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APPROXIMATE CONTROLLABILITY VIA ADIABATIC
TECHNIQUES FOR THE THREE-INPUTS CONTROLLED
SCHRODINGER EQUATION*

FRANCESCA CARLOTTA CHITTARO ' AND PAOLO MASON #

Abstract. We consider a system described by a controlled bilinear Schrédinger equation with
three external inputs. We provide a constructive method to approximately steer the system from a
given energy level to a superposition of energy levels corresponding to a given probability distribution.
The method is based on adiabatic techniques and works if the spectrum of the Hamiltonian, as a
function of the control parameters, admits conical intersections of eigenvalues. We provide sharp
estimates of the relation between the error and the controllability time, and we show how to improve
these estimates by selecting special control paths. As a byproduct of our results we show that conical
intersections are stable with respect to general perturbations of the Hamiltonian and we also provide
some results on the regularity of the eigenfamilies along paths locally around conical intersections.

Key words. Schrédinger equation, quantum control, controllability, adiabatic methods, conical
intersections

AMS subject classifications. 93B05, 93C20, 81Q93

1. Introduction. A typical issue in quantum control concerns the controllability
of the bilinear Schrodinger equation

(1) i (oY ww ) wio),
k=1

where v belongs to the unit sphere of a (finite or infinite dimensional) complex separa-
ble Hilbert space H and Hy, ..., H,, are self-adjoint operators on 4. Here Hy,..., H,,
represent the action of external fields on the system, whose strength is given by the
scalar-valued controls wq, ..., u,,, while Hy describes the uncontrolled dynamics of
the system.

The controllability problem aims at establishing whether, for every pair of states
1o and 17 in the Hilbert sphere, there exist controls ug(-) and a time T" such that the
solution of (1) with initial condition ¥ (0) = vy satisfies ¥(T) = 1.

While the case where H is a finite dimensional Hilbert space has been widely
understood [3, 15], in the infinite dimensional case the answer is far from being
given. In particular, negative results have been proved when H is infinite-dimensional
(see [4, 30]). Hence one has to look for weaker controllability properties as, for in-
stance, approximate controllability (see for instance [7, 9, 13, 23, 25]), or controlla-
bility between subfamilies of states (in particular the eigenstates of Hy, which are
the most relevant physical states) or in suitably regular subspaces of the space of
square-integrable functions (see [5, 6]).
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2 F.C. CHITTARO AND P. MASON

Unlike most of the known controllability results, mainly obtained by means of
non-constructive arguments, the method proposed in this paper permits to explicitly
select control inputs steering the system from the initial state to an arbitrarily small
neighborhood of the given target state.

Adiabatic theory and conical intersections between eigenvalues constitute the
main tools of the control strategy we propose in this paper.

Roughly speaking, the adiabatic theorem (see [8, 24, 28]) states that the occupa-
tion probabilities associated with the energy levels of a time-dependent Hamiltonian
H(-) are approximately preserved along the evolution given by it)(t) = H(t)y(t), pro-
vided that H(-) varies slowly enough. This result works whenever the energy levels
(i.e. the eigenvalues of H(-)) are isolated for every t. On the other hand, if two
eigenvalues intersect, and provided that H(-) is smooth enough, the passage through
the intersections may determine (approximate) exchanges of the corresponding occu-
pation probabilities (see [28, Corollary 2.5] and [17]). For these reasons, adiabatic
methods are largely used in quantum control to induce population transfers (see for
instance the techniques known as Stimulated Raman Adiabatic Passage (STIRAP),
Stark-chirped rapid adiabatic passage (SCRAP)) and to prepare superposition states
[20]. The applications of adiabatic methods in quantum control, as a tool for ob-
taining controllability results, have already been exploited in previous papers (see for
instance [1, 10, 22, 33]). The general idea is to use slowly varying controls, taking
advantage of the adiabatic theorem, and “climb” the energy levels through the conical
intersections.

The method proposed in this paper is based on some ideas developed in [10] in
the case m = 2 for self-adjoint Hamiltonians with real matrix elements. It exploits a
generalization of [28, Corollary 2.5] stating that it is possible to arbitrarily recombine
the probability weights associated with two subsequent energy levels by following
(slowly) a suitable control path passing through a conical intersection between them.
One of the main limits of the results of [10] consists in the fact that only Hamiltonians
with real matrix elements (with respect to some suitable basis of the Hilbert space) are
considered, and only bounded operators are admitted as control Hamiltonians. Many
important classes of physical systems are thus excluded: for instance, spin systems in
magnetic fields (described by Pauli matrices), and, in infinite dimension, Schrodinger
Hamiltonians containing external fields coupled with the momentum. The purpose
of this paper is to overcome this issue by adapting the control strategy introduced
in [10] to the general case of self-adjoint Hamiltonians, assuming that three controlled
Hamiltonians, relatively bounded with respect to the uncontrolled one, are employed.
Preliminary results in this sense were discussed in [11].

The control strategy applies whenever a part of the spectrum of the Hamiltonian
operator is uniformly separated from the rest of the spectrum (as a function of the
control parameters), is discrete and, within it, each pair of subsequent eigenvalues
intersect in a conical intersection. When there exists such a portion of the spectrum,
called separated discrete spectrum, this control strategy permits to attain (approxi-
mately) a state having a prescribed distribution of probability (relative to the energy
levels of the separated discrete spectrum) starting from an eigenstate. In particular
this entails a controllability property, that we call spread controllability, which, al-
though weaker than the usual approximate controllability property, is more practical.
Indeed, the relative phases between pairs of components in the eigenbasis decompo-
sition are essentially uncontrollable since they evolve according to the gaps between
the corresponding energy levels. Furthermore, notice that this method allows us to
control the population inside some portion of the discrete spectrum, if well separated
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APPROXIMATE CONTROLLABILITY VIA ADIABATIC TECHNIQUES 3

from the rest, even in the presence of continuous spectrum, unlike many other classical
methods.

Concerning the precision of the method, an application of the adiabatic theorem
together with [28, Corollary 2.5] shows that the maximal error is of the order of the
square root of the control speed. On the other hand the precision of the transfer may
be remarkably improved if one follows some special paths in the space of controls;
namely, such paths permit to attain a state with a prescribed probability distribution
with an error of the order of the control speed. In practice, this means that in order to
guarantee a given precision one may significantly reduce the duration of the process,
whose extent constitutes one of the main disadvantages of the implementation of
adiabatic techniques.

From a technical point of view, the choice of three instead of two controlled
Hamiltonians leads to a different (and more involved) analysis of the properties of
conical intersections and of the special paths introduced in the control algorithm.
Also, many changes are due to the different regularity properties of the spectrum
and of its related objects in the case of possibly unbounded controlled Hamiltoni-
ans. These properties are carefully investigated (see Appendix A) by using tools from
perturbation theory. Notice that the choice of three controls is quite natural when
looking for eigenvalues intersections, since it is well-known, for Hermitian matrices or
within spaces of self-adjoint operators satisfying particular transversality conditions,
that the set of operators admitting multiple eigenvalues is a submanifold of codi-
mension three (see e.g. [2, 29, 31]). Moreover conical intersections do not constitute
a pathological phenomenon since all eigenvalue intersections are generically conical
in the finite dimensional case and in some physically relevant infinite dimensional
models (for reasons of space, this result will be presented in a future work). Conical
intersections are also structurally stable with respect to variations of the Hamiltonian
operator, as shown in Theorem 23. Concerning the relation between conical intersec-
tions and controllability properties of the bilinear Schrédinger equation, let us finally
mention [12].

The structure of the paper is the following. In Section 2 we introduce the notations
used throughout the paper, the main assumptions and definitions, and we adapt the
classical statement of the adiabatic theorem to our setting. In Section 3 we discuss
some properties of conical intersections and related results that allow to propose
the basic control strategy. In Section 4 we define special paths and, by means of a
series of technical results, we show that they can be included in the control algorithm
in order to improve its performance. As a byproduct, we get a structural stability
result concerning conical intersections. Some numerical examples are provided in
Section 5. In Section 6 we briefly mention some extensions of the control strategy
and of the controllability results obtained earlier. Appendix A gathers the technical
results concerning the regularity of the spectrum and of the spectral projections that
are needed throughout the paper.

2. Notations and preliminary results. We start this section by introducing
the notations that will be used in the rest of the paper.
For aset A C C and z € C, we denote by d(z, A) = inf,c 4 |z — x| the distance between
the point z and the set A.
For a function f(-) of a real parameter s, we use the following notation for its right
and left limits at sq:

f(s3) = lim_f(s).

S—>80
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4 F.C. CHITTARO AND P. MASON

Whenever v(s), s € [s1,s2] is a curve on R3 and Q(-) is a function of v € R3 then,

with abuse of notations, we denote by Q(v(r)) the derivative of the composition

Q(~v(+)) computed at r, that is Q(y(r)) := % (v(8))|s=r = %(’y(r))i—z(r). Similarly,
1

QO (y(r) = 2 Q((s))ls=r-

The scalar product of two vectors wi, wo in an euclidean space R* is denoted by
w1 - Wo, while the norm of w € R* is denoted by |w/|.

