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Six-dimensional calculation of the vibrational spectrum
of the HFCO molecule

Alexandra Viel® and Claude Leforestier®
Laboratoire de Structure et Dynamique des Syste Moleulaires et Solides (UMR 5636),
UniversiteMontpellier 2, Ba. 15 cc 014, 34095 Montpellier Cedex 5, France

(Received 10 August 1999; accepted 21 October 1999

Bound energy levels, up to 5000 cfof internal excitation, have been computed for the HFCO
molecule. An exact six-dimension@&D) quantum Hamiltonian, expressed in terms of Jacobi
vectors, has been used. It is shown to lead to a compact form of the kinetic energy operator, easy
to implement in the calculations. The primary discrete variable represen{8idR) basis set has

been contracted by means of the adiabatic pseudospectral method of Feieshgf. Chem. Phys.

99, 324 (1993]. Two different, global, potential energy surfaces have been considered. The
calculated energy levels have been successfully assigned by an automatic labeling procedure. These
levels have been compared to the experimental results, providing a test of the accuracy of the
existing surfaces. €000 American Institute of Physid$$0021-96060)01503-§

I. INTRODUCTION In this paper, we report the exact quantum calculation of
the lowest 150 vibrational states of the HFCO molecule. The
calculation and analysis of highly excited states of such a
Batra-atomic molecule still represents a challenging task. Be-
cause the number of internal coordinates doubles as com-
threshold, circa 14 000 ci, as compared to formaldehyde pared to triatomics, the size of th? basis S‘?t rough_ly squares
as a consequence. Such a huge increase in the dimension of

(~28000 cm'Y). Using stimulated emission pumpit§EP o o
experiments, they have been able to observe and characteritzhee quantum system under study implies the revisiting of the

energy levels(bright statep in the range 13 000-23 000 succ_:rehss?(etstepstenterlng ﬂ:ﬁ carl]cqlatlo:t.h dinat
cm %, which correspond to metastable states displaying pre- ed|r_s pc:jm concerns the ﬁ 0|ce|o Ie tl:foorl inate sys-
dissociation widths. The equilibrium geometry of t8gex- ~ ©M used in order to represent the molecule. If valence coor-

cited electronic state reached by the pump laser strongly flinates appear to be a natural choice due to their physical
vors highly excited states in the out-of-plane H bendingmean'”g' they often lead to an intricate expression of the
mode (v), up to 22 quanta, during the dump step. Moder-associated kinetic operatoFurthermore, this choice should

ately excited states of the CO stretching modg) (were also be guided by their closest resemblance to the actual motions

observed. which take place in the energy regime considered. At low
The main experimental finding concerns the increasingnergy. it corresponds to curvilinear normal coordinates de-

decoupling, with respect to internal energy, of themode  fined along theG matrix formulation of Wilsorf. At high

from the other modes, and in particular from those leading t¢nergy, especially close to the dissociation threshold,

dissociation into HF-CO. As a consequence, Moore and collision-type coordinates might lead to the best description.

co-workers were able to fit thébright) energy levels to a For that reason, we have chosen to use Jacobi coordinates to

spectroscopical Hamiltonian involving only the, and vg represent the HFCO molecule, as our final goal consists of

The spectroscopy of the methyl fluoride molecule HFCO
has been the subject of intensive experimental studies co
ducted by Moore and co-worket£.This molecule is of par-
ticular interest as it displays a relatively low dissociation

modes, the study of the dissociative states observed experimentally.
The second direction along which we have worked in
Esp(N2,N6) = wo(Na+ 3) + wg(Ng+ 5) + Xoo Np+ 3)? this study concerns the contraction of the molecular basis set.

Because of the very large bases to be handled, one has to
resort to iterative methods in order to extract the energy lev-
FYood Mot 3)3 40 (1) elsof intergst. It is well known that _the convergence of such
methods directly depends on the width of the spectrum asso-

These studies have stimulated the determination of awo ciated with the Hamiltonian operatbThe sequential adia-
initio global six-dimensional potential energy surfaces, in-batic reduction(SAR) method of Ba and Light has

cluding the dissociation pathway, by Wei and Wyatnd by emerge_d as an optimal contraction scheme for the study of
Yamamoto and Katb. triatomic molecule$® and of Van der Waals complexes such
as (HCI),.1° In its present formulation it, however, requires

dpresent address: Department of Chemistry, University of California, Ber-the ultimate Stof'ng of a full matrix \.Nhose dimension C.Orre_

keley, CA 94720-1460; electronic mail: viel@Isd.univ-montp2.fr sponds to the final contracted basis. We have used instead

DElectronic mail: lefores@Isd.univ-montp2.fr the related adiabatic pseudospecti@ddPS) method of

1 1 1,2
+Xo6(N2+ 3)(Ng+ 3) + Xge( N6+ 2)
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Friesneret al! specifically designed in order to avoid this F
bottleneck. As a counterpart, one has to accept losing some o
of the contraction efficiency of the SAR method. However,
for the system considered here, which has been shown to
display a preferentially highly excited modeg), the APS
method can be guided in order to tune the contraction
scheme accordingly.

