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A New Technique for the Estimation of Cardiac

Motion in Echocardiography Based on Transverse

Oscillations: A Preliminary Evaluation In Silico

and a Feasibility Demonstration In Vivo
Martino Alessandrini, Adrian Basarab, Loic Boussel, Xinxin Guo, André Serusclat, Denis Friboulet,

Denis Kouamé, Olivier Bernard, and Hervé Liebgott

Abstract—QuantiÞcation of regional myocardial motion and

deformation from cardiac ultrasound is fostering considerable

research efforts. Despite the tremendous improvements done in

the Þeld, all existing approaches still face a common limitation

which is intrinsically connected with the formation of the ul-

trasound images. SpeciÞcally, the reduced lateral resolution and

the absence of phase information in the lateral direction highly

limit the accuracy in the computation of lateral displacements. In

this context, this paper introduces a novel setup for the estima-

tion of cardiac motion with ultrasound. The framework includes

an unconventional beamforming technique and a dedicated mo-

tion estimation algorithm. The beamformer aims at introducing

phase information in the lateral direction by producing trans-

verse oscillations. The estimator directly exploits the phase in-

formation in the two directions by decomposing the image into

two 2-D single-orthant analytic signals. An in silico evaluation

of the proposed framework is presented on Þve ultra-realistic

simulated echocardiographic sequences, where the proposed mo-

tion estimator is contrasted against other two phase-based solu-

tions exploiting the presence of transverse oscillations and against

block-matching on standard images. An implementation of the

new beamforming strategy on a research ultrasound platform is

also shown along with a preliminary in vivo evaluation on one

healthy subject.

Index Terms—Cardiac strain, echocardiography, latreal

displacements, motion estimation, multidimensional Hilbert

transform, radio-frequency (RF) signal, transverse oscillations.
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I. INTRODUCTION

C ARDIOVASCULAR diseases are the leading cause of

deaths in the world (48%), and it is projected that the

annual number of deaths due to cardiovascular disease will in-

crease from 17millions in 2008 to 25millions in 2030 [1]. In this

context, clinical assessment of the cardiac function is essential

for the diagnosis and treatment of heart diseases. Among avail-

able imaging techniques echocardiography has received special

attention, since it offers high temporal resolution while being

of relatively low cost. Moreover, cardiac motion estimation and

the derived strain measures performed from ultrasound image

sequences has proven to be a valuable tool for assessing cardiac

function [2]–[6]. As a consequence, the development of motion

estimation techniques from cardiac ultrasound data has a long

history, dating back to the late eighties [7], and is still the topic

of active research [8]–[12].

Following [13], most common approaches can be grouped

in three main classes. A Þrst family of methods is based on

the differential technique known as optical ßow. The earlier

attempts towards automated cardiac motion estimation belong

to this class [7], [14], [15]. Since they rely on the local analysis

of spatial and temporal gradients, these methods may fail

at estimating large inter-frame cardiac motion. This implies

using multi-scale strategies or a block-matching initialization

to provide a reliable Þrst-order estimate of the displacement

[16]–[18]. A second family is referred to as speckle tracking,

and consists in Þnding the best match, as deÞned by the adopted

similarity measure, between two blocks extracted from two

subsequent frames. Most common similarity measures include

cross-correlation (CC) [19], [20], sum of absolute differences

(SAD) [21], or sum of squared differences (SSD) [22]. It

was shown in [23] that these measures provide the maximum

likelihood estimate of the displacement for a given statistical

distribution of the image noise (Laplacian for SAD, Gaussian

for SSD) and, following that observation, a new measure

based on a Rayleigh distributed multiplicative noise was there

introduced. Similar lines of reasoning have been exploited

in [24]–[26]. Finally, several authors proposed to estimate

cardiac motion by using nonrigid image registration, i.e., by

computing a global deformation map warping a given frame on

a reference one. The deformation Þeld can be either discrete or



parametric and is generally computed by minimizing a given

cost function. In [27] the deformation Þeld is represented on a

B-spline basis and estimated by applying a SSD-like similarity

measure to the image intensity. In [28] a discrete deformation

function based on intensity and phase information is used.

Since image registration is formulated as an inverse problem,

it allows easily introducing a priori such as smoothness [11],

[29], or incompressibility [8], [11].

Most of the approaches described above operate on conven-

tional envelope-detected images, i.e., obtained through demod-

ulation of the radio-frequency (RF) signal. Recently, several

studies have proposed performing speckle tracking by using the

RF signal instead. Since the RF signal contains high frequen-

cies it is indeed better adapted to the estimation of small mo-

tions (typically on the order of the emitted pulse wavelength).

This is done by using either time-domain correlation or phase

difference estimation [30]. This type of technique is particularly

used for cardiac elastography and examples include the work by

Lubinski [31], Chen [32], D’hooge [33], Lopata [34], [35], and

Konofagou [36]. RF-based speckle tracking is, however, cur-

rently not widespread in the Þeld of echocardiography because

its high motion sensitivity implies high frame rates [33], [37]. A

comparison between envelope-detected and RF-based echocar-

diographic speckle tracking may be found in [34] and [38].

As noted in [34], any of the above-mentioned approaches

faces an intrinsic limitation: the reduced lateral resolution (i.e.,

in the direction perpendicular to the beam propagation axis) and

the absence of direct-phase information in the lateral direction

results in a low accuracy in the computation of lateral displace-

ments. Several algorithms have been described to tackle this

issue, based on sophisticated interpolation schemes or re-cor-

relation [4], [36], [39].

