectors to describe the m
ecule has been shown to lead to a compact form of
Hamiltonian operator. Although such a formulation mig
not be optimum for the low-energy regime considered so
it is totally general and applies as well above dissociat
threshold. In that latter situation, other Jacobi vectors hav
be redefined, but the Hamiltonian operator keeps exactly
same expression: only the reduced massesm’s will change
according to this new definition.

le

TABLE VI. Comparison of experimental levels~in cm21! with those ob-
tained from the YK and WW surfaces. All the assigned experimental lev
are reported in this table. The lowest 150 levels have been compute
each surface. Standard deviations root-mean-square~rms! between the ex-
perimental and calculated levels are given at the bottom of the table.

Expt.a YK Number WW n1 n2 n3 n4 n5 n6

662.6 659.4 2 626.4 0 0 0 0 1 0
1011.2 1020.5 3 968.8 0 0 0 0 0 1
1064.9 1051.5 4 1017.8 0 0 0 1 0 0
1324.1 1317.7 5 1255.1 0 0 0 0 2 0
1342.3 1372.2 6 1371.1 0 0 1 0 0 0
1719.3 1704.6 8 1639.5 0 0 0 1 1 0
1836.8 1827.9 9 1770.5 0 1 0 0 0 0
2115.6 2090.8 14 2029.2 0 0 0 2 0 0
2412.0 2418.3 18 2376.1 0 0 1 1 0 0
2494.2 2484.0 19 2393.4 0 1 0 0 1 0
2841.0 2843.5 26 2727.5 0 1 0 0 0 1
2895.0 2876.1 27 2787.1 0 1 0 1 0 0
2981.2 3039.2 30 2974.4 1 0 0 0 0 0
3150.6 3139.4 37 3016.2 0 1 0 0 2 0
3652.8 3648.1 50 3526.7 0 2 0 0 0 0
3838.1 3855.1 63 3686.9 0 1 0 0 0 2
4302.9 4304.3 88 4138.3 0 2 0 0 1 0
4307.5 4403.1 97 4335.9 1 0 1 0 0 0
4493.9 4458.8 103 4323.5 0 0 1 1 0 2
4653.1 4662.6 112 4474.4 0 2 0 0 0 1
4705.2 4698.9 117 4546.4 0 2 0 1 0 0
4817.6 4865.7 135 4649.9 0 1 0 0 0 3
4955.0 4960.4 143 4758.8 0 2 0 0 2 0
rms 28 92

aReference 22.
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An alternative approach, which has not been conside
in this work, would consist of reframing the calculations
terms of the curvilinear normal modes introduced in S
III C. Such a set of coordinates would include in its definiti
part of the intermode couplings, kinetic as well as potent
In the low-energy regime, the associated normal basis
would constitute a quasioptimum description. This basis
could be even further improved by means of a self-consis
field ~SCF! type preconditioning.23 As the zero-order Hamil-
tonian would correspond more closely to the exact o
smaller bases should result. Work along this direction is
progress.

The adiabatic pseudospectral method represents a
set contraction procedure aimed at handling systems wi
large number of variables. Although related to the sequen
adiabatic reduction method of Bacˇić and Light,8,9 it differs
from the latter in two main aspects:

~i! at each reduction step, only the diagonal nonadiab
correction terms are considered; while this feature
pedes the contraction efficiency, it renders the bo
keeping task much easier.

~ii ! as a consequence, the off-diagonal contribution ha
be retrieved when acting the exact Hamiltonian ope
tor on a wave function; this calculation is made pa
ticularly efficient by using a pseudospectral schem
associated with the contracted basis set.

The APS method can be seen as a tradeoff between
highly optimized SAR approach, which would be difficult
implement in a six-dimensional problem such as HFCO, a
a crude straight DVR description. It shares with the lat
approach the feature to basically be a direct scheme: its
plication domain encompasses all iterative schemes w
require the repetitive action of the Hamiltonian operator
some initial wave function. In particular, it is best suited to
filter diagonalization approach21 as a way to compute th
highly excited states of tetra-atomic molecules.

The contraction scheme underlying the APS method
lows it to be guided during the construction of the basis s
In particular, it is possible to retain states with only a fe
quanta in some given modes, while allowing more quanta
some other modes. Such a possibility could be exploited
the case of HFCO, due to experimental evidence of str
localization of energy in then6 mode.

This study has also shown that energy levels of a te
atomic molecule can be successfully labeled by means
d
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fully automatic procedure. The key point in this method
the progressive fitting of a spectroscopical Hamiltonian d
ing the labeling process. The resulting very small stand
deviation between calculated and predicted energy le
gives confidence for extrapolating this Hamiltonian beyo
the calculated levels, if necessary.

Finally, the calculations presented here serve as a te
the two HFCO potential energy surfaces,3,4 at least in the
low-energy regime. The study presented so far has gi
some information concerning the anharmonicities and in
mode couplings, i.e., beyond the normal mode approxim
tion. Building such a surface is a tour de force, as the bo
molecule, the transition state, and the outgoing products h
to be described altogether. The comparison to experime
levels can be used for refining the existing surfaces.
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