The last point we have particularly considered in this
work deals with the assignment of energy levels coming out
of the calculations. In the case of triatomic molecules, such e
an assignment is often made by visual inspection of the wave 0
function plots. Such a procedure can hardly be envisioned
when dealing with a tetra-atomic molecule due to the number
of coordinates. In the present study, we have used and im-
proved an automatic labeling procedure which has been pre- H
viously proposed by one of d$. o )

The paper is organized as follows. Section Il deals withE'G' 1. Definition of the three Jacobi vectoRy, R, andR; used to

o . escribe the HFCO molecule.

the description of the HFCO molecular system, that is the
coordinates used, the resulting Hamiltonian operator and its
zero order approximation, and finally the two potential en-
ergy surfaces which have been considered. The primary md3. Algebraic kinetic energy operator
lecular basis set and its contraction by means of the adiabatic |, order to obtain the kinetic energy operalom a very
pseudospectral methtidare described in Sec. IlI. Section IV compact form we used the Gatt al. vector formalisnt?
presents the automatic procedure used for analyzing the e{yhich results in the expression
ergy levels and the resulting labels for the lowest 150 states.

Finally, Sec. V concludes. _ A A
2u1 R 2, IRG  2p3 IRS
+(l+ LTL+(1+ 1)LT
2uiRE 2uaR5) Tt T\ 2u0RE T 2u5R5) T
Il. DESCRIPTION OF THE HFCO MOLECULAR
SYSTEM 1 1
‘Lot W(L1+L27+L17L2+)+TL1zL2z
M3R3 M3t
In this section, we first present the Jacobi coordinates 1
which were used to describe the HFCO molecular system. 5J7.J— 5J,d,— 5(J[Li_+L,_]
We then give the resulting kinetic energy operator, in a com- m3R3 H3R3 2u3R3
pact algebraic form and in the associated differential form. +3 [Ly 4L, ). @)

From this last expression, we also define a zero-order ap-
proximation to be used for analysis later on. Finally, the twoln the above formulal; stands for the angular momentum

potential energy surfaces available for the HFCO moleculéssociated with th&; vector, and) is the total angular mo-
are briefly presented. mentum.L;. and J. correspond to the associated ladder

operators. The volume elemerdv is given by dv

=dR;dR,dR; sin 6,d#; sin 6,d6,de, and the reduced masses
In a space-fixedSPH frame attached to the center of u's have values given by

mass of the molecule, three Jacobi vectors are needed in

A. Jacobi coordinates

order to describe its shape and its orientation. We chose three M3:M, 3)
vectorsOC, gF, andGH, as represented in Fig. 1, whege Mc+ Mo

and G correspond to the OC and OCF centers of mass, re- Me- (Me+Mo)

spectively. For sake of simplicity, these vectors will be de- Mzzm, (4)
notedR; (=0C), R, (=gF), andR; (=GH). This choice of

Jacobi vectors leads to a good correspondence with the va- My (Me+ Mg+ mg)

lence coordinates as shown now. H1= M+ Mo+ Me+my ®

The body-fixed(BF) frame has been defined by taking
the z axis parallel to theR5 vector, and choosing thi,
vector to lay in the uppexGzhalf-plane &>0). The result-
ing six internal Jacobi coordinates correspond to the three {p/ml(cosgl) pf/l—mz(cosgz)eimeﬂA*ﬂ(w”g,7)}, (6)
vectors’ lengthsR;, R,, andR3, the polar angle®, asso- ! 2
ciated withR,, and the polard; and azimuthalp angles and leads to a simple analytical representation. In the above
associated withR; . expression{) corresponds to the projection of the total an-

The total angular basis set which is naturally associated
with this operator reads as
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gular momentum) onto thez BF axis, andDJ stands for only a small par{~3%) of this space is actually sampled for

the Wigner rotation function of the three Euler angless,  €xcitation energies up to the dissociation limit into €BF.