Another way around consists in modifying the image forma-

tion in order to introduce phase information in the lateral di-

rection, i.e., by using a particular beam-forming step designed

to produce transverse oscillations. This approach has been ini-

tiated by Jensen in the Þeld of blood ßow quantiÞcation [40],

[41] and in ultrasound elastography [42], [43]. Preliminary re-

sults produced by our group recently extended this technique to

echocardiography [44]–[47].

In this context, we describe in this paper a new setup for car-

diac motion estimation, based on the following elements.

• A speciÞc beamforming scheme for producing transverse

oscillations (TO) in cardiac imaging, i.e., adapted to a sec-

torial acquisition geometry. As explained above, such ap-

proach allows introducing phase information in the lateral

direction and thus improving accuracy of the 2-D motion

estimation in this direction.

• A phase-based motion estimation algorithm speciÞcally

dedicated to the obtained TO images. This estimator lo-

cally constrains the motion to correspond to an afÞne trans-

form and exploits the available 2-D phase of the TO im-

ages. Compared to previously published phase-based mo-

tion estimation methods (e.g., [45] or [46]), the approach

presented herein combines the phases of two single-orthant

analytical signals with an afÞne transformation instead of

simple translations.

The accuracy of the proposed framework is evaluated

in silico from Þve ultra-realistic simulated sequences [48] mim-

icking respectively three parasternal short-axis and two apical

four chamber acquisitions. The new estimator is contrasted

against other two phase-based estimators in [49] and [30] and

conventional block-matching applied to standard images (i.e.,

without TO) [50]. Note that, although historically among the

earlier techniques proposed for motion estimation in medical

ultrasound [50], block-matching nonetheless still remains the

methodology of choice [35], [51].

For each algorithm we evaluated the accuracy in recovering

the simulated displacement Þeld and in computing the cardiac

strain. All algorithms exploiting transverse oscillations were

found to estimate more accurately the lateral component of the

displacement than standard block matching and this led to an

overall better precision in the computation of the total displace-

ment Þeld and of the cardiac strain. Among the phase-based

techniques considered the proposed algorithms was found to be

in average the more accurate and reliable. An implementation

of the new beamforming technique on an ultrasound research

platform [52] is also presented along with a preliminary in vivo

evaluation of the proposed motion estimation framework for the

computation of cardiac strain on one healthy subject. Computed

strain curves were in line with what reported in literature for an

healthy heart.

The paper is structured as follows. Section II describes the

generation of the transverse oscillations for sectorial cardiac ac-

quisition. Section III presents the motion estimation algorithm.

Section IV describes the numerical experiments used to evaluate

the proposed framework and provides the download link for an

implementation of the presented motion estimator. Section V

presents the obtained results, which are discussed in Section VI.

II. TRANSVERSE OSCILLATION ULTRASOUND IMAGES

Transverse oscillation (TO) ultrasound images exhibit in the

lateral direction the same kind of oscillations normally present

in the axial direction [41]. Lateral oscillations are obtained by

implementing a point spread function (PSF) presenting, in ad-

dition to the common axial modulation, a modulation in the lat-

eral direction. TO modality was originally developed for linear

probes where, denoting by and lateral and axial coordinates

respectively, the system PSF can be written as [53]

with

(1)

where is the lateral (axial) oscillation wave-

length and is the lateral (axial) full-width half-maximum

(FWHM) of the Gaussian envelope [42].

The axial proÞle of the PSF is related to the excitation pulse

and the impulse response of the transducer elements used. As

a consequence, the axial modulation is naturally present in the

axial PSF proÞle and the weighting window can be adapted

using speciÞc excitation pulses. The degrees of freedom that

enable one to control the transverse proÞle of the PSF are in-

stead the delay between the elements used in transmit and in



receive and the weighting coefÞcients applied to each element

in transmit and in receive.

To design these parameters the Fraunhofer approximation is

commonly used [54]. Fraunhofer approximation applies to fo-

cused acoustic beams and states that, at the focal point, the lat-

eral beam proÞle and the radiating aperture are re-

lated by the Fourier transform [54]

(2)

From (2) it is straightforward to show that a bi-modal apodiza-

tion function of the kind [42]

(3)

realizes the desired lateral proÞle, with and

. As these parameters depend on the axial coordinate,

the apodization function has to be dynamically adjusted in order

to obtain a depth-invariant PSF [53].

A. Transverse Oscillations in Echocardiography

To date most consolidated applications of TO are blood ßow

imaging [40], [41], [55] and elastography [42], [43]. In both

cases the presence of lateral oscillations has been shown to favor

a more accurate estimation of lateral displacements as compared

to traditional beamforming techniques.

Recently, the concept of TO has been extended to cardiac

ultrasound, where the accurate quantiÞcation of lateral heart

deformations still remains a challenge [56]. Our group had a

pioneering role in studying the feasibility of TO imaging in

echocardiography [44]–[47]. In particular, a beamforming tech-

nique was presented in [44] for the generation of TO on sectorial

probes of common use in cardiac applications. The beamformer

design relies on the principle of back-propagation and allows

to obtain on pre-scan converted data (i.e., in polar coordinates)

the same kind of lateral oscillations otherwise possible on linear

probes. More speciÞcally, a PSF completely analogous to the

one in (1) can be obtained in the polar space . This is done

according to the coordinate transformation and

and, consequently, the parameters transformation

and . The required apodization

function has the same form as (3), where the peaks position and

width are given by and . Interest-

ingly, these quantities are no longer depth-dependent as in linear

geometries. As a result a space invariant PSF can be obtained

on sector scan without dynamically modifying the apodization

function. For more detail we address the reader to [44].

III. MOTION ESTIMATION ALGORITHM FOR

ECHOCARDIOGRAPHIC IMAGES WITH

TRANSVERSE OSCILLATIONS

Consider two rectangular blocks of pixels extracted from two

subsequent RF frames and (for simplicity

) of a cardiac ultrasound sequence. The motion

estimation problem consists in computing the displacement

Þeld mapping the second block

onto the Þrst, being and the lateral and axial compo-

nents of the displacement respectively. This is normally done

by adopting the so-called brightness constancy assumption

.