For a given vector v or matrix A the respective transpose is denoted by v7 and AT.
The inverse of the transpose of an invertible square matrix A is denoted with A=7.
Given a vector v = (v1,v2,v3) € C3, we denote its complex conjugate (v§,vs,vi) by
v* and its real and imaginary parts respectively by

Re(v) = (Re(v1), Re(va), Re(vs)) Jm(v) = (Im(vy1), Im(va), Im(vs)).

The symbol id is used to denote the identity operator on a vector space which is
specified at each occurrence, whenever not clear from the context.

Given a linear operator A defined on a Hilbert space, its domain is denoted as D(A),
the symbol o(A) denotes the spectrum of A, while the resolvent set p(A) is the
complement of o(A) in C.

2.1. General setting. Let H be a separable complex Hilbert space with scalar
product (-,-) and norm || - ||; let us introduce the following notion of relative bound-
edness between operators:

DEFINITION 1 (A-smallness and A-boundedness). Let A, B be two densely defined
operators with domains D(A) C D(B). We say that B is A-bounded if there exist
a,b > 0 such that |By| < a||A| + b||y|| for every ¢ € D(A). B is said to be
A-small if for every o > 0 there exists 8 > 0 such that || By|| < a|Ay| + B||¢| for
every ¢ € D(A). (The latter notion is called infinitesimal smallness with respect to
A in [26].)

Given a self-adjoint operator A on H, for every A-bounded operator B we define its
norm with respect to A as

1By
2 Blla= sup ———.
@) 1Blla= sw ol + I

This provides a norm in the space £L(D(A),H) of continuous linear operators from
D(A) (endowed with the graph norm of A) to H.
We consider the Hamiltonian

H(u) =Hy+u Hi +usHy + ’LL3H3,

with u = (uy, uz,u3) € R, and where H;, i = 0,...,3 satisfy the following assump-
tion:

(HO) Hy is a self-adjoint operator on a separable complex Hilbert space H, and H;
are Hp-small self-adjoint operators on H for i = 1,2,3. Moreover, Hy is bounded
from below, that is there exists a constant C' > 0 such that (¢, Hyyp) > —C[1||? for
every ¢ € D(Hp).

Under assumption (HO), [26, Theorem X.12] guarantees that H(u) is self-adjoint
with domain D(Hy) and bounded from below (uniformly for u belonging to any com-
pact subset of R3). Moreover, it is easy to see that for every u, Hy is H(u)-bounded,
and therefore H; is H(u)-small, for every i = 1,2,3, with constants a,b (as in Defini-
tion 1) that depend continuously on u.
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APPROXIMATE CONTROLLABILITY VIA ADIABATIC TECHNIQUES 5

Schrodinger Hamiltonians are typical Hamiltonian operators describing quantum
phenomena and can be represented in the form —A + V on the Hilbert space L?(12),
where  is a domain of R™, A is the Laplacian on @ (with Dirichlet or Neumann
boundary conditions) and V' :  — R has to be interpreted as a multiplicative operator
on L%(Q). In particular such Hamiltonian operators are unbounded operators. In
this context Hypothesis (HO) is thus intended to describe a Hamiltonian operator of
the previous form that can be controlled by means of three external inputs so that
Hy=—A+Vy and H; = V; for some multiplicative operators V;, for 0 < i < 3.

Finite dimensional representations of quantum systems are also common, for in-
stance in the description of spin systems. In this case the Hamiltonian operator H(u)
is a Hermitian matrix. Consider for instance the case of a spin-1/2 particle immersed
in a controlled magnetic field. In this case, H; are the Pauli matrices, and the controls
are the components of the magnetic field.

The dynamics of the quantum systems we consider are described by the time-
dependent Schrodinger equation

Q 2~ Hm)w).

Such an equation has mild solutions under hypothesis (HO), u(-) piecewise C' and
with an initial condition in the domain of Hy (see e.g. [26, Theorem X.70] and [4]).

We are interested in controlling (3) inside some portion of the discrete spectrum
of H(u). More precisely, we assume that (3) possesses a separated discrete spectrum,
according to the following definition.

DEFINITION 2. A separated discrete spectrum is a pair (w, %) where w is a do-
main in R® and ¥ a map defined on w that associates with each u € w a subset
3(u) of the discrete spectrum of H(u) such that there exist two continuous functions
f1, fo : w — R satisfying

o fi(u) < f2(u) and E(u) C [fi(u), fo(u)]  Vuew.
o infuc, infrco(m(w)\n@) AN, [f1(0), f2(u)])) > T for some T' > 0.

REMARK 3. Thanks to Proposition 26 and Lemma 28, in order to guarantee the
existence of a separated discrete spectrum for the Hamiltonian H(u) satisfying (HO),
it is enough that there exist some open interval I and some point Q such that o(H (1))N
I contains only a finite number of points. This in particular happens when H(Q) has
compact resolvent.

Notation We label the eigenvalues belonging to a separated discrete spectrum X (u)
in such a way that X(u) = {);(u),..., A\j4x(u)} for some non-negative integers j, k,
where A;(u) < -+ < Ajyp(u) are counted according to their multiplicity (note that
the separation of ¥ from the rest of the spectrum guarantees that k is constant).
Moreover we denote by ¢;(u), ..., ¢;4k(u) an associated orthonormal family of eigen-
states. Notice that in this notation \; does not necessarily correspond to the j-th
energy level of the system.

Our techniques rely on the existence of conical intersections between the eigen-
values, which constitute a well studied phenomenon in molecular physics (see for
instance [8, 16, 17, 21, 32]). In this paper we will adopt the following definition,
consistent with the one already given in [10] for the two-inputs case.

DEFINITION 4. Let H(-) satisfy hypothesis (HO). We say that @ € R3 is a conical
intersection between two subsequent eigenvalues A\; and Aj41 if Aj(@) = A\jp1(Q) has

This manuscript is for review purposes only.



6 F.C. CHITTARO AND P. MASON

multiplicity two and there exists a constant ¢ > 0 such that for any unit vector v € R3
and t > 0 small enough we have that

)\j+1(ﬁ + tV) — )\j(fl + tV) > ct.

See Section 5 for some examples of conical intersections in both the finite and infinite-
dimensional case.

To conclude this section, let us make some remarks on the regularity properties
and the asymptotic behavior of the eigenfamilies of H(u) in our setting. Notice
that in general the regularity properties of the Hamiltonian induce similar regularity
properties of the eigenfamilies (see e.g. Proposition 7 below). Moreover, it is well
known that the eigenvectors can be chosen analytic along straight lines u(-) possibly
passing through eigenvalues intersections (see [19],[27, Theorem XII.13]).

Let I be an interval and consider a C! curve u : I — R3. By direct computa-
tions we obtain that the following equations hold whenever \;(t) # A, (¢) are simple
eigenvalues of H(u(t)) with corresponding eigenstates ¢;(t), ¢, (t):

(4) Ni(t) = (u(t), (1 (t) Hy + 12 (t) Ho + s (t) Hz) i (t)),
(5)  (Am(t) = X(8) (1(1), b () = (du(t), (i () Hy + tia () Ha + ﬂS(t)H3)¢m(t)>~

Assume that A;(@) = Aj11(0@) and consider the half-line r(t) = @ + tv with v =
(v1,v2,v3) unit vector and ¢ > 0. Then, thanks to (5) and since each H; is Hy-
bounded, we have

lim (¢, (rv(t)),(viHy + vaHa + v3Hs) ¢ 41(rv (1))

t—0+

(6) = (¢}, (v1Hy + voHy + v3Hs)¢Y, ) = 0,

where ¢¥ and ¢7,; are the limits of ¢;(ry(t)) and ¢;11(rv(t)) as ¢ tends to zero.

2.2. The adiabatic theorem. In this section we recall a classical formulation
of the time-adiabatic theorem ([8, 18, 24] adapted to our framework. For a general
overview see the monograph [28].

Let H(u) = Hy —1—23’:1 u; H; satisfy (HO) and have a separated discrete spectrum
(w,X). Assume that the map I = [19,7¢] 2 7 = u(7) = (u1(7), u2(7), u3(7)) belongs
to C?(I,w). We introduce a small parameter € > 0 that controls the time scale, and
the slow Hamiltonian H(u(et)), t € [1o/€,7s/¢]. In these notations, 7 is a geometric
parameter used to describe the curve in the space of controls, while ¢ is the actual
time of the evolution along the control path.

We denote by U¢(t,tg) the time evolution (from ¢y = 79/c to t = 7/¢) generated
by H(u(et)), and with UZ(t,to) the time evolution generated by the Hamiltonian
H,(et), where H,(7) = H(u(r)) — icP.(u(7)) P, (u(7)) — ic P (u(r)) Pt (u(7)) is the
adiabatic Hamiltonian, P.(u) denotes the spectral projection of H(u) on ¥(u), and
P}(u) = id — P.(u). A crucial property of the adiabatic Hamiltonian is that the
corresponding evolution decouples the dynamics relative to the subspace Py (u)H from
the remainder of the Hilbert space, in the sense that

P (u(t)UZ (¢, to) = US (1, o) P (u(to)).