andy. One then ha}s to fo.rgo this delocalized.basis set and use in-
Although very compact, expressio@) cannot be di- stead a basis restricted to the energetically allowed angular

space. This in turn implies switching to the differential form
rectly used for a semirigid molecule such as HFCO. The € the kinetic operato, as described now.
reason comes from the fact that basis &tis delocalized Using the expressions of the angular momentum opera-

over the whole angular configuration spagg=[0,7]® 6,  tor L; in the BF frame:>'* one ends up with the new form,
e[0,m]® ¢ e[0,27]. As will be shown in the next section, restricted here to th@=0 case,

O —h? 9% K% 9% R R 1 1 1 9 J 1 9
2uy IR 2mp dR5 2um3 dRS 2 | uiRT wgR5|[sind; 96, 90, St 6, de
el 1 1 1 9 - d 1 &
2 /.LzRg /.L3R§ Sin 02 (902 sin 2(?62 S|r]2 02 (?(,02
h i to i +cotéd ? lsi + i 1+ coth, coté 7 7
MaRé 501 70, co 230, co 179, S|n<p&(P Mng[ cot 6, coth, cose] pred (7)

The last two terms of this new expression are, however, not Hermitian when considered individually. As noted by Carrington
and Bramley!® this feature precludes using the discrete variable representation approxifthatidrandle them. Following
their suggestion, these terms have been rewritten in an equivalent Hermitian form leading to the final expre3sion for

e N N L o I . 1 1 9 ; J . 1 9
= -5 -5 - —— ——SiNf——+ =
2u1 IR 2up ORE 2u3 dRE 2 | uR2 T waR%||sin6, 96,7 ta6,  sir? 6, de?
21 1 1 0 ) d 1 5 2 2 (o cotd #? 9
-— + — — et =~ —— | — ——— —— —
2 | 1oRe " 1R (Sing, 96,0 V200, | S 0, 9¢2)  maRe| o (0101002 COSeG amsines,
to t6, | si o 41 to ! t6, || si o .1
- —_— —+ = - —+ —+ =
coté, 70, 5 €Oty smgomp 5 COS¢| —cotdy 70, 5 cotd; smcpacp 5 COS¢
+ —+ ! to + ! th,|+ L tH, cotd 8
COoSep| —— 0, 5 oty (9_492 5 C0td; |+ - cotd; Coth, COSe . (8

C. Zero-order Hamiltonian operator

In order to perform the eigenstate analy&ec. IV), a zero-order description will be needed. We resorted to a normal
mode approximation defined in the following way. Introducing the reduced coordinates

r, = Ri - Rieq’
t;=cos6;— coseieq, 9
f:¢_¢wi

and setting the variables appearing in Eq).to their equilibrium values, one ends up with the harmonic approximation

3? 1 9?

—h? 92 ﬁz
H=2 5 - (1-c0S 1) 5 S, ot

i=1 2#4 8r 2

L .
MlRfeq 3R

e _ Jd d
sin aleqsm azeqcos%q E Ez

1 1 & 1 &

+ 1—cog 6 ST -
,U«ZRzzeq /«CgRgzeq:| |: ( 2ef) ﬁ_tg Sl azeq (?_fz Mngeq
2 &2
[1+cot6’1 cot62 COSgon]—z+Vha,m(r1,r2 rs,ti,to,f),

ﬁZ
2

" to (9+ to i
—2—S|nq0e CcO 2 a t, CO leqxzﬁ

maRs MsRs

(10)
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TABLE I. Comparison of harmonic frequencies computed on the two po- V
tential surfaces with experiments, values being given in‘crithe experi- 2
mental values reported here correspond to transition frequencies as mea- 2.0 T T T T T
sured in the experiments. For each mode, an analysis in terms of the
principal motion is given.
10 - F b
Normal mode Expt. frequencies  WWP YK€ |
v, (CH stretch 2981 3020 3141 0.0 - i
v, (CO stretch 1837 1808 1843
v3 (CH bend 1347 1389 1403
v, (CF stretch 1065 1038 1074 5 -10 F _
vs (FCO bendl 662 631 670 0O C
vg (out-of-plane H bend 1011 974 1038
20 b
aReference 2.
PReference 3.
C|
Reference 4. 30| H |
_4'0 1 1 1 1 1
associated  with  the  volume  element dr -15 05 05 7z L5 25 35
=dr, dr, dry dt; dt, df, and where Vin(ri,ro,rs,
ty,t,,f) corresponds to a quadratic expansion of the mo- Y/
lecular potential around the equilibrium geometry. s 6
Rewriting expressiori10) under the general form ) ' ' ' '
h? ? 1
HO=— — > Ti———+=> V0, (11)
2 97 Yogioq; 24 i 10 b A
one can then proceed along the WilsoB matrix
formulation® and define the normal mod¢é®,} in terms of
the Jacobi coordinates S 05| _
Qazz Liaqi ’ (12) C
I
00| & @ n
where theL matrix is obtained from the generalized eigen- 0O I HF
system
V.L=2T L, (13 -05 ' ' ' '
== == = -1.2 -0.2 0.8 1.8 2.8
Z
w,=V\,. (14