Nevertheless, it has been shown that brightness conservation

can be a misleading assumption as far as cardiac ultrasound im-

ages are concerned [18]. The reason is that the amplitude of the

backscattered echo depends on the angle formed by the acoustic

beam and the myocardial Þbers, which obviously varies in time

due to the heart motion. As a consequence, the same portion of

tissue will return different echoes after it position has changed.

For this reason, we replace the classical brightness constancy

assumption with a more robust phase constancy assumption.

Image phase is indeed ideally suited for ultrasound images since

it is independent on the local intensity while intrinsically related

to the local image structure.

In particular, 2-D single-orthant analytic signals are used

to compute the image phase [57]. Based on multidimensional

Hilbert transforms, they represent one of the Þrst attempts to

generalize the classical 1-D analytic signal to dimensions (as

for example for 2-D images). The suitability of single-orthant

analytic signals for modeling and processing TO ultrasound

images has been shown in different contexts from the consid-

ered one in [49], [58].

Based on the TO theory presented in the previous section, a

signal model consisting of a 2-D spatial modulation at spatial

frequencies and respectively can be assumed [49]

(4)

where is a low-pass 2-D window having its highest fre-

quency lower than the frequency of the 2-D cosinus (a reason-

able hypothesis in TO ultrasound imaging).

The four single-orthant analytic signals are then calculated

by canceling three of the four quadrants in the 2-D spectrum.

However, given the symmetry of the 2-D Fourier transform of

real images, these analytic signals contain, two by two, redun-

dant information [49]. For this reason, we only conserve two

of the four available single-orthant analytic signals. Following

[49], they can be expressed in the frequency domain as

(5)

where capitals letters denote the 2-D Fourier transform,

and denote the lateral and axial frequency respectively and

. By denoting and

the spatial phases associated to the two considered analytic

signals, the phase constancy assumption reads as

(6)

Assuming small displacements, as commonly done in differ-

ential techniques, the right-hand side of (6) can be replaced by



its Þrst-order Taylor development and this leads to the linear

system of equations [49]

(7)

where and are the temporal derivatives of

and respectively while

(8)

is the Jacobian matrix of the vector .

While the motion estimation problem (7) could be in prin-

ciple solved pixel-wise, the corresponding solution would be

highly sensitive to noise, which is not acceptable in a low SNR

context as medical ultrasound. The common way around this

is to solve the problem in the least squares sense by assuming

that all the pixels in a block translate of the same quantity, i.e.,

. Nevertheless, several studies pointed out that the

simple translation model is too restrictive in the context of car-

diac motion estimation [17], [18]. In this scenario a much better

solution is instead represented by the afÞne model [17], [18].

Considering for simplicity a block centered at ,

the afÞne model is

(9)

where is the new unknown

vector: and correspond to the translation of the window

center and .

By plugging (9) into (7) and after suitable rearrangement of

the system entries, it can be shown (see Appendix A) that the

motion estimation problem can be independently solved for the

two main directions and as

(10)

and

(11)

where denotes the coordinate of

the th pixel of the considered block.

The two overdetermined systems (10) and (11) are then

solved by classical least-squares Þtting. We also remember that

given two complex numbers the sum of their phases is equal to

the phase of their product while the difference of their phases is

equal to the phase of the product of the Þrst with the conjugate

of the second. These relations are better used in the motion

estimation framework to compute phase sums and differences,

since they allow avoiding tedious unwrapping issues.

We also note that, since the phase of (4) does not change for

horizontal (vertical) shifts equal to the wavelength , then

the largest displacements that can be estimated unambiguously

in the lateral and axial direction respectively are limited to

and .

Finally, while the motion estimation algorithm has been pre-

sented for Cartesian coordinates , as said in Section II, ex-

actly the same considerations apply to pre-scan converted sec-

torial data simply by replacing by the polar couple .

IV. MATERIALS AND METHODS

A. Evaluation Data Set

A quantitative performance evaluation of the proposed

framework was made in silico. A preliminary feasibility study

in vivo will be shown in the results section.

For the in silico evaluation we made use of ultra-realistic syn-

thetic echocardiographic image sequences generated according

to an original framework we recently developed [48]. Brießy,

cardiac motion is mimicked by displacing a set of point scat-

terers over time. Both scatter amplitude and motion are learned

from a real echocardiographic acquisition adopted as a template.

From the time-variant scatter map Field II is employed to simu-

late the image formation process [59], [60]. Since the synthetic

cardiac motion is known, this can be used to benchmark motion

estimation algorithms.

The resulting synthetic sequences are extremely realistic both

in their motion and aspect, to the point it is hard to distinguish

them from real clinical recordings. In particular, all the typ-

ical image artifacts such as reverberations, clutter noise, signal

dropout, local intensity and/or contrast variations over time due

to changing cardiac Þber orientation, which have a major im-

pact on the performance of algorithms for motion/deformation

estimation, are naturally present as they are inherited from the

template sequence [48]. As a consequence, although obtained

on synthetic data, the reported evaluation is well representative

of what could be expected on real clinical data.

Five synthetic sequences were generated according to [48],

namely three parasternal short-axis (SAx) and two apical four

chamber (A4C), which correspond to two of themost commonly

employed views in the clinical practice [61]. In the following the

three SAx sequences will be denoted as SAx1, SAx2, and SAx3

while the two A4C sequences will be denoted as A4C1 and

A4C2. For each of the Þve sequences the two acquisition modal-

ities of interest were simulated, i.e., traditional beamforming

and TO. Note that the time variant scatter map associated to a

synthetic sequence, and hence the benchmark motion Þeld, re-

mained unchanged when modifying the beamforming strategy.