THEOREM 5 (Adiabatic Theorem). Assume that H(u) = Hg + Z?:1 u; H; sat-
isfies (HO) and has a separated discrete spectrum (w,X). Let I CR andu: 1 — w
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APPROXIMATE CONTROLLABILITY VIA ADIABATIC TECHNIQUES 7

be a C% curve. Then P, € C*(I,L(H)) and there exists a constant C' > 0 such that
for all To,7 € I, and setting to = T0/e,t = T/e, one has |U°(t,to) — US(t,t0)]] <
Ce (1 +¢lt —to]) . In particular

| P. ()T (£, to) — U (t,to) P (u(to)) | < 20= (1 + et — to]) -

Let us now assume that ¥ = {\;, \;11}; we can take advantage of the adiabatic
theorem to decouple the dynamics associated with the band ¥ from those associated
with the rest of the spectrum, in order to focus on the former.

Let W(7) denote the subspace spanned by the eigenstates associated with A; (u(7))J}
and Aj+1(u(r)). Since W(r) is two-dimensional for any 7, it is possible to map it
isomorphically on C? and identify an effective Hamiltonian whose evolution is a rep-
resentation of U (£, to)|w(ety) on C2. In particular, if we can find a C! eigenstate basis
{®1(u(r)), P2(u(r))} of W(r) (associated with a reordering {A;(u(7)), Az(u(7))} of
{Nj(u(r)), Aj+1(u(r))}), then the isomorphism U (7) : W(r) — C? is continuous. Rep-
resented in C?, the evolution U (-, to)|w(=t,) is governed by the Hamiltonian Hg; (et),
where H;(-) is the effective Hamiltonian, whose form is

<y (M) o )_‘ (<<1>1<u<f>>,<1>1<u<r>>> <<1>z<u<r>>,<i>1<u<r))>>
(7) Hea(r) ( 0 Ax(ur) ) T (@ (u(n),ba(u(r) (@2(u(r),da(u(r)) )’

with associated propagator Uz (t, to) = U(et)UZ (¢, to)U* (eto).
Theorem 5 implies the following.

THEOREM 6. Assume that (w,{\j, \j41}) is a separated discrete spectrum and let
u: I — w be aC? curve such that there exists a Cl-varying basis of W(-) made of
eigenstates of H(u(-)). Then there exists a constant C' such that for all 79,7 € I, and
setting to = 1o/e, t = 7/e,

[ (U=(t,t0) — U™ (et)Ugn (t, to)U (to)) w(eto) | < Ce(1 +elt — to]).

3. Conical Intersections and general control strategy.

3.1. Properties of conical intersections. Let \;(u), ;41 (u) denote two eigen-Jj
values of H(u), and assume that they are (locally) separated from the rest of the
spectrum. It is well known that the projection P, associated with the sum of the
corresponding eigenspaces is smooth with respect to u. More in general, the result
holds for any portion of the spectrum of H(u), in presence of a gap (see e.g. [28]).

On the other hand, the projections P;, Pj;1, associated respectively with A; and
Aj+1, are smooth with respect to u at any point such that A\; # A;i11, but they
are not necessarily continuous at the eigenvalues intersections. Nevertheless, along
regular curves passing through a conical intersection, it is possible to extend these
projections, obtaining operators whose regularity depends on the regularity of the
curve, as stated in the following result, proved in Appendix A.

PROPOSITION 7. Lety: I — R I = [~R,0], be aC*(I) curve such that y(0) = @
is a conical intersection between the eigenvalues \j and \j11 and y(t) # 0 for every
t € I, and consider its k-jet at the origin £y (t) = v(0) +>2;_; %tj %'y(t)h:o. Then
Pj(y(+)) is C* on [-R,0), it is C*~1 at the singularity, and

d d
lim — P;(y(t)) = lim — P;(¢x(t)), l=0,...,k—1,
Jim P ((0) = lim S Pi(6(t)

where the limits above hold in the operator norm. The same result holds for Pj41(y(+)).

This manuscript is for review purposes only.



8 F.C. CHITTARO AND P. MASON

306 Conical intersections have a characterization in terms of the non-degeneracy of a
307 particular matrix, which contains some geometric properties of the eigenspaces relative
308 to the intersecting eigenvalues, as shown below.

309 DEFINITION 8. We define the conicity matrix associated with two orthonormal
310 elements 1,19 € D(Hy) as

(1, Hivpa) (1, Hivpo)* (2, Hivpe) — (1, Hitp1)
311 M1, 02) = | (U1, Hatba) (1, Hatpa)* (1o, Hatha) — (1, Hat)r)
(U1, H3tpa) (1, Hatpa)* (1o, Hatha) — (31, H3t)1)

312 The following lemma can be proved by direct computation.

313 LEMMA 9. The quantity det M (1, 12) is purely imaginary and the function (11,12) —|j
314 det M(w1,19) is invariant under unitary transformation of the argument, that is if

315 (i:l> =U (i;) for a pair 11,12 of orthonormal elements of D(Hp) and U € U(2),

316 then one has det./\/l(zzl,lz;z) = det M (11, 2).

317 As a consequence of the result here above, the determinant of M(v1,12) depends
318 only on the complex space spanned by 17 and 5. Therefore, in a neighborhood of a
319 conical intersection between the levels Aj, Aj 11 we can define the following function:

320 (8) F(u) = det M(¥1,2)

321 where {t1, 12} is an orthonormal basis for the sum of eigenspaces relative to Aj, Aj41.
322 In particular, outside the intersection we can take, for instance, ¥ = ¢; and ¥ =
323 ¢;j4+1. Thanks to the continuity of P, which follows from Proposition 26, we obtain
324 that F is continuous (see [10]).

325 The following result characterizes conical intersections in terms of the conicity
326 matrix.
327 PROPOSITION 10. Assume that (w,{\j,\j11}) is a separated discrete spectrum

328 with A\j(Q) = Ajy1(@), for some @ € w. Let {41,192} be an orthonormal basis of the
320 eigenspace associated with the double eigenvalue. Then 1 is a conical intersection if
330 and only if M(¢1,12) is nonsingular.

331 Proof. Define ry(t) = @ + tv, where v is a unit vector in R?, and let ®y, 971 be
332 the limits of ¢;(rv(t)), ¢j+1(rv(t)) as t — 0T (recall that the eigenfunctions ¢;, ¢;41
333 can be chosen analytic along ry, for t > 0). Assume that the intersection is not conical.
334 Then for every € > 0 there is a unit vector v, = (v§,v5,v5) such that

335 %‘t:O"’ [/\jJrl(?"vE () = Aj(rv. (1) | <e.

By (4) and (6) we deduce that, if A, is an orthogonal matrix having v. as first row,
then the first row of the matrix AEM((;S}'E , ¢},i1) is equal to (0,0, a) for some a whose
338 absolute value is smaller than €. As a consequence

(=3}

ps

339 |det M(¢5=, ¢75,)| = |det (A M(97%,675,))| < Celalr;(u)| + B)?,
340  with C, o and § suitable positive constants, where we have used the fact that H; is

341  H(u)-bounded for i = 1,2,3. By arbitrariness of ¢, the conicity matrix is singular.
342 Let us now prove the converse statement: assume that u is a conical intersection
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and, by contradiction, that M (t1,1)2) is singular for every orthonormal basis of the
eigenspace associated with the double eigenvalue. We introduce the matrix

N Re ((1, Hipg))  Im ((¢h1, Hivbz))  ((2, Hiv2) — (Y1, Hitby))
M(W1,12) = | Re ((¢1, Havpo))  Tm ((yn, Hovpe)) ({2, Hatba) — (11, Hayhr)) |,
Re ((V1, Hapa))  Tm((p1, Harpa))  ((th2, Hatba) — (Y1, Hztpr))
)

and we notice that det M(11,19) = —2i det Mv(wl, ) so that M(1)1,15) is singular
if and only if M (11,12) is. The condition of conical intersection, together with (4)
and (6), implies that vZM( Y, #Y+1) = (0,0,a) for some a # 0, so that the third
column of the matrix M (6Y, ¢311) is never linearly dependent from the first two. In

particular the matrix Mv( s }’H) is singular only if the first two columns of the
matrix are linearly dependent. Thus, up to multiplying ¢, ¢7,; by phase factors, we
can always assume that (¢, H;¢Y, ;) € R, i =1,2,3.

Let us now fix a unit vector v € R? and let us call W the orthogonal complement
in R? of the vector (( Y HidY 1), (95, Ha9Y 1), ( }’7H3¢>;-’+1)). We have that v e W
and dim W > 2. By direct computations it is easy to prove that, for every w € W,
the limit basis {¢¥, ¢}, } is equal to {¢,¢7 1}, up to exchanges between the two
elements and up to phases.

For w € W let us consider the vector

<¢}V+1aHl¢;V+1> - <¢}V;H1¢;V>
T = (¢F1: Haofon) = (07 Hatl) |,
(071, HadT1) — (0F, Had})

which corresponds to the third column of M (¥, 9%, 1). Notice that the definition of
T, up to a sign, does not depend on the choice of w € W, by previous remarks. Since
T+, the orthogonal complement of T in R?, has dimension 2 there exists a non-zero
w € W N Y+, By definition of w we have that w - T = 0.