FIG. 2. Atomic displacements associated with normal magdeand vg, the
) molecule laying in thexz plane.
D. Potential energy surfaces

Two, global, six-dimensional potential energy surfaces
are available for the description of the HFCO mOIeCUIe, IIl. ADIABATIC CONTRACTION SCHEME

(@) usingab initio calculations at the MP4 level, Wei and In this section, we first describe the different discrete

Wyatt’ have fitted a Simon—Parr—Finlan-type surface, . riable representatiotfswhich were used in the primary

(i) (s\i/xwvi\llzirr;o?s?r?;iggl?tmféggs;geometries computed a,[(uncontracte):ibasis set. We then briefly recall the adiabatic

the restricted Hartree—Fo¢dRHF)/MP2 level, Yama- pseqdo;pectra(IAPS) method.” and finally, we present its
moto and Katd designed an analytical representation application to the HFCO molecule.

(YK) of the HFCO system, based on a partition of theA. Primary basis set

configuration space into three differefgquilibrium,

> - The primary basis set consists of the direct product of a
transition state, and asymptatiegions.

DVR along each coordinate

Both of these surfaces include the dissociation pathway into

HE+CO. P y {IR1a)|Ran)[R3c)| 010} 02) | @)}
Using the formulation introduced in Sec.IC above restricted to grid points where the potential energy is lower

[Egs. (11) and (13)], we have computed the harmonic fre- than some threshold

guenciesw's as given in Table I. Motions taking place in

normal modes’, and vg are depicted in Fig. 2. V(R1a,Rop R3¢, 0141025, 05) <Viax- (16)

(19

max:»
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For each radial coordinate, we used a sine based IHVR TABLE II. Variation domain and number of posts used for each variable,

associated with a uniform grid

corresponding to an energy threshMgl,, of 1.62 eV. Values are given in
bohrs and radians for distances and angles, respectively. The numbers in

_ _ parentheses refer to the dimensions of the underlying Gauss—Legendre
{Rp R<+pAR, p=1..N}, 17 quadratures used for the polar angtgsand 6,. These data correspond to
such that the WW surfaceRef. 3 but similar values were obtained for the YK sur-
face (Ref. 4.
N
- nm(R—R.) : — i -
<R| Rp>= 2 Upn sin R <) ’ (18) Variable Variation domain Number of points
n=1 =0 R, [1.90, 4.1Q 10
R, [2.83, 4.51 27
U — [ 2 sinnW(Rp_ R.) 19 Rs [1.87, 2.8 12
pn N+ 1 (R.—R.) ’ 0, [0.48, 1.54 18(50)
6, [0.26, 1.08 22(80)
o pr o % y nar 2U 20 @ [2.28, 4.0Q 25
p L?Rz p’ _n=1 pn R-—R_ np’ - ( )

Similarly, the azimuthal angle was described by a sine , )
based DVR{|(py>,y= ~Q,...,Q! associated with equidis- Care must be taken when evaluating the matrix elements

tant points, .=+ yAg, distributed around the equilib- of kinetic angular terms in the DVR basis sets. Let us con-
Py ,

rium valuego= . No periodic boundary condition was en- Sider as an example the product
forced as thep=0 and 2r values are not energetically
accessible below dissociation. Tiy symmetry was taken
into account by further defining two symmetry adapted
DVR's,

(27)

cotd,

g 1 ol 7.1
70 5 Coto, sm<p(9¢ 5 oS¢

appearing in Eq(8). It corresponds to the product of an
Hermitian term cot, by two anti-Hermitian ones 76,

. 1 —(1/2)coth;) and (singdldp+(1/2)cosp). Each of these last
{ley)= WH‘PQH(N)}' r=0,..QL (2D o terms will be anti-Hermitian provided its different com-
Oy ponents are evaluated in the same basis set. Accordingly, the
1 two components sipd/de and (1/2)cosp are first evaluated
{| (P;>: —{|<Py>—|<P7>}, y=1,..Q}. (22) in the sine basis set, and their sum is then transformed to the
V2 DVR basis set by means of the associated collocation matrix