The two acquisition strategies were implemented by suitably

setting the receive apodization function of the synthetic probe

used by Field II: a standard Hanning window was used in the

standard case while the bimodal function in (3) was used in

the case with TO. In this latter case the parameters

were used, while the remaining probe settings were



Fig. 1. Comparison of standard beamforming and transverse oscillations:
(a) and (b) compare the same frame of the SAx3 sequence in the two acquisition
modalities while (c) illustrates the M-mode computed over one cardiac cycle
on the scan-line represented by the red segment. End systole (ES) has been
assigned in correspondence of the highest muscle contraction and is denoted by
a dark green line. For the SAx3 sequence ES corresponds roughly to frame 18.

Fig. 2. Amplitude spectrum of the RF images corresponding to the two SAx
frames in Fig. 1(a) and (b).

kept constant for both acquisition modalities, namely center fre-

quency MHz, sampling frequency MHz, speed

of sound m/s and 64 elements. Sweep angle were

65 for the SAx sequences and 75 for the A4C sequences.

Frame rate was 50 frames/s for the three SAx sequences and

45 frames/s for the two A4C ones.

Examples of simulated images are given in Fig. 1. Since the

TO model (1) holds for pre-scan converted data, images are re-

ported in the polar domain . It is evident how the pres-

ence of lateral oscillations reßects in a richer speckle pattern

as compared to traditional beamforming. Fig. 1 only allows as-

sessing the visual realism of the individual frames. In order to

appreciate the dynamical behavior the reader is addressed to the

videos posted online.

The Fourier spectrum of two simulated frames (radio fre-

quency images are considered for the frequency analysis)

obtained with standard beamforming and TO is reported in

Fig. 2(a) and (b), respectively. Note the effect of the lateral

modulation at the angular frequency in the case with TO.

B. Cardiac Motion Estimation

As reference technique for standard RF images we will con-

sider blockmatching (BM).OnRF imageswith TO the estimator

1Available online: http://www.creatis.insa-lyon.fr/us-tagging/node/13

described in Section III, referred to as AfÞne Phase Based Esti-

mator (APBE), will be contrasted against other two phase-based

solutions: a previous version of the same estimator [49], referred

to asTranslationPhaseBasedEstimator (TPBE),where a simple

translationmodel is considered instead of the afÞnemodel in (9),

and a technique based onmaximizing block-wise the correlation

between phase images, referred to asphase correlation estimator

(PhCorr). The latter, based on an iterative Newton algorithm, es-

timates the displacement by searching for the phase root of the

complex cross-correlation function [30]. For one block of pixels,

PhCorr method was implemented to estimate the displacements

of all the columns and rows, and the Þnal estimates were the

mean values for each direction.

Considering RF data prevents axial down-sampling and this

implies dealing with axial displacements which, at conventional

sampling rates, are easily of the order of few tens of pixels. As

an example, at the considered sampling rate ( MHz) and

speed of sound ( m/s), a displacement of 1 mm in the

direction of the beam propagation would correspond to a shift

of pixels.

Displacements of such entity violate the small displacements

assumption essential in differential techniques as the proposed

one. We dealt with this issue by proceeding in two steps: an ini-

tialization phase to produce a coarse estimate of the displace-

ment and a successive reÞnement, where the proposed phase

based estimator was applied to estimate the residual motion.

The initialization was performed with block-matching with

sums of absolute differences as similarity criterion. At this stage

no interpolation (i.e., no sub-pixel precision) was used in order

to speedup the procedure. Initialization was not performed on

the RF directly but on the B-mode. Indeed B-mode images,

being base-band, are better suited for the analysis of large de-

formations than RF [38].

In order to have a fair comparison among the four considered

algorithms, the same initialization was kept both when the re-

Þnement was made on standard RF (the case of BM) and on TO

RF (the case of the APBE and TBPE algorithms). In particular

the initial estimate was obtained from B-mode images without

transverse oscillations.

The initialization procedure is summarized in Fig. 3. The

block-matching initialization determines the two

blocks and for the successive reÞnement . The total

displacement is then given by . For what concerns the

algorithm in Section III, the fact that the two blocks are not

aligned only implies replacing in (10) and (11) with

. The parameters and

deÞned in Fig. 3 were the only required. They were optimized

in order to have the smallest estimation error (see next section

for more details) on the synthetic SAx3 sequence. The optimal

found values (in pixels) corresponded to:

and . The RF image size was 4562 113

pixels .

When block-matching was employed for the reÞnement in-

terpolation factors of 1 and 6 were used in the axial and lateral

directions respectively. Note that, due to the high sampling fre-

quency of RF data, an interpolation of 1 in the axial direction

was sufÞcient to obtain a resolution of mm.



Fig. 3. Initialization procedure. (a) Frame at time . (b) Frame at time

. Centers of the considered blocks are represented as black dots. Block is
centered at . and are the lateral and axial initial estimates given
by block-matching and deÞning the center of the block . and deÞne
the spacing between the nodes. and deÞne the block size. Successive
reÞnement will be on and .

Let us Þnally point out that, since the TO image model holds

only for pre-scan converted data, in the proposed framework

motion estimation must be performed in polar coordinates. The

computed displacement Þeld has then to be scan converted to

have the values in Cartesian coordinates.

The MATLAB implementation of the APBE algorithm is

made freely available for downloaded online.

C. Accuracy Assessment

The four algorithms were compared in terms of accuracy in

the recovered displacement Þeld and in the computed cardiac

strain.

