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Abstract

We consider a system described by a controlled bilinear Schrödinger equation with three

external inputs. We provide a constructive method to approximately steer the system from

a given energy level to a superposition of energy levels corresponding to a given probability

distribution. The method is based on adiabatic techniques and works if the spectrum of the

Hamiltonian admits eigenvalue intersections, with respect to variations of the controls, and if

the latter are conical. We provide sharp estimates of the relation between the error and the

controllability time, and we show how to improve these estimates by selecting special control

paths.

1 Introduction

A typical issue in quantum control concerns the controllability of the bilinear Schrödinger equation

i
dψ

dt
=

(
H0 +

m∑

k=1

uk(t)Hk

)
ψ(t), (1)

where ψ belongs to the Hilbert sphere of a (finite or infinite dimensional) complex separable
Hilbert space H and H0, . . . , Hm are self-adjoint operators on H. Here H1, . . . , Hm represent
the action of external fields on the system, whose strength is given by the scalar-valued controls
u1, . . . , um, while H0 describes the uncontrolled dynamics of the system.

The controllability problem aims at establishing whether, for every pair of states ψ0 and ψ1

in the Hilbert sphere, there exist controls uk(·) and a time T such that the solution of (1) with
initial condition ψ(0) = ψ0 satisfies ψ(T ) = ψ1.

While the case whereH is a finite dimensional Hilbert space has been widely understood [4, 14],
in the infinite dimensional case the answer is far from being given. In particular, negative results
have been proved when H is infinite-dimensional (see [5, 32]). Hence one has to look for weaker
controllability properties as, for instance, approximate controllability (see for instance [9, 13, 23,
25]), or controllability between subfamilies of states (in particular the eigenstates of H0, which
are the most relevant physical states) or in more regular subspaces of square-integrable functions
(see [6, 7]).

While the above mentioned works are essentially obtained by means of non-constructive argu-
ments, the purpose of this paper is to propose a method that permits to explicitly select control
inputs steering the system from the initial state to an arbitrarily small neighborhood of the given
target state. Adiabatic theory and conical intersections between eigenvalues constitute the main
tools of the control strategy we propose in this paper.
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Roughly speaking, the adiabatic theorem (see [8, 24, 30]) states that the occupation probabil-
ities associated with the energy levels of a time-dependent Hamiltonian H(·) are approximately
preserved along the evolution given by iψ̇(t) = H(t)ψ(t), provided that H(·) varies slowly enough.
This result works whenever the energy levels (i.e. the eigenvalues of H(·)) are isolated for every
t. On the other hand, if two eigenvalues intersect, and provided that H(·) is smooth enough, the
passage through the intersections may determine (approximate) exchanges of the corresponding
occupation probabilities (see [30, Corollary 2.5] and [16]). For these reasons, adiabatic methods
are largely used in quantum control to induce population transfers (see for instance the techniques
known as Stimulated Raman Adiabatic Passage (STIRAP), Stark-chirped rapid adiabatic pas-
sage (SCRAP)) and to prepare superposition states [20]. The applications of adiabatic methods
in quantum control, as a tool for obtaining controllability results, have already been exploited
in previous papers (see for instance [2, 10, 22, 35]). The general idea is to use slowly varying
controls, taking advantage of the adiabatic theorem, and “climb” the energy levels through the
conical intersections.

Related to the present paper is a method recently developed in [10] in the case m = 2 and for
self-adjoint Hamiltonians with real matrix elements. It exploits a generalization of [30, Corollary
2.5] stating that it is possible to arbitrarily recombine the probability weights associated with two
subsequent energy levels by following (slowly) a suitable control path passing through a conical
intersection between them. The control strategy of [10] applies whenever a part of the spectrum
of the Hamiltonian operator is uniformly separated from the rest of the spectrum (as a function
of the control parameter), is discrete and each