. u.
The polar angleg, and 6, were described by a Gauss— =" o o chmark which will be used later on for testing

6
Legendre DVR the APS implementation, we computed the lowest 30 bound
states in the primary DVR basis sets. Due to the very large

{|0i>,i:l,...L}, :
. . ) ) size of these bases, we resorted to a Lanczos scHeme,
i.e., corresponding to the abscissas oflapoints Gauss—

(23

Legendre quadrature [Uns 1) (H=ap)|up) = Bolun-1), (28)
-t an=(us[H|uy), (29
(A10)= 2, Ui P (cos0), B s = My Hlug) + u Hlu ). (30
U, = o P,(cost,). 25 Xgessiolrer:]/ﬁllzt?gﬁ |tr? _tl)_zbclgrr\;/).ared to those obtained within the
(6 - - iSinaiWi/):LEl Ui,/ (7/+DU 0,
sind d6 a0 /=0 26 B. APS formulation

The APS method, initially proposed by Friesregral,'*

where w; represents the weight associated with absctsa has been used before for two tetra-atomic systems, namely

and P, a normalized Legendre polynomial. the 6D hydrogen peroxide J@,'° and the planar acetylene
Most of the calculations described later on were per-C,H,.%° We present below a general formulation which can

formed using a potential energy threshalg,, of 1.62 eV be applied to any tetra-atomic system.

for the definition of the primary grid. The resulting variation Let us consider a molecule described by six variables

domain for the six coordinates is given in Table Il for the =(q,,0»,...,0s), Ordered by increasing adiabaticity, and as-

WW surface as an example. Keeping only the points locatedociated with the Hamiltonian operator

below this energy threshold results in nondirect prodalct

_ Tdiag off
and A” grids of dimensions 595000 and 515000, respec- H=TT5+ T4 V(01,02,-Ge), 3
tively. The restriction of the angular space with respect to _ N _
total energy can be seen in Table Il. Roughly, about 1/36 of ~ T%%= 21 fa(a) TR, (32)
=

the total angular space is sampled at energies below disso- .
ciation threshold. whereT%9 does not contain any cross derivative terms.
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TABLE Ill. Expansion of the normal modes in terms of the reduced Jacobi coordifages(12) and (13)].
These coefficients, calculated above for the YK surface, are very similar for the WW one.

Mode vy vy V3 vy v Vg
WW surface
Frequenciesecm™) 3020 1808 1389 1038 631 974
YK surface
Frequencies 3141 1843 1403 1074 670 1038
ry .023 .005 .001 .004 .003 .0
rs -.002 .009 .000 .000 .0 .0
t; .0 .0 -.007 .001 .002 .0
r .0 0 -.001 .006 —.005 0
t .001 .0 .001 —.002 -.002 .0
f .0 0 .0 0 0 .012
The total wave functionV(q) is expanded onto the se- Once the adiabatic basis $€&iq.(33)] has been built, the
guential adiabatic basis set Hamiltonian operator is acted ont¥(q) in the following
way. The wave function is sequentially expressed onto the
V(o) = 2ty P (G102, o) six-dimensional grid
1---Ne
_ (N5 --nq)
XDy n, (02:03,--,06) X+ X P ..n (o), ‘”“1"'“52_”26 Rang  ¥nyng: 38)
(33 (ng-ny2)
where (/fnl‘--n4yz_n25 Ryns (//nlmnszv (39)
step 1 (40)
diag .
{f1(a)Ty +V(q>}¢n1(quQZ,..-,q6) l/fa-~-y2=n2 Rgbn.l..z)l/,nlbmz_ (41)
1
=g ...g) P i02,..4,06), 34 . . .
“1(q2 do) ”1(q1 Az o) 39 The above collocation matrice8 correspond to the eigen-
step 2 vector matrices expressing the adiabatic states onto the grid.