1) Displacement Field: Let us denote as

the ground-truth displacement be-

tween frame and frame at position and as

the estimated one.

The results in polar coordinates were considered Þrst. Hereto

the main goal is to show the improvement in the estimation

of lateral displacements made possible thanks to the proposed

framework. Lateral and axial errors were used for this purpose

(12)

where denotes the absolute value. Error study was limited

to the region of the left-ventricle muscle. The latter was manu-

ally contoured from the Þrst frame of each synthetic sequence.

The mask was then propagated to all the frames of the sequence

by using the benchmark motion Þeld. The value of these error

metrics will be reported in pixels.

Cardiac ultrasound sequences are commonly visualized and

processed in Cartesian coordinates, i.e., after scan conversion of

the beamformed images. For this reason the remaining part of

the evaluation considered scan converted images. In this case,

2 Available online: http://www.creatis.insa-lyon.fr/us-tagging/node/13

the accuracy in the recovered displacement was measured with

the endpoint error [62]

(13)

where and denote the reference and the

estimated displacement after scan conversion and is the

-norm. Errors in Cartesian coordinates were measured in

millimeters.

2) Strain: Cardiac strain was measured similarly to [63].

The endocardium was Þrst manually contoured in the ED frame

(i.e., the Þrst frame of the sequence). A ROI for strain esti-

mation was then created by expanding the endocardial contour

along its normal to represent the myocardium. This region was

subsequently populated in the directions normal and tangential

to the endocardial contour with 6 and 100 sample points re-

spectively, and given a label corresponding to one of the heart

segments. Segments were established following the guidelines

given by the American Heart Associated (AHA) [64]. Namely,

six equally spaced segments around the circumference were

considered for SaX viewswhile, for what concerns apical views,

three equally spaced longitudinal levels were deÞned from base

to apex, either on the septal or lateral side, thus leading again to

six segments.

The test points were then displaced over the full cardiac cycle

by using the reference displacement and the displacement esti-

mated by each algorithm. The strain along a direction at time

was then computed as [29], [63]

(14)

where denotes the distance between two consecutive test

points. More precisely, normal and tangential directions on SaX

sequences were used to determine radial and circumferential

strain components ( and ) respectively, while the tan-

gential directions on apical sequences was used to determine

the longitudinal component .

Note that each simulated sequence corresponds to one full

cycle from one end-diastole to the following. Given the peri-

odicity of the cardiac cycle it is therefore reasonable to assume

being the number of frames in the sequence.

As in [29], [63], this condition is imposed by applying the fol-

lowing drift compensation to the computed strain curves. The

strain compensated strain is

(15)

Segmental strain was obtained by averaging the strain values

computed point-wise on the test points on each segment.

3) Statistical Analysis: For what concerns the accuracy in

retrieving the displacement Þeld, the statistical signiÞcance of

the differences among the four algorithms was tested by means

of the Friedman rank test in conjunction with the

post-hoc test proposed by Daniel [65], as suggested in [66].

Strain accuracy was instead assessed by using the Pearson cor-

relation coefÞcient together with the bias and standard devi-

ation returned by the Bland–Altman (BA) analysis. For each



TABLE I
HORIZONTAL ERROR (MEAN VALUE STANDARD DEVIATION). VALUES IN PIXELS

TABLE II
VERTICAL ERROR (MEAN VALUE STANDARD DEVIATION). VALUES IN PIXELS

TABLE III
ENDPOINT ERROR (MEAN VALUE STANDARD DEVIATION) AFTER SCAN CONVERSION. VALUES IN MILLIMETERS

correlation value the p-value was computed testing the hypoth-

esis of no correlation. The statistical signiÞcance of each re-

ported bias was measured with a t-test. Fisher’s z-transform

was used to compare the strengths of different cor-

relations. T-test was used to compare the biases

returned by the BA analysis.

Segmental strain values were considered and all segments

were included in the analysis. The three strain components

and were considered independently. Among the

different phases in the cardiac cycle, the strain at end systole

has been shown to be particularly relevant for diagnosis [12].

Hereto the accuracy in computing end-systolic strain values

was measured separately and will be presented in the results

section. Nevertheless, considering a single time instant reduced

the sample size to a point that statistical signiÞcance was never

observed. In order to have more statistically signiÞcant results,

and together to have a more exhaustive look at the strain

behavior over time, the analysis was repeated by including

multiple time instants obtained by sampling one frame out of

eight. Temporal sub-sampling was adopted to avoid correlation.

Let us Þnally note that no post processing operation such

as low-pass or median Þltering was performed on the esti-

mated displacement Þelds. This was done to have a direct

understanding of the relation between the data type (standard

beamforming and TO) and the accuracy possible in the compu-

tation of displacements.

V. RESULTS

A. In Silico Results

1) Accuracy in the Displacement Field: Tables I and II report

respectively the lateral and axial displacement errors measured

in pixels on the Þve simulated sequences before scan conversion

while Table III reports the errors measured in millimeters after

scan conversion. Mean values and standard deviations are com-

puted for each sequence by including all pixel estimates and all

frames. An analysis of the errors behavior over time is provided

by Fig. 4.

From Table I all algorithms exploiting TO images almost

consistently return in average more accurate lateral motion es-

timates than regular block matching on standard RF images,

with the only exception of sequence A4C1 where the PhCorr

algorithm performs the worst. This result reveals that the addi-

tional lateral information introduced by the TO framework can

be effectively exploited to compute more accurate estimates

of cardiac motion. Moreover among the considered algorithms

the proposed APBE motion estimator regularly produced the

estimates with the smallest mean error and the smallest vari-

ance, which reveals a superior accuracy and reliability. As

shown by Fig. 4(a) and (b), the higher accuracy of the APBE

method in the lateral direction was observed at almost every

time instant.