We get a contradiction, thus the matrix M(qb}’, (M ,1) must be nonsingular, and
therefore also M(¢Y, ¢Y, ) has to. 0

A peculiarity of conical intersections is that, when approaching the singularity
from different directions, the eigenstates corresponding to the intersecting eigenvalues
have different limits. The following proposition provides the relation between these
limits.

PROPOSITION 11. Let @i be a conical intersection between \j and Xj 1. Let v, v €]}
R3 be two unit vectors, and call ¢?7¢9+1 the limits as t — 0T of the eigenstates
¢;(ro(t)), dj+1(ro(t)) along a straight line ro(t) = w + tvo, and ¢}, ¢y, the limit
basis along the straight line ry(t) = u+tv. Then, up to phases, the following relation
holds:

) o7\ _ cos E. e Bsin= fg
Pl —efsinE  cosE )

where the parameters 2 = B(v) and 8 = B(v) satisfy the following equations:

2|6, Hvy)|
<¢(J)a Hv¢9> - < ?+1a Hv¢?+1>

(mod 27)
="" arg(¢], Hv¢j ) + €,

(10) tan 28(v) = (1)

(11) B(v)
where Hy =" | Hiv; and £ =0, 1.
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10 F.C. CHITTARO AND P. MASON

Proof. First of all, we notice that all pairs of orthonormal eigenstates of H(u)
relative to the degenerate eigenvalue can be obtained through the action of the group
U(2) on the pair ( ]Q, gbg 4+1)- However, if one takes into account the equivalence relation
(€P1ahy, eP24h9) ~ (11,v2) ¥ B1, B2 € R, it is enough to consider the transformations
of the form (9). If v = +vq, then (¢, Hy¢9,,) = 0 by (6), and we can assume
E(v) = kn/2 for some integer k, while 8(v) can be any real number. If v is not
parallel to vq then, as a consequence of Proposition 10, v M( ?, gbg.) 1) is not parallel
to v M( (J)», ?+1)7 so that ((b%Hv jQ+1> # 0. The two cases defined by (10)-(11)
follow from <¢;’ Hv¢}'+1> = 0, once we replace MM with the expression given
in (9). |

It can be seen that not all the solutions of (10)-(11) provide the correct trans-
formation (9), which, nevertheless, is easy to detect. The good solutions of (10)-(11)
constitute four branches which are continuous with respect to v, and they can be
constructed as follows. Let w(s), s € [0, 5], be a curve joining vo to v such that
w(s) ¢ {vg,—vo} for every s € (0,3); for conical intersections, it is possible to as-
sociate with such a curve a continuous solution (E(w(s)), 8(w(s))) of (10)-(11) with
Z(vp) = 0 and compatible with (9). In particular, if we choose E(v) satisfying (10)
with & = 0, it is easy to see that E(w(s)) € [—7/2,0] for s € [0,5], from which
one deduces that the final value E(v) = E(w(5)) is independent of the chosen path
and continuously depends on v. Moreover, it is easy to see that E(—vy) = —m/2.
Similarly B(v) = S(w(3)) is independent of the chosen path and continuous outside
{vo, —vo}. Note that the fact that S is discontinuous at —vg implies that the corre-
sponding limit basis ( HEM 1) has a discontinuity at —vyg, that is, its limit depends
on the path. We can repeat the same argument choosing Z(v) satisfying (10) with
¢ = 1 and with initial condition Z(vy) = 0. The other two continuous branches are
obtained choosing the initial condition E(vg) = 7.

3.2. The basic control algorithm. Let us consider the following controllability
problem.

Let H(-) satisfy (HO) and have a separated discrete spectrum (w,X) with X(-) =
{Do(), .-, A()}. Then, given n > 0, u®,uf € w, j € {0,...,k} and p € [0, 1]
such that Zf:op% =1, find T > 0 and a path u : [0,T] - w with u(0) = u® and
u(T) = uf such that

k
[%(T) = pre™ gy (uf)|| <,
=0

where () is the solution of (3) with ¥(0) = ¢;(u®), and Vyo,..., € R are some
possibly unknown phases.

If all levels are connected by means of conical intersections occurring at different
values of the control, the results obtained in the previous section provide the basic
elements to construct a family of control paths solving the problem here above. This
can be done by taking advantage of the following proposition, which describes the
spreading of occupation probabilities induced when a path in the space of controls
passes through a conical intersection.

PROPOSITION 12. Let @i be a conical intersection between the eigenvalues Aj, Aj41.
Consider the curve 7 : [0,1] — w defined by
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APPROXIMATE CONTROLLABILITY VIA ADIABATIC TECHNIQUES 11

for some T € (0,1) and some unit vectors wo,v. Then there exists C' > 0 such that,
for any e > 0,

I (1/e) = me™ d;(v(1)) — m2e™2 611 (4(1))]| < CVe

where V1, U2 € R, ¢(-) is the solution of equation (3) with ¥(0) = ¢;(v(0)) corre-
sponding to the control u: [0,1/c] = w defined by u(t) = y(et),

m = |cos (E(v)) |, m2 = [sin (E(v))],

and E(-) is the only solution of equation (10) with & = 0 such that E(v) € (—m/2,0]
for v #£ —wyq, and E(—wg) = —7/2, where the limit basis in (10) is given by the
limits ¢;(v(T7)), ®j+1(v(T7)), respectively.

Proof. We consider the Hamiltonian H(u(t)), t € [0,1/¢]. Since the control
function u(-) is not C? at the singularity, we cannot directly apply the adiabatic
theorem. Instead, we consider separately the evolution on the two subintervals (in
time t) [0,7/¢] and [T /e, 1/€]. Since the eigenstates ¢;(u(t)), ¢;41(u(t)) are piecewise
C*, we can apply [28, Corollary 2.5] and obtain that there exists a phase 6; (depending
on ¢) such that

[ (7/e) = 6, (v(T7))II < C' Ve,

for some constant C’ > 0. By Proposition 11, this implies that
l(7/e) = e (cos B(v) @5(1(71)) = e M sinE(v) ¢4 (1(7)) ) | < C'VE,

with E(v) as in the statement of the proposition and 3(v) = arg(¢}, Hy¢} ;). By
applying [28, Corollary 2.5] also in the time interval (7/e,1/e] we get the thesis. O

For control purposes, it is interesting to consider the problem of determining a
path that induces the desired transition in the case in which the initial probability is
concentrated in the first level and the final occupation probabilities 77 and 73 are pre-
scribed. For a given line reaching the conical intersection, the outward directions that
provide the required spreading of probability are given in the following proposition.
The proof easily follows from Proposition 11.

PROPOSITION 13. Let @i be a conical intersection between the eigenvalues Aj, Aj41,
and let 71, m be positive constants such that % + 75 = 1. Consider the line r(t) =
a+ (t — 7)wo, t € [0,7], for a unit vector wog € R and some 7 € (0,1), and set
¢3 = 6;(r(77)) and ¢, = 6,11 (r(77)).

Then the locus formed by the directions v € R3 that give rise to transformation (9)
with mp = | cos 2(v)| and mo = |sin E(v)] is given by the following expression whenever
1 ¢ {Ov 1} N

M(o;, ?+1)_T(’C)7

where IC = {(Q:,y,z) ER3: /22 +92 = %z} Otherwise, if my = 0 then v = wyg
and if m =1 then v = —wy.

The controllability problem presented at the beginning of this section can be solved
taking advantage of the results shown above. The strategy consists in constructing
a piecewise C? path joining u® with u/ that passes through the conical intersections
a; between the j-th and the (j + 1)-th levels, j = 0,...,k — 1, and avoids any
other degeneracy point. The tangent directions at the conical intersection are chosen
according to the probability weights p?, as explained in Proposition 13.
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12 F.C. CHITTARO AND P. MASON

Fic. 1. Construction of the path v(-). The corners at the points u;, corresponding to conical
intersections, are chosen in such a way that they induce the desired spreading.

For simplicity we assume that ¥ (0) = ¢o(u®); in the other cases a path can be
obtained similarly. We set v(0) = u® and, for some 0 < 79 < 1 we choose 7|[g,~]
in such a way that v(79) = up and all the eigenvalues \;(~(7)) are simple for every
I =0,....,k and 7 € [0,79). Moreover, y(-) is chosen tangent to a segment in a
neighborhood of tyg. The rest of the path is then constructed recursively as follows.
Assume that the path has been defined up to time 75, for some j =0,...,k — 2, with
7(7j) = 1, and that it is tangent to a segment of direction v, in a neighborhood of
u;. Then 7|, 7,,,], where ;11 € (75, 1), is chosen to be tangent, in a neighborhood

of 11, to a segment directed as v;', where v;' is obtained applying Proposition 13 with

wo =V, T = p;/ Zf:j p? and m = /1 — 7. Moreover Ylir;7y1) 18 such that
Y(Tj+1) = @j41 and is tangent to a straight line on a neighborhood of @1;41. The last
arc defined on (73,_1, 1] is simply constructed by joining 11 with u/, taking care
of choosing () tangent to the outward direction obtained through Proposition 13,
in a neighborhood of tx_1. To avoid highly non-homogeneous parameterizations, the
path (-) can be reparameterized by arc-length. The geometric construction of the
path is represented in Figure 1.