For step 3 mentioned before, it reads as
{(na]f2(q)[ny) T

|© 10, (Gaxsy )y = 20 Rer> ™ ?[dac). (42
+&n (2, 06)}Pn,n, (02:Gs3,---.Ge) fangl ERREL S Ten ¢
(35) Once the wave function is finally transformed to the
{¥ancxys representation, one applies all the terms of the

Hamiltonian operator, such as for example

= Snznl(qS- . -qe)q)nznl(qZ 7d3,---.de)

az
step 6 fa(a) -2V (a)
dia 42 abcxyz
{(ns - ny|f5(q)[ng - -ny) TE™ 2
+eng.n, (06)}Pn..n, () =f2(Q1a"'q6z)§ <Q2b 92 Q2b'> Pabrcxyz: (43)
:ene'“nl(bne“'nl(qG)' (36) The cumulated result is then transformed back to the

{¢n1---“e} contracted representation by means of the trans-
In practice, these different functions are computed at th‘i)osed collocations matricee!.

nodes of a six-dimensional grid. In the following, we will It is clear from the above formulation that the APS basis
use the letterabcxyzas indices for the grid points associated et is essentially used as a filter. The Hamiltonian operator is

with variablesqy, ....qe, respectively. At each step, the new geryally acted in the primary grid representation, as in the
adiabatic basis set is truncated according to some energyraight DVR approach. But the result is filtered when trans-
criterion.  For example, at step 3, only the foyming back to the adiabatic basis set, removing the high

D n,n,(03;0s--.06) States satisfying the inequality energy components.
8n3n2n1(Q4xvq5yaqGZ)_min{enznl(q3caQ4xvq5yaQGz)}$Ecut o
cxyz C. Application to HFCO
(37)

The natural way to define th@ncreasing adiabaticity
will be retained. hierarchy consists of considering normal modes by decreas-
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TABLE IV. Convergence of the energy levelis cm™) with respect to the A, Automatic labeling procedure
cutoff E, used during the construction of the APS basis Nghg indicates

the size of the basigaps, andAEspg the resulting energy and excitation We used the method initially proposed by Menou and
energy, respectivelyEp,r makes reference to values obtained using the Leforestier in their study of the HCN molec[j'lé,and im-
same primitive DVR basis set by means of a Lanczos schéaps—  proved it in order to handle the increased complexity of a
>DEpyr| gives the APS error on the excitation energy. tetra-atomic molecule. Starting from the dispersion relation
Ect Naps Eaps AEaps  Epve  |gDEaps— AEpyrl associated with the harmonic oscillator
09 202 53011 (0l QP = Q¥ pp)(n+3), (44)
1.3 1048 5381.1
E, 1.7 3634 5380.2 one generates an initial guess-(vq,vs,,...,vg) from the
1.9 5998 5380.1 similar relations
2.1 9446 5380.1
5379.6 W Q2— Q2| W) =KO(v,+3 45
09 202 64127 10216 11.49 (Wl Qa= Qe ¥ =Kalvart ), 49
1.3 1048 6393.3 10122 2.00 0_ 2 =
E, 1.7 3634 63909 1010.7 54 Ka=2(¥olQ,~QclWo). (46)
1.9 5998 6390.7 10106 44 In the above expressiol stands for an eigenstate, aQg
2.1 9446 6390.6 10105 40
6389.7 corresponds to a normal mo@ggs. (12) and (13)]. Due to
0.9 202 67915 1400.4 22.55 the anharmonicity and intermode couplings, the labedse
E, 13 1048 6762.6 13815 3.60 no longer integers, but take real values. In order to match this
1.7 3634 6758.9 1378.7 -85 setv to some set of labels=(n;,n,,...,ng), two criteria are
1.9 5998 6758.7 1378.6 71 used:
2.1 9446 6758.6 13785 64 :
6757.4 (i)  the first one consists of comparing the enegywith
1.7 3634 8639.8 32596 4.3 those of levels in a waiting list. This list is initiall
Esp 1.9 5998 86384 32583 3.0 i g st . y
21 0446 8638.0 3257.9 26 composed of the six states with a single quantum of
8634.9 excitation, and is updated each time a new lekgl

has been assigned. The energies of the states in the
waiting list are computed from the spectroscopical

Hamiltonian,
ing frequencies. However, as our preconditioning scheme re-

lies on Jacobi coordinates rather than normal modes, we Esp(n)=2 w, (N, +3)+ 2 Xap(Ng+3)(Ng+3)
have to make the connection between these two sets of co- “ “=
ordinates. Table Il gives the expression of the normal modes ) . .
in terms of reduced Jacobi coordinaf&sy. (9)]. The relative + P2 Yagy(Net2)(Ngt3)(N,+3). (47)
amplitudes allow us to make the following assignments: ey . .
ng >R Ve 61 1R ves 6 ?} ngg Wtf In the above expression, only the frequenaciés are