From what concerns errors in the axial direction, as shown by

Table II and Fig. 4(c) and (d), on one side both TPBE and Ph-

Corr algorithms performed very similarly to BM. This is easily

explained by the fact that lateral oscillations do not modify sub-

stantially the axial proÞle of the system PSF and hence no im-

provement is expected for the motion computation in that di-

rection. On the other side the proposed APBE estimator was

observed to produce in average slightly higher errors than the

other algorithm considered. Note otherwise that, despite an in-

crease in the average error, the error dispersion obtained by the

proposed algorithm was still the smallest among the considered

techniques. As a remark note that the fact that errors are much

higher in the axial direction than in the lateral one is explained

by the fact that, as mentioned in Section IV-B, axial displace-

ment on RF data can be easily one order of magnitude larger

than lateral ones (few pixels versus tenth of pixels).



Fig. 4. Errors in the estimated displacement displayed over time for the SAx3
sequence. First, second, and third row report the lateral error (in pixel), the axial
error (in pixel) and the endpoint error after scan conversion (in millimeters),
respectively. Mean error and its standard deviation are presented in adjacent
subÞgures. Each simulated cardiac cycle goes from end diastole to end diastole.
On each error plot end systolic frame is illustrated by a vertical dashed line. For
a more detailed understanding of the timing cf. the M-mode of the sequence in
Fig. 1(c).

The error after scan conversion is illustrated in Table III and

Fig. 4(e) and (f). Clearly, is the value of displacement com-

puted after scan conversion to represent the actual deformation

of the cardiac muscle in the physical space and hence to have a

meaning in the diagnostic process. In this case the proposed al-

gorithm is the one returning the displacement estimates with the

smallest mean error and standard deviation. Again this property

is persistently observed at almost all time instants.

Concerning statistical consistency, all differences reported in

this section were Þnd to be signiÞcant with as de-

Þned by the Friedman rank test. Note that spatial subsampling

of the displacement Þeld was performed prior to the statistical

analysis in order to avoid correlation between samples.

Clearly, the value of the measured errors is correlated with

the velocity proÞle during the cardiac cycle: large errors are ex-

pected in the instants of fastest motion as ejection and rapid in-

ßow while smaller errors are expected when the motion is slow

as at end systole and end diastole. This explains the bi-modal

behavior of the error curves in Fig. 4. To give better insights on

Fig. 5. Comparison between the errors computed by the proposed algorithm (in
red) and the mean value of the reference displacement Þeld (in green). Figures
(a), (b), and (c) correspond respectively to the errors in the lateral direction,
axial direction and after scan conversion as reported in Fig. 4(a), (c), and (e).

Fig. 6. Example of estimated motion Þelds on one diastolic (a) and one systolic
(b) frame of the short axis sequence. Color encodes the radial velocity compo-
nent according to the colormap in (c). White cross denotes the LV center here
located manually. Note how the estimated motion Þelds reßects the physiolog-
ical expansion and contraction of the cardiac muscle in these two phases of the
cardiac cycle.

this dependency, the error curves obtained with the proposed al-

gorithm are put in relation with the average true displacement

of the cardiac muscle in Fig. 5.

The spatial behavior of the estimation error for the four ap-

proaches considered is reported in Fig. 7. The error image is

relative to the 27th frame of the simulated SAx3 sequence and

illustrates the performance of each algorithm in a worst case sce-

nario. Indeed at that instant, belonging to the rapid ventricular

Þlling phase [cf. Fig. 1(c)], the highest average velocity over

the entire cardiac cycle was measured. The error maps conÞrm

that all estimators based on TO RF images outperform block

matching in estimating lateral displacements while the preci-

sion in the axial direction is very similar among the four so-

lutions. Among the four estimators, the APBE algorithm pro-

duces the errors with the smallest average value and the more



Fig. 7. Error images on frame 27 (maximum error) of the SAx3 sequence for the four considered algorithms: lateral error and axial error in the top and bottom
row respectively. All errors reported in pixels. The sub-captions report the mean error its standard deviation. (a) . (b) .
(c) . (d) . (e) . (f) . (g) . (h) .

TABLE IV
COMPARISON OF THE FOUR ALGORITHMS FOR ESTIMATION OR RADIAL STRAIN , CIRCUMFERENTIAL STRAIN AND LONGITUDINAL STRAIN IN

TERMS OF CORRELATION COEFFICIENT, BLAND-ALTMAN BIAS AND BLAND-ALTMAN LIMITS OF AGREEMENT . THE -VALUE BETWEEN BRACKETS REPORTS

THE STATISTICAL SIGNIFICANCE OF THE REPORTED VALUE. SYMBOL DENOTES VALUES STATISTICALLY DIFFERENT FROM THE ONE OF APBE.
STATISTICAL SIGNIFICANCE OF THE DIFFERENCES WAS MEASURED WITH THE FISHER’S Z-VALUE FOR AND WITH A T-TEST FOR

uniform spatial distribution. Note that the maximum error lo-

calized on the endocardial contour is due to the motion of the

mitral valve which interferes on the displacement computation

within the muscle.

For what concerns the BM algorithm, sub-pixel accuracy was

obtained in the lateral direction by interpolating of a factor 6

while no interpolation was employed in the axial direction. We

veriÞed that no relevant improvement in the motion estimation

accuracy was obtained by increasing those values.

2) Strain Analysis: Table IV compares the four algorithms

in terms of their accuracy in the computation of cardiac strain.