Let us now reparameterize the time by setting ¢ = 7/¢, for some small positive e.
When we are far from all the conical intersections it follows from Theorem 5 that the
evolution of H(vy(et)) conserves the occupation probabilities relative to each energy
level A;, 1 =0,...,k, with an approximation of order €. Similarly, in a neighborhood
of the conical intersection between A; and Aj4q1, 7 = 0,...,k — 1, the evolution of
H(v(et)) conserves the occupation probabilities relative to each non-intersecting en-
ergy level with an approximation of order . The occupation probabilities relative to
the j—th and (j + 1)—th levels are instead estimated by combining Theorem 5 with
the estimate provided by Proposition 12.

Summing up, we obtain the estimate

k
lo(1/e) = S e én(uh)| < CVE,
=0

for some Yy, ..., € R and some C' > 0 depending on the path ~(-) and on the gaps
in the spectrum.

4. An improvement of the efficiency of the algorithm: the non-mixing
field. The problem of reducing transition times is quite important in quantum con-
trol, in particular for the need of preventing decoherence. In this section we show how
to construct special paths in the space of controls that permit to speed up the process:
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APPROXIMATE CONTROLLABILITY VIA ADIABATIC TECHNIQUES 13

indeed, the error accumulated when following these paths is inversely proportional to
the total time of the transition, while the basic strategy described in Proposition 12
guarantees an error scaling with the inverse of the square root of the total time, so
that shorter times are sufficient to guarantee a prescribed accuracy.

Let us consider a pair {Aj, \j41} of eigenvalues separated from the rest of the
spectrum in a certain open set w C R3, according to Definition 2, and intersecting only
at U € w where they form a conical intersection. We are interested in the dynamics
inside the subspace P,#H, where P, denotes the projection associated with the two
levels {\j(u), Aj41(u)} for u € w. To improve the algorithm described in the previous
section, the idea is to cancel the off-diagonal terms in the effective Hamiltonian (7),
which are responsible of the error of order /¢ in the estimates given in [28, Corollary
2.5] and in Proposition 12. In order to do that, we choose some special trajectories
in w along which the term (¢;, (;.SjH) is null.

We denote the first column of the conicity matrix M (¢1,12) by m(i1,12) and
its components (11, H;15) as m;, and we define the vector

(12) X (11, 2) = Im(m(e1,1h2)) X Re(m(yh1, ¥2)) = Im (mamj, mam}, mym3)"

where x denotes the cross product.

REMARK 14. Let us remark that the vector X (11,2) is invariant under phase
changes in the argument, that is X (Y1,12) = X (e’P14h1, €P24)5). Notice however that

X(Y1,92) = =X (Y2, 91).

DEFINITION 15. Given a conical intersection u, the vector field

Xp(u) = X(¢;(u), ¢j11(u)),
defined in w\ {u}, is called the non-mizing field associated with .

The non-mixing field is smooth in its domain of definition. From (5) and (12), we
have (¢, ¢;4+1) = 0 along its integral curves. Moreover, a simple computation leads
to

(Y2, Hivp2)—(Y1,H11)

1
(13) X(ll)l, 7/)2) : ( (2,Hatp2)—(1,H291) > == detM(¢1v w2)v
($a,Hatpa)— (w1, Haypn) ) 20

which implies the following result.

PROPOSITION 16. Let u be a conical intersection and y(-) C w\{u} be an integral
curve of the non-mixing field. Then

4
dt

1
Mo+ (3(0) = X (v(0)] = 5 F (@),
where F(-) is defined in (8). In particular, all the integral curves of the non-mixing
field starting from a punctured neighborhood of the conical intersection reach it in
finite time (up to a time reversal).

Without loss of generality, we can assume that @ = 0. Denote every u €
R? by u = pv, where p is its module and v the versor. Let us call u(p,v) =
m(¢;(p,v),d;+1(p,v)), where ¢;(p,v), ¢j11(p, v) denotes a choice of the eigenstates
relative respectively to A;(pv) and Ajy1(pv) (extended by continuity for p = 0). We
remark that p(p, v) is defined up to a phase. Finally, set X, (p,v) = Xp(pv). Notice
that, for different values of v, X,,(p,v) has a priori different limits as p tends to 0.
The following estimates hold.
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LEMMA 17. Assume that 1 = 0 is a conical intersection. Then the inequality
|(p,v) - v| < Cp holds in a neighborhood of 0 for some constant C > 0 uniform with
respect to v.

Proof. Up to shifting Hy by a multiple of the identity we may assume \;(0) =
)\j+1(0) = 0. Then

pi(p,v) - v = p(p;(p,v), (viH1 +v2Hs +v3H3)9;11(p, V))
= —(9j(p,v), Hopjt+1(p,v)) = —(j(p, V) = Pog;(p, V), Hopj+1(p,V))-

Assumption (HO) implies that

3
1Hobj11(p, VIl < [Nja(pv) + 0 Y I Hidja(p, v)I| < cp,

=1

for some ¢ > 0, locally around the intersection. By smoothness of the projection, we
get that

’<¢j(pv V) — Po¢j(PaV)»Ho¢j+1(,07 V)>| < C/)?,
for a suitable C' > 0, hence we get the thesis. 0

We are now ready to prove the following result, which provides some information
on the behavior of the trajectories of the non-mixing field.

PROPOSITION 18. With the notations introduced above and for p small enough,
there exist three constants ci,ca,c3 > 0 such that ¢y < |p| < ¢o and |V| < ¢3 along the
trajectories of the non-mixing field.

Proof. Direct computations lead to the equations

p=X,-v, v=—(X,—(X,-v)v).

X I

The upper bound for |p| comes easily from the H(u)-boundedness of H; for every i.

From (13) we get that |X),| > ¢ for some ¢ > 0 in a neighborhood of the singularity,
which implies that the sinus of the angle between Jm(u(p,v)) and Re(u(p,v)) is
uniformly far from zero. As a consequence of this fact and of Lemma 17, for any unit
vector z in the plane spanned by Jm(u(p, v)) and Re(u(p, v)) one has |z - v| < ép for
some ¢ > 0 and p small enough. The orthogonal projection of v on that plane may
be written as (v - ¥)¥, where v is a unit vector. Then

X v =X (v = (v-9)0) [ = V1= (v-9)2|X,] > (1 - &p?)| A,
and
| X — (X V)P = |Xu|2 — (X v)? < 2@2p2|26'#\2.
The thesis follows. 0

The following proposition is a generalization of [10, Proposition 5.9] in the three
dimensional case. The proof follows the same lines, thanks to Proposition 18, and is
thus omitted.

PROPOSITION 19. For every unit vector v in R3 there exists an integral curve
v :[-n,0] = w of Xp with v(0) =0, n > 0, such that lim;_,o- % = V.
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Thanks to Proposition 18, the integral curves of the non-mixing field are C* up to
the singularity included. In particular, they satisfy the hypotheses of Proposition 7
with £ =1, so that the projections P;(u) and P;;(u) on the eigenspaces relative to
the intersecting eigenvalues are C' along the integral curves of the non-mixing field
outside the singularity, and can be continuously extended at the singularity. On the
other hand, P, is C' along such curves, singularity included.

We remark moreover that, if  : [tg, 1] — R? is an integral curve of the non-mixing
field such that \j(v(¢)) # Ajy1(y(t)) for t € [to,t1), by definition of the non-mixing
field, it holds

(14)  B(Oy)Pa(v(t) =0 Pia(v(1)F;(x(t)) =0 Vi€ [to,t1).
We have the following.

PROPOSITION 20. Along every integral curve of the non-mizing field, there is a
choice of the eigenstates relative to the intersecting eigenvalues which is C* up to the
singularity included.

Proof. Let v : [=T,0] — R3 be an integral curve of Xp such that v(0) = u is
a conical intersection between A; and A;i ;. Outside the singularity, the eigenstates
P, (v
" - 12, (D)3
some 1 € H satisfying P;(y(¢)) # 0 on [0,T] (up to reducing T'). Thus ¢;(¢) is a
normalized eigenstate of H(vy(t)) relative to A;(y(¢)). In order to prove that ;(t) is
C! it is enough to prove that P;(v(t)) is. Since Pj(y(t)) + Pj41(v(t)) = Py for t €
[=T,0), and by (14), we get that P, P;(y(t)) = P;(v(t)P;(v(t)) = Pi(v()) Py).-
Therefore

Pi(v(t)) = Py Pj(v(1)) + Pty Py (7)) = Pty Pi(7(£)) + Py (7(£)) Poyay.

where the right hand side has limit for ¢ — 0.
We can repeat the same procedure to show that there is a choice for ;11 (t) such
that ¢;41(t) has limit for ¢ — 07. ad

are well defined, up to a phase. To fix the phase, we set ¢;(t) =

A suitable improvement of the regularity properties provided by Proposition 20
is actually needed in order to apply Theorem 6 along the integral curves of the non-
mixing field, around conical intersections. This is achieved by the next result.