1 2 3173 1:74 2:Y5 2:76 . L .
choose to define the adiabaticity orderiRg<R;<6;<R, nonzero at the t_)eglnnmg of the labeling procedure,
< #,<¢ as thevg mode, associated with thevariable, was these yalues being tal_<en as the normal frequencies.
shown to be strongly decoupled at high energy. E’ach time ? new Ieveldlstazstl)gned, all thfe, )I(S atnd

In order to test the APS formulation as presented above, y'S paramelers are updated by means of a least-square
we performed a series of calculations Af levels on the f't. over al _the already assigned levels. Waiting states
WW surface, in which the energy cutdf, [Eq. (37)] has Wgh egergles t%(.)dfir from the energy, are not con-
been systematically increased. In each calculation, the di-. sidered as candidates. -
mensionN zpg Of the APS basis set is defined as the number(") the second criterion s a 3|m|Iar|_ty fa_ctor bet.Wee” the
of (nN,nan,ungng) sextets Eq. (33)] finally retained at the setv and each seh of the waiting list, defined as

end of the preconditioning procedure. These results are com- follows:

pared in Table IV to the Lanczos calculations performed in H w—llzexq_(v —n,2. (48)
the primary DVR basis set, as described in Sec. lllA. One a “o

can first note that, for the states presented in this table, a This term is somewhat similar to a Franck—Condon
similar accuracy is achieved for cutoff values of 1.7 eV or factor between the two statgg and |n).

greater. This accuracy ranges from better than I'dior the

lowest states, to a few wave numbers for the 3Wtistate. In These two criteria are then combined in a single factor,

the following, we used an energy cutoff value of 1.9 eV.
n=exp{— o|En—Esm I o *exd —(v,—n,)%,
IV. RESULTS (49)

In this section, we first present the automatic labelingwhereo is a constant to be adjustéd value of 102 cm™*
procedure which was used. The resulting energies and labelsas been used in ouritVery often, the sole energy com-
as computed from the two potential surfaces, are then conparison between the waiting states and the level under study
pared to the experimentally assigned energy levels. suffices to assign the label, as the first example shown in
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TABLE V. Examples of screening of the waiting list during the labeling TABLE VI. Comparison of experimental levelsn cm™) with those ob-
procedure. The first example corresponds to a case where the dfeify  tained from the YK and WW surfaces. All the assigned experimental levels
the state to be assigned exactly matches the predicted Egj(i) of one of are reported in this table. The lowest 150 levels have been computed for
the states in the waiting list. The mismatch in energy of the second exampleach surface. Standard deviations root-mean-squar® between the ex-

is corrected for by they factor. perimental and calculated levels are given at the bottom of the table.
Ey (cm™h) v Eesn) n n Expt® YK Number WW n, n, ng n, ns ng
8360.5 1.09.1.715 662.6 659.4 2 6264 0 0O O O 1 ©
- 83605 001012 .3410° 1011.2 1020.5 3 9688 0 0O O O 0 1

8384.0 002020 .9010 1064.9 1051.5 4 101780 0 O 1 0 O

84037 100100 .1010% 1324.1 1317.7 5 125510 0 O 0 2 0

84133 001210 .1710% 1342.3 13722 6 137210 0 1 0 0 0

84356 010120 .1610% 1719.3 1704.6 8 163950 0 0 1 1 0

84535 000400 .1510%° 1836.8 1827.9 9 17705 0 1 0 0 0 ©

84837 003000 .1110% 2115.6 2090.8 14 202920 0O 0 2 0 ©

8716.8 152.2514 2412.0 24183 18 237610 0O 1 1 0 O
87185 001102 .6410% 2494.2 2484.0 19 2393.4 0 1 0 0 1 0

- 87276 010012  .1710° 2841.0 2843.5 26 272750 1 0 0 0 1

87573 101000 .7110% 2895.0 2876.1 27 2787.1 0 1 0 1 0 ©

87657 002110 .2710% 2981.2 3039.2 30 2974.4 1 0 0 0 0 0

88039 011020 .2510% 3150.6 3139.4 37 3016.2 0 1 0 0 2 0

88104 001300 .3910% 3652.8 3648.1 50 3%2670 2 0 0 0 ©

88231 010210 .1410% 3838.1 3855.1 63 3686.9 0 1 0 0 0 2

88357 000070 .1710%3 4302.9 4304.3 88 413830 2 0 0 1 0

4307.5 4403.1 97 43391 0 1 0 0 ©

44939 44588 103 432350 0 1 1 0 2

4653.1 46626 112 447440 2 0 0 0 1

Table V. The second example of the table corresponds to 4705.2 46989 117 454640 2 0 1 0 O
case where the energy criterion does not lead to the right817.6 48657 135 464990 1 0 0 0 3
55.0 49604 143 475880 2 0 0 2 O

labels. They factor [Eg. (49)] allows one to single out the
second state of the waiting list as the best candidate. |
should be noted from this last example that thersetin be  “Reference 22.
far fromv. The main reasons come from anharmonicity and

intermode couplings.