Multiple frames are considered in order to have a statisti-

cally relevant comparison. All algorithms exploiting TO were

observed to return more accurate strain estimates for all the

three directions. The proposed APBE algorithm was the one

producing in average more consistent estimates: it produced

the highest correlation for the two strain components and

, the smallest bias for the two components and

and the smallest standard deviation for . In the remaining

cases the TPBE algorithm was the most accurate, however

note that in those cases the differences with APBE were not

statistically signiÞcant, except for the bias of . Moreover

note that measured biases for the APBE algorithm were not

statistically signiÞcant for and .

The Bland–Altman plot of the four algorithms considered for

the radial, circumferential and longitudinal strain components

respectively are illustrated in Figs. 8, 9, and 10, respectively.

Examples of computed strain curves are provided in Fig. 11.

All the three algorithms exploiting TO produce strain curves

closer to the benchmark than BM. We measured the normalized



Fig. 8. Bland–Altman plot for the radial strain component . Horizontal line in each plot represents the bias while the two dashed lines represent the limits
of agreement .

Fig. 9. Bland–Altman plot for the circumferential strain component . Horizontal line in each plot represents the bias while the two dashed lines represent
the limits of agreement .

Fig. 10. Bland–Altman plot for the longitudinal strain component . Horizontal line in each plot represents the bias while the two dashed lines represent the
limits of agreement .

distance between the estimated strain curve and the benchmark

as

(16)

where is the benchmark global strain at time while

is the computed one. For all strain components, the APBE

algorithm returned the estimate with the smallest normalized

distance: for it was

and ; for it was

and

; for it was

and .

End-systolic strain values have been shown to be relevant for

the assessment of cardiac function. Given the size of the data

set, the number of end-systolic strain values were not sufÞcient

to have statistical signiÞcance. The results of the strain analysis

restricted to end-systole are reported for sake of completeness

in Table V. What qualitatively shown is that also in this case

techniques based on TO in average outperform BM (cf. biases

and standard deviations). Comparing the different phase-based

techniques becomes instead more complicated given the very

limited number of samples.

3) Computational Complexity: A Þnal issue concerns the

computational complexity. Fast processing is indeed particu-

larly desirable as far as medical ultrasound is concerned, since

the real-time capability is one of the main advantages of this

technique. All the considered algorithms were implemented in

MATLAB (R2011b, The Math-Works, Natick, MA, USA) and

executed on a desktop PC with a 3.47 GHz Intel Xeon X5690

processor, 12 Gb of RAM and running Windows 7. The RF

image size was of 4562 112 pixels for the SAx sequence and

6724 189 pixels for the A4C.

The most onerous step was the block-matching initializa-

tion, which on the SAx sequence took roughly 60 s/frame.



TABLE V
COMPARISON OF THE FOUR ALGORITHMS FOR STRAIN ESTIMATION. CORRELATION COEFFICIENT, BLAND–ALTMAN BIAS

AND BLAND–ALTMAN LIMITS OF AGREEMENT . STRAIN VALUES AT END SYSTOLE ARE CONSIDERED ONLY

Fig. 11. Comparison among the four computed strain curves and the bench-
mark. Global strain values (i.e., averaged over the entire muscle) are con-
sidered at each time instant.

This is clearly a limitation of the current implementation.

Nevertheless one should consider that real-time implementa-

tions of speckle-tracking exist and can be directly employed

to speed up the initialization procedure [67]. Concerning the

reÞnement instead, this took roughly 2.5 s/frame for the phase-

based estimators and 22 s/frame for BM. Again, the reported

times are certainly implementation dependent. In particular

more effective implementation can be adopted to decrease the

cost associated to BM. Nonetheless it is important to note the

computational complexity of the phase based estimators is con-

siderably inferior to the one associated to BM. Indeed, in the

Fig. 12. Sample images acquired with the UlaOp platform. Two acquisition
modalities on an apical view are compared in (a) and (b). The two acquisition
modalities on an short axis view are compared in (c) and (d). (a) Without
TO. (b) With TO. (c) Without TO. (d) With TO.

Þrst case, the displacement is directly given by the solution of

the two 3 3 linear systems of equations given by the least

squares solution of (10) and (11), while BM requires interpo-

lation to obtain sub-pixel accuracy and the iterative search of

the best match position within each block. For this reason a

considerable speedup over BM can still be expected even in

more optimized implementations.

B. In Vivo Results

The goal to this section is to show that the state of advance

of the proposed framework is beyond simple simulation and an

in vivo evaluation on real clinical recording is already possible.



Fig. 13. Zoom of the heart septum on the short axis view without (a) and
with (b) transverse oscillations.

Fig. 14. Strain curves computed with the proposed APBE algorithm on the
short-axis acquisition.

The proposed image formation technique with transverse

oscillations was implemented on a real scanner. In particular the

ultrasound researchplatformUla-op [52] equippedwithacardiac

probe model PA230 from Esaote (Esaote Spa, Genoa, Italy) was

used.The acquisitionswas performedby an experienced radiolo-

gist on one 25-year-old male healthy volunteer. In particular two

viewswereacquired:oneapical fourchamberandoneparasternal

short axis. In order to compare standard B-mode images and the

proposed TO beamforming, the RF lines of the two imaging

modalities were interleaved during the acquisition: every second

line corresponded to a conventional B-mode sector scan and the

other one used the beamforming strategy of Section II to provide

TOimages.The framerate forbothmodalitieswasof25 frames/s.

TheRFsignalswereacquiredat a sampling frequencyof50MHz.

The beam density was of 1 beam/degree. Due to memory limita-

tions, a total of 49 frames (2 s) for each mode could be acquired.

This was sufÞcient to obtain one complete cardiac cycle.

Fig. 12 shows one sample frame from each of the two views

when acquired with and without TO. Fig. 13 shows a selection

corresponding to the heart septum on the short axis view. From

the latter the difference in speckle pattern is evident.