PROPOSITION 21. In a neighborhood of a conical intersection, the integral curves
of its associated non-mixing field are C* up to the singularity included. Moreover, we
can choose C* eigenstates 1,1 41 along such a curve, up to the singularity included.

Proof. Let «y : [=T,0] — R? be an integral curve of Xp such that v(0) = @ and
|%(t)| > 0 for every t € [—T,0] (this is true up to choosing T sufficiently small), and
define the eigenstates 1;(-),1;41(-) as in Proposition 20.

For simplicity, we denote by A;(t), Aj+1(¢) and P;(t), Pj+1(¢) the j-th and (j+1)-th
eigenvalues and the corresponding spectral projections at v(t). We prove by induction
that, for every positive integer h, (), \i(-), P,(-) and H;P;(-) are C* on [T, 0], where
l=j,7+1and i =1,2,3. The proposition then follows immediately.

For every non-negative integer h, whenever the h-th order derivatives of P;(-) and
H;P,(-) are well defined, the following inequality holds

V(P () = B ) Ul o) (L) B (5) = B ) P (1)
+ 2 hils) = IR ()] + 177 (s) = BV @)
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In particular, thanks to Proposition 20 and since H; is H((s))-bounded (uniformly
with respect to s), this yields the continuity of H;P;(-) on [T, 0] and the initialization
step of the induction. Let us now take h > 0; we prove that, if A;(+), P;(+) are C" and
H;P,(-) is C"~1, then HiPl(h)(-) is continuous. Indeed, by differentiating h times
the equality H(y(-))Pi(-) = M(-)P;(-) and exploiting the regularity assumptions on
Ai(), Pi(+) and H;P,(-) we get that H(’y(-))Pl(h)(-) is continuous in [—7,0]. Since
H; is H(~(s))-bounded we deduce that ||H1-Pl(h)(s)|| is uniformly bounded on [T, 0].

Then, the continuity of HiIDI(h)( -) follows from the above inequality.

Assume now that (-), \;(-), P(-) and H;P,(-) have been proved to be C", for
h < k — 1. Then, by definition of Xp it turns out that () is C* in [-T,0] and,
applying (4), we obtain that \(-) is C¥ in [T}, 0] too. Let us show that Pj(-) is C*.
Note that P;(-) = P Pi(-), where P, .y is C* in [T, 0], because of the regularity of
4(-). Then, by inductive hypothesis, P;(-) is C* if and only if P,y(‘)Pl(k)() is continuous
in [-T,0]. We can develop Py(t)Pj(k)(*y(t)) as

k k k k
PPV (1) = P (t)PY)) — P(t) P, (1) + Pia ()P (2).

The first term in the right-hand side is continuous in [T, 0]. By (14), it follows that

% (Pj(t)PjH(t)) = 0. Then, by inductive hypothesis, we get that Pj(t)l-’j(_lfr)1 (t)

is continuous in [—7,0]. By a symmetric argument, Pj+1(t)Pj(k) (t) is continuous

in [-T,0]. We deduce that Pv(t)Pj(k)(fy(t)) is continuous in [T, 0], and so is Pj(k)(~)
jk)l(-)). Since, as shown above, HiPl(k)(-) is continuous in [T, 0]
forl=3j,7+ 1 and i = 1,2,3, the proof of the proposition is concluded. 0

(and, by symmetry, P

We are now ready to state the main result of this section, namely we show how
the curves tangent to the non-mixing field allow to improve the performances of the
control algorithm presented in Section 3.2.

THEOREM 22. Let H(u) = Hy + u1 Hy + usHy + usHs satisfy hypotheses (HO).
Assume that (w, { Ao, ..., A\t }) s a separated discrete spectrum for H(u) and that there
exist conical intersections G € w, 7 =0,...,k — 1, between the eigenvalues \j, \j11,
with \(0;) simple if | # j,j+1. Then, for every u® and u/ such that the eigenvalues
A, 1=0,...,k are non degenerate at u® and u’, for every ¢ € {¢o(u®),..., ¢r(u®)},
and p € [0,1]*+1 such that Z?:o p? =1, there exist C' > 0 and a continuous control
() : [0,1] = R™ with v(0) = u® and (1) = uf, such that for every ¢ > 0

k
(15) [ (1/2) = > pjeid;(ul)|| < Ce,
§=0

where (+) is the solution of (3) with ¥(0) = &, u(t) = y(et), and Vo, ..., € R are
some phases depending on € and .

Proof. The strategy is analogous to the one presented in Section 3.2 and is based
on the construction of a suitable piecewise smooth path joining u® with uf that
passes through all the conical intersection; in particular, we assume that the path
v :[0,1] — w satisfies v(0) = u®, (1) = v/ and v(rj) = 4;, j =0,...,k — 1, for
some 0 < 79 < --- < Tg—1 < 1. The only difference concerns the construction of
the path in the neighborhoods of the conical intersections: indeed, in these regions
the path is chosen to be tangent to the non-mixing field. At the intersection, the
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APPROXIMATE CONTROLLABILITY VIA ADIABATIC TECHNIQUES 17

inner and outer directions are selected according to Proposition 13, as explained
in Section 3.2, and the existence of corresponding trajectories tangent to the non-
mixing field is guaranteed by Proposition 19. Far from all the conical intersections the
evolution of H(vy(et)) conserves the occupation probabilities relative to each energy
level \;, I = 0,...,k, with an approximation of order €. Let us now estimate the
probability distribution obtained after the passage through the conical intersection
Uug. Since the path is tangent to the non-mixing field, we can apply Theorem 6 in order
to study the evolution inside the space Py)H, where Py is the spectral projection
associated with the two levels {\g(u), A1(u)}. For 7 in a left neighborhood of 7y, the
effective Hamiltonian and its associated evolution operator U; are diagonal, and this
implies the existence of a phase 6y (depending on ¢) and of a positive constant Cy
such that [|1(79/€) — €0 o ((15))|| < Coe, where 9(-) is the solution of equation (3)
with 1(0) = ¢o(7(0)) corresponding to the control u(t) = vy(et), defined on [0,1/¢].
By Proposition 11, this implies that

l(ro/e) = e (cos Bv) do(x(ri)) — e~ sinE(v) éu(v(r3))) I < Cos,

with E(v) and B(v) satisfying equations (10)-(11), and v is the outer direction.

Since the effective Hamiltonian is diagonal also for 7 belonging to a right neigh-
borhood of 7y, we conclude that there exist two phases oy and «; (depending on 7
and ¢) and a positive constant Cy such that

[ (r/e) = €*°py do(1(7)) = /1 = p§ $1(3(7))] < Coe.

Since analogous estimates hold for the passages through any other conical intersection
and outside the corresponding neighborhoods the theorem is proved. ]

To conclude this section, we present below a result providing some information
on the structural stability of conical intersections based on the properties of the non-
mixing fields.

THEOREM 23. Assume that H(u) = Hy + ui Hy + usHy + uzHs satisfies (HO)
and admits a separated discrete spectrum (w,{\;,\j41}). Let @ € w be a conical
intersection for H(u) between the eigenvalues \; and \j+1. Then for every ¢ > 0

there exists 6 > 0 such that, if H(u) = Hy + uy Hy + ug Hy + us Hs satisfies (HO) and

3

> H; - Hillm, <6,
=0

then the operator ﬁ(u) has a separated discrete spectrum (w, {;\j,S\j+1}) and it pos-
sesses a conical intersection of eigenvalues at 01, with |[u —u| <e.

Proof. First of all, by equivalence of all norms || - || (), without loss of generality
we can assume that u = 0. We notice that our assumptions guarantee that in a
neighborhood of the conical intersection the eigenvalues A; and \j;; are well sepa-
rated from the rest of the spectrum. Continuous dependence of the eigenvalues with
respect to perturbations of the Hamiltonian (see Lemma 28) ensures that, if § is small,
then H(-) admits two eigenvalues Aj, Aj41 close to Aj, Aj41. Moreover {A;,Aj41} is
separated from the rest of the spectrum, locally around . From the conicity of the
intersection between A; and Aj41, there exists € > 0 small enough such that |F(u)| > ¢
for some ¢ > 0 on B(1q,¢) and, moreover, by Proposition 18 the vector field Xp (up
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18 F.C. CHITTARO AND P. MASON

to the sign) points inside the ball B(u,¢) at every point of its boundary. If ¢ is small
enough then j\j # 5\j+1 on 0B(1,¢) and the gap between the two eigenvalues can be
assumed to be of order . Therefore we can define the conicity matrix M associated
with H(-) and the function F(u) = det M(3;(u),;11(u)), where {1;(u), ;41 (u)}
is an orthonormal basis for the sum of eigenspaces relative to {\;(u), Aj1(u)}. Since
the conicity matrix depends continuously on the control operators, with respect to
the norm || - || g, and as a consequence of Lemma 9 and Proposition 26, we can take
d small enough such that |F'(u)| > ¢/2 on B(u,¢). This allows us to define, whenever
5\j * ;\j+17 the non-mixing field Xp associated with H(-) and corresponding to the
band {;\j, 5\j+1}; thanks to Proposition 16, up to a time reversal the time derivative
of 5\j+1 — S\j along the integral curves of Xp is smaller than —c/4. By Corollary 27
if ¢ is small enough, then Xp points inside B(u,¢e) at every point of 0B(u,¢). Any
trajectory 4(-) of Xp starting from B(u,e) remains inside B(u,¢) in its interval of
definition and reaches in finite time a point u corresponding to a double eigenvalue
(@) = Aj41(@). The conclusion follows from Proposition 10. 0