ms 28 92

the associated spectroscopical Hamiltonian enerfjies
(47)] displayed values of 1.85 and 1.18 chifor the WW
and YK surfaces, respectively. These deviations constitute an

The APS formulation is basically designed to be usedndicator of the accuracy of the assignment procedure. Table
within an iterative scheme such as the Lanczos or the flltGV| presents a Comparison of the assigned experimentaj

diagonalization methot. The basic operation consists of |evel£2 with the calculated ones.

acting the Hamiltonian operatdf on a wave function ex- From this table, one can see that the WW surface tends
pressed in the APS basis déiq. (33)]. In the study pre- to underestimate the,, v,, vs, and vg frequencies, while
Sented hel’e, we were essentia”y interested in the |OW-|yin%e 12 and V3 ones are overestimated. Th@ frequency is
levels in order to compare them to experimental results. FOpretty well described. By comparison to experimental resullts,
simplicity of the calculations, we chose to directly generatehis surface leads to a standard deviation of 92 tm

the Hamiltonian matriceéof A" andA” symmetries by ap- Concerning the YK surface, the,, v,, andvs frequen-
plying H onto each element of the APS basis sets. The recies are slightly underestimated, thg slightly overesti-
sulting matrices have been diagonalized by a direct methoghated, while ther; and v5 are more strongly overestimated.

in order to obtain the 100 lowest states of each symmetryrhe corresponding standard deviation displays a value of 28
Previous test¢see Table IV have shown that most of the cmL

excitation energies should be converged within a few wave
numbers for these levels.
Obtaining theA’ andA” levels as coming out from two V. DISCUSSION
different calculations renders the assignment easierAAs In this study, we have presented an exact quantum six-
and A” states correspond to an even and odd number afimensional calculation of the energy levels of the HFCO
guanta in thevg mode, respectively, this feature is used whenmolecule. The choice of Jacobi vectors to describe the mol-
screening the waiting list. It is important to remark ti#dt  ecule has been shown to lead to a compact form of the
andA” sets should be labeled at the same time: the spectrddamiltonian operator. Although such a formulation might
scopical Hamiltonian, which is used during the labeling pro-not be optimum for the low-energy regime considered so far,
cedure, can only be fitted if the two symmetries are handledt is totally general and applies as well above dissociation
together. threshold. In that latter situation, other Jacobi vectors have to
The lowest 150 energy levels have all been successfullpe redefined, but the Hamiltonian operator keeps exactly the
labeled for the two surfaces. At the end of the fitting proce-same expression: only the reduced magssswill change
dure, standard deviations between the calculated levels aratcording to this new definition.

B. Calculated energy levels
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An alternative approach, which has not been consideretllly automatic procedure. The key point in this method is
in this work, would consist of reframing the calculations in the progressive fitting of a spectroscopical Hamiltonian dur-
terms of the curvilinear normal modes introduced in Secing the labeling process. The resulting very small standard
[l C. Such a set of coordinates would include in its definition deviation between calculated and predicted energy levels
part of the intermode couplings, kinetic as well as potentialgives confidence for extrapolating this Hamiltonian beyond
In the low-energy regime, the associated normal basis sehe calculated levels, if necessary.
would constitute a quasioptimum description. This basis set  Finally, the calculations presented here serve as a test of
could be even further improved by means of a self-consisterthe two HFCO potential energy surfacbsat least in the
field (SCP type preconditioning® As the zero-order Hamil- low-energy regime. The study presented so far has given
tonian would correspond more closely to the exact onesome information concerning the anharmonicities and inter-
smaller bases should result. Work along this direction is irmode couplings, i.e., beyond the normal mode approxima-
progress. tion. Building such a surface is a tour de force, as the bound

The adiabatic pseudospectral method represents a basiwlecule, the transition state, and the outgoing products have
set contraction procedure aimed at handling systems with & be described altogether. The comparison to experimental
large number of variables. Although related to the sequentidkvels can be used for refining the existing surfaces.
adiabatic reduction method of Bacand Light®° it differs
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