Both sequences were processed with the APBE algorithm of

Section III. The strain curves for the radial and circumferen-

tial strain components computed from the SAx sequence are

reported in Fig. 14. The measured strain values are consistent

with what reported in literature for an healthy heart [68]. A thor-

ough clinical evaluation including strain and strain rate values

on healthy and pathological subjects falls beyond the scope of

this paper and will be made object of future studies.

VI. DISCUSSIONS AND CONCLUSION

The paper introduced a novel setup for improving cardiac

motion estimation with ultrasound. Despite the important pro-

gresses made in the Þeld even best performing techniques still

register a low accuracy in estimating displacement/strain values

in the lateral direction (i.e., perpendicular to the beam propaga-

tion). The proposed framework aimed at overcoming this lim-

itation by combining two elements: an unconventional beam-

forming technique and a dedicated motion estimation algorithm.

The beamformer was designed so to add oscillations in the

lateral direction. As already known from blood ßow imaging

and elastography such an acquisition scheme leads to an image

model intrinsically better suited for the estimation of lateral

displacements. We then presented an algorithm speciÞcally de-

signed to exploit the availability of a phase information in the

two directions. This was done by decomposing the ultrasound

image into two 2-D single-orthant analytic signals and assuming

time conservation of the two associated image phases.

A quantitative evaluation of the proposed setup was per-

formed in silico on Þve synthetic cardiac ultrasound sequences.

The comparison included block-matching on standard images

without transverse oscillations and other two phase-based

solutions exploiting the presence of oscillations in the lateral

direction. The obtained results revealed an higher accuracy in

the estimation of the cardiac motion when TO were employed.

In particular the proposed estimator were the most accurate

among the three phase-based algorithms. This better accuracy

reßected into a more robust estimation of the cardiac strain.

More speciÞcally the proposed setup was the one allowing in

average for the highest correlation with the reference strain

values, the smallest bias and the smallest limits of agreement

as computed with the Bland Altman analysis.

While the estimation of lateral displacements were improved

by the employment of the afÞne model, leading to an overall

higher accuracy on the motion Þeld after scan-conversion, we

acknowledge that the estimates in the axial direction were in

average slightly less precise than what obtained with the other

techniques considered. A possible reason is that a more complex

model (as the afÞne one) is more prone to over-Þtting than a

simple one (as the translation one) in the presence of noise. One

solution would be locally choosing for the model best adapted

to the data (translation or afÞne in our case) as proposed e.g., in

[69]. This possibility will be considered in future studies.

The synthetic evaluation is a Þrst necessary step towards a

more thorough validation including phantom experiments and

real patients, which will be the topic of future studies. In this

perspective an implementation of the proposed beamforming

technique with transverse oscillations on the UlaOP ultrasound

research platform was presented in the paper along with the pre-

liminary motion estimation results on one healthy volunteer. In

particular in this preliminary evaluation it was shown that the

extracted strain curves were consistent with what expected from

the literature.

An issue that requires consideration in view of a clinical

evaluation is how transverse oscillations are perceived by the

Þnal user, i.e., the physician. This evaluation must consider the



opinion of multiple experts and falls beyond the scope of this

paper. Nevertheless one should consider that several possibil-

ities exist to exploit transverse oscillations for motion/strain

estimation while visualizing images close to the standard

b-mode images currently of use in the clinical practice. One

possibility would be to acquire the two modalities in parallel

(possibly with a dedicated architecture for TO). The second

possibility would be extending envelope detection to the lateral

direction so to account for lateral oscillations. Interestingly this

2-D envelope could be directly obtained as the amplitude of

the single-orthant analytic signal computed in (5), and hence

would not require supplemental calculations.

Concerning the computational complexity, the generation

of transverse oscillations only implies modifying the receive

apodization function of the system and hence it does not in-

crease the computational demand. Instead for what concerns

the motion estimation algorithm its implementation in terms of

computational efÞciency is still sub-optimal (MATLAB imple-

mentation) and hence not competitive with the block matching

implementations present on commercial systems. Nevertheless

the proposed estimator is in principle less onerous than block

matching as no iterative research within a search window

is needed and no interpolation is needed to reach sub-pixel

accuracy. Moreover, being local, the proposed estimator is

intrinsically parallelizable and can hence take advantage of

parallel computation platforms as GPUs.

Future studies include an extension of the proposed setup to

3-D echocardiography. Despite 2-D still remains the modality

of choice in the clinical practice, 3-D US has shown to be

potentially more accurate in the quantiÞcation of cardiac

mechanics and, therefore, a more reliable diagnostic tool. For

what concerns the proposed framework, the extension of the

estimator to 3-D is straightforward, cf. [49]. For the beam-

forming of 3-D TO images, several approaches are possible.

First of all a matrix array will be necessary because a two

dimensional apodization function must be designed. Pihl and

Jensen and Pihl et al. proposed in [70] and in [71] respectively

a twofold 2-D approach where two different 3-D volumes are

formed to estimate 3-D vector motion maps: one with TO

oriented in the lateral direction and one with the TO oriented

in the elevation direction. In [72], Salles et al. proposed to

use instead a separable 2-D apodization function featuring

four Gaussian peaks to obtain directly volumes featuring both,

lateral and elevation oscillations.

APPENDIX A

DECOMPOSITION OF THE MOTION ESTIMATION PROBLEM

For one pixel of coordinates , using the analytical ex-

pression of the Jacobian matrix given in (8), the spatial phase

time consistency in (7) may be further developed as a system of

two equations

(17)

Replacing and in (17) by the afÞne model

in (9) and adding and substracting the two previous equations

leads to

(18)

Finally, by applying (18) for a block of pixels of coordi-

nates with running from 0 to , we obtain the two

systems of equations given in (10) and (11).
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