5. Examples. Let us first consider a finite dimensional example; let H(u) be
the Hamiltonian in u(3) defined by

(16)  Ho = (§§§>’ Hi = (—(1)1'(1)_(1)1), Hy = (§i2é>’ Hs = (31% 81>'
The Hamiltonian H(-) admits a double eigenvalue at u = 0 corresponding to the
two lowest levels. A simple computation leads to det M(ej,e2) = —2i where ¢; =
(1,0,0)7, e = (0,1,0)7 form a basis of the double eigenspace at 0. Thus the eigen-
value intersection is conical. Moreover, at the point u = (1/2, —1/4,0), the second and
third eigenvalues degenerate, and the intersection is conical: indeed, the determinant
of the conicity matrix corresponding to these two levels is equal to 4i/3.

Figure 2 describes the behavior of the trajectories of the non-mixing field relative
to the first two eigenvalues of H(-). Consistently with the results shown above, the
flow corresponding to the non-mixing vector field allows to identify two conical inter-
sections, one of them being the origin, among the first two levels. In particular, the
trajectories converge or diverge from them, locally.

Fic. 2. Trajectories of the non-mizing field relative to the two lowest eigenvalues for the
Hamiltonian corresponding to (16)

Let us consider the case in which the initial value of the control is uy = (-1, 0,0).

We want to approximately send an initial state ¢ concentrated in the lowest energy
level into a state whose probability distribution with respect to the three states is
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APPROXIMATE CONTROLLABILITY VIA ADIABATIC TECHNIQUES 19

(1/3,1/6,1/2). To do that, we first pass through the conical intersection between the
two lowest levels, leaving a probability of 1/3 on the lowest one and sending 2/3 of
probability to the other; afterwards, we pass through the conical intersection between
the two highest levels in order to send 1/2 of the total probability to the third level;
finally, we come back to the initial point.

Figure 3, on the left, shows the chosen path, which follows the non-mixing field in a
neighborhood of the conical intersection. On the right the distribution of probability
is depicted. The simulations were run on arc-length parametrized curves, with a
parameter € = 0.001.

'
1P1
'

10—
|
0.8 H
.

0.6

0.4

,,,,,,,,,,, ; il

021

/ L i L M L L L
| // 500 1000 1500 2000 2500 3000 3500

Fic. 3. Control path and probability distributions for the Hamiltonian corresponding to (16).
We use black for the probability of being in the second energy state, and the lighter shade of gray
for the probability of being in the highest one. The starting point is labeled as O and the conical
intersections (0,0,0) and (1/2,—1/4,0) respectively as P1, P2.

Consider now the Hamiltonian H(u) = —A 4+ w1 V7 + w2V — duz (VA + AV),

where
Vi(z) = x% + :E%, Va(x) = zoxs, A= (0, —x3/2,x2/2)T,
z = (21, 12,23) € 2= (0,1) x (0,v/3) x (0,V5)

with zero Dirichlet boundary conditions. We recall that the third controlled operator
acts on the elements of its domain as follows —i (VA + AV) ¢ = —i A-Vy—idiv(A).
This operator has the form of a vector potential coupled with the momentum. By
classical results (see [26, 27]), it is easy to check that H (u) satisfies hypothesis (HO)
and has a purely discrete spectrum with a finite number of eigenvalues in each compact
subset of R (this, together with Lemma 28, guarantees that H(u) possesses a separated
discrete spectrum).

We claim that H(0) (representing the potential well in Q) admits conical inter-
sections of eigenvalues. The eigenvalues and the eigenfunctions of H(0) take the form

2 42 2v/2 jomx j3TX
>‘j17j27j3 =7’ (]f+]§2+‘7€3>7 wj17j27j3 (I) = {1/\{*; Sin(jlﬂ-xl) sin (]2\/32) sin (]3\/53)
where j1, jo,j3 are strictly positive integers. In particular it is easy to check that
the fourth and the fifth lowest eigenvalues take the same value Aj 13 = A1 22 at the
origin, and, since the determinant of the conicity matrix is approximately 0.0297, we
deduce that the intersection is conical.

Let us consider an initial control ug = (1,0,0) and an initial state concentrated
on the fourth energy level of H(ug). Our aim is to induce an approximate transition
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20 F.C. CHITTARO AND P. MASON

to a state distributed between the fourth and fifth level of H(ug) with probability 2/3
and 1/3, respectively. We follow arc-length parametrized curves with a parameter ¢ =
0.003, and we compare the transition obtained following control paths with a different
behavior around the singularity. Namely, we consider a path which is locally an
integral curve of the non-mixing field (top-left in Figure 4) and one which is piecewise
affine in the sense of Proposition 11 (bottom-left in Figure 4). The corresponding
probability distributions as functions of the time are shown in Figure 4, on the right
side. Both paths induce quite precisely the desired transition, although for long times
the accuracy degrades. We remark that the most significant difference between the
two strategies is given by the fact that the second one induces a less accurate spread
of probability at the passage through the conical intersection, as expected.

Note that, to compute the evolution of the controlled system, we truncated the
infinite dimensional system to the lowest 20 and to the lowest 30 energy levels. These
two choices did not exhibit significant differences: this suggests that the truncation
up to the first 20 energy levels well describes the behavior of the infinite dimensional
system. Figure 4 is obtained choosing this truncation.

0.8}
0.6

04}

0.2

200 P400 600 800 1000 1200

'
'

0.8 '
'
.

0.6

0.4

0.2

00 e
200 P400 600 800 1000 1200

Fic. 4.  Control paths and probability distributions for H(u) = —A 4+ wiVi + uaVa —
iu3(VA + AV). We reproduce in gray the probability of being in the fourth energy level and in
black the probability of being in the fifth one. The starting point is labeled as O and the conical
intersection as P.

6. Final remarks. The integral curves of the non-mixing field are not the only
paths guaranteeing the estimate (15): suitable approximations (in the sense precised
just below) of these curves also ensure an adiabatic approximation of order e. Indeed,
let us consider an arc-length parametrized curve ' (7), tangent to the non-mixing
field, that reaches a conical intersection between A; and Aj;; at time 7 = 0, and
let v be a C3 curve such that |y(1) — P (7)| < C73, for 7 small enough and some
positive constant C. Let ¢ = 7/¢ and consider the effective Hamiltonians evaluated
along the two curves. It is then easy to see, by simple computations and because of
Proposition 7, that the difference between the two effective Hamiltonians is less or
equal than C’e2t for some C’ > 0. This term, integrated over a time interval of order
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1/e, gives a difference of order ¢.

An interesting controllability problem alternative to the one introduced in Sec-
tion 3.2 aims at sending (approximately) an initial state ° = Z?:o cjd;(u’) to a
final state concentrated in a single energy level. This problem may appear completely
equivalent to the previous one, but is actually more delicate. Indeed, a natural way to
induce the desired transition would be to run backward in time a path constructed as
in Section 3.2. However, a simple computation shows that, at each passage through
a conical intersection, the components corresponding to the intersecting eigenvalues
recombine in a concentrated state only if their relative phase coincides with the one
induced by the unitary transformation of the limit basis (that is, the phase 3(v) of
Proposition 11). On the other hand, the computation of dynamical phases, coming
from the integration of the energy on intervals whose length is of order 1/e, is very
sensitive to changes in the speed €. This is in principle possible, but it compromises
the constructiveness of the algorithm.

Similarly, by means of non-constructive arguments (for instance, by exploiting
the rational independence of the gaps between the eigenvalues underlined in [12,
Lemma 14]) one can obtain the following controllability property, stronger than the
one considered in Section 3.2.

Under assumption (HO), assuming that the Hamiltonian possesses a separated
discrete spectrum in which all energy levels are connected through conical intersections,
and for any given initial and target states 1°,7 distributed in ¥ and n > 0, there
exists a control input steering the system from ¥® to a final state whose distance from
W is less than 1.

It is opinion of the authors that all the results here above still hold in a non-linear
sufficiently smooth setting, that is for Hamiltonians of the form H(u) whose deriva-
tives with respect to the parameter u are H(0)-small up to a suitable order and under
hypothesis (H1). This case is interesting, since it covers relevant physical models,
such as those described by Hamiltonians with controlled electromagnetic potentials.
Preliminary results in this sense have been obtained in [14].

Appendix A. Regularity properties and proof of Proposition 7.

Let H be a complex separable Hilbert space; all operators in the following are
assumed to be operators on H. In this section we derive some regularity results on
the eigenvalues and the eigenstates of self-adjoint operators with respect to the norm
defined in (2) (see e.g. [19] for similar regularity properties). Such results will be used
in particular to prove Proposition 7.

The resolvent of A in ¢ € p(A) is denoted by R(A,¢) = (A — ¢id)~!; we recall
that it is a bounded linear operator that maps H into D(A), and that, given two self-
adjoint operators Aj, As with the same domain, their resolvents satisfy the Second
Resolvent Identity

(17) R(A2,¢) = R(A1,¢) = R(A1,¢) (A1 — A2) R(A2, Q).
The identity

(18) I(X = ¢id)™H | = d(¢, o (X))~

holds for self-adjoint operators (see e.g. [19]).

Let us state the following technical lemma, which will be largely used in the
following. Its proof easily comes from the definition of || - || 4 and is thus omitted.
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22 F.C. CHITTARO AND P. MASON

LEMMA 24. Let A, B be self-adjoint operators with B A-bounded and ¢ € p(A).
Then the following inequality holds:

(19) IBR(A,ON < (1+ (I + 1) IR, Oll ) 1 Bll.a-

The following result shows that the resolvent set for a self-adjoint operator A
possesses some continuity properties with respect to small perturbation in the space
L(D(A),H).

LEMMA 25. Let Ay be a self-adjoint operator. Let Z C p(A1) be a compact set.
There exists a 0 > 0 such that, if a self-adjoint operator Ay satisfies ||A1 — Aa||a, <9,
then Ay and As have the same domain, Z C p(As) and the inequality

(20) [R(A2,C) — R(A1, Q|| < Cl|A; — Azl|a,

holds true on Z for some constant C depending on Z and Aj.

Proof. To ensure that D(A;) = D(Asz) it is clearly enough to assume 6 < 1. To
conclude the proof we proceed as follows. As a consequence of (18), |R(A1, ()| is
uniformly bounded on Z. This, together with (19), implies that ||(A2—A1)R(A1,¢)]| <
C'||A1 — As]|a, for some C’ > 0. Since

R(A2,¢) = R(A1,¢) (id + (A2 — A1) R(A1,0) "

whenever the right-hand side is well defined, we deduce that Z C p(As) and that
IR(A2, )|l < 2||R(A1,Q)|| on Z, provided that § is small enough. Finally, by apply-
ing (17), we get (20). O

Let X C 0(A) be constituted by a finite number of eigenvalues of the self-adjoint
operator A. For every positively-oriented closed path I' C C encircling 3, and not
encircling any other element in o(A), the projection P onto the sum of the eigenspaces
relative to X is given by

(21) P= —(Qm')*lfFR(A,g) d¢.

PROPOSITION 26. Let Ay be a self-adjoint operator. Assume that X1 = o(A1) N
(C1,C2) is constituted by k eigenvalues, counted with multiplicity, and that (1,(e ¢
o(A1). Then for every e > 0 there exists a § > 0, depending on (1,(s and Ay, such
that if Ay is self-adjoint and ||A1 — Azlla, <9, then

1) Yo =0(A2)N((1, (2) is constituted by k eigenvalues, counted with multiplicity;

1) Calling P;ll the spectral projection onto the sum of eigenspaces of Ay relative
to 31 and PS; the spectral projection onto the sum of eigenspaces of As
relative to Yo, it holds ||P£111 — ng | <e.

Proof. Let I" be the circle in the complex plane centered on the real axis and pass-
ing through ¢; and (5, and consider the projection ng = —(2mi)~! § R(A2,¢) d¢.
From (20) we obtain that

Al Ao
HPE1 o PE2

< (@m)! ;{ IR(AL,C) — R(As, Q)| d¢ < €5

for some C' > 0 (depending on T" and A;). In particular, ||P£‘11 — Pg‘; || <1 for ¢ small
enough, which easily implies that dim Range(ng) = dim Range(Pgll) =k (see [27,
page 14]), therefore Yo contains exactly k eigenvalues, counted with multiplicity, i.e.
1) holds true. By possibly choosing a smaller §, i) also holds true. 0
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The following result immediately follows from Proposition 26.

COROLLARY 27. Let X\ be a simple eigenvalue of a self-adjoint operator Ay. Then
for every € > 0 there exists § > 0 such that any self-adjoint operator As satisfying
|[A1 — Az2lla, < § admits a unique eigenvalue p with |\ — p| < €. Moreover, there
exists a choice gbfl,(,bﬁZ for the corresponding eigenstates such that ||<;5f1 - ¢f2” <e

The next result provides an estimate concerning regularity properties of the eigen-
values.

LEMMA 28. Let Ay be a self-adjoint operator such that o(A1) NI is discrete and
without finite accumulation points for some open, possibly unbounded, interval I. If
d > 0 is small enough and Ay is a self-adjoint operator satisfying ||Az — A1]|a, < 0,
then the eigenvalues of As contained in I are close to those of Ay, in the following
sense. Up to appropriately indexing on a subset of Z the eigenvalues (counted with
multiplicity) in 0(A;) NI, for j = 1,2, and denoting them with p;(A;) we have
13(A1) = pa(A2)| < e(1+ i (A1), where e = 75 — 1.

Proof. Let A; satisfy the hypotheses of the lemma, and let Ay be a self-adjoint
operator with ||4; — Az|la, < J, where without loss of generality we assume that
d < 1; define A(t) = Ay +t(As — Ay), for t € [0,1]. Let \;(¢) be the analytic branch
of the eigenvalues of A(t) emanating from \;(0) = p;(A1), and denote by ¢;(t) a
corresponding analytic eigenstate. By hypothesis

1(Az — A1)@i(1)]] < 6] Ardi(t)[| + 0 < 6|Ai(t)] + 6t[| (A2 — A1))di(t)[| + 0,
which implies that [|(A2 — A1)¢i(t)]| < 125 (|Ai(t)| + 1). From

()] = 1@ (1), (A2 = A1) i(D)] < [[(A2 — A1)ei(t))
we easily get the thesis. ]

Consider a control-dependent Hamiltonian H(u) satisfying assumption (HO). It
is easy to see that for any uy, up the norms ||-|| g (u,), |- | 7 (us) are equivalent, thanks to
the Hp-smallness of the control Hamiltonians. From Lemma 28, and the equivalence
of the norms || - ||z (), the eigenvalues A;(-) of H(-) are locally Lipschitz, and the
corresponding Lipschitz constants locally depend on the magnitude of A;(+). Moreover,
we remark the following fact: let @ be a conical intersection between the eigenvalues
A; and Aj4q, that satisfy a gap condition, according to Definition 2. By the definition
of conical intersection and the Lipschitz continuity of the eigenvalues we can conclude
that there exist a suitably small neighborhood U of @ and two constants C; > 0 and
C5 > 0 such that

(22) /\j+1(u) — )\j(u) > C’l\u — ﬁ| YueU
and
(23) Ai(n) = \(0)] < Colu—u| Vuu' €U, i=j,j+1.

We are now ready to prove Proposition 7.

Proof of Proposition 7. For simplicity, throughout this proof we will write R(u, &)
to denote the resolvent R(H (u),). The property that the projections Py(y(t)), J =
4,j+ 1, are C* at any t € [~R,0) whenever 7(-) is C* has been shown e.g. in [28]. It
comes from (21) and a recursive application of the identity

d d

(24) R0, = RU(0,9 (5

it H(f(1) ) R((1),€),
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valid for any differentiable path f taking values in R3, together with (19).

It remains to study the regularity of the projections at the singularity. We first
consider the case k = 1. Without loss of generality we assume |(0)] = 1. Let
p = C1/4, where C; is as in (22), and for every ¢t € [—R,0) consider the circle
I, C C of radius pt centered at A;(y(¢)). There exists 0 < T' < R such that for every
te[-T,0)

Aj+1(v() = A (v (1) > gClt = 3pt

so that [Aj+1(v(t))—¢| > 2pt for every ¢ € T';,. Thus d(¢,o(H(y(t)))) = pt and, by (23)
and the definition of ¢1(-), d(¢,o(H(¢1(t)))) > pt/2, up to reducing T. Therefore,
from (18), for ¢ € T'; it holds

(25) IRGELON = RGO~
It is left to prove that §. (R(v(t),() — R(¢1(t),¢)) d( tends to 0. Estimate (19) gives
(16 0) - HG@)RG.0l < ¢ [ 10710

for some C > 0, which, together with (17) and (25) yields the thesis.

Let us now tackle the general case; the proof follows similar arguments. We
define the circuit I'; as above, and we notice that for every fixed 7 € (=T, 0) there is
a neighborhood I of 7 such that (25) can be replaced by the similar estimate

(26) [1R(y(1), Ol < %7 [1R((1), Ol < %,

holding for every ¢ € I'; and t € I,. By applying (17) we get, for every t € I, and
1 <k-—1,

l l l
00 = P 0) = @ri) ™ [0, O 0)-H ) R0, O

The proof can then be easily completed by applying recursively the identity (24)
together with the estimates (26) and (19), and by exploiting the regularity of (-) and
the definition of £j(-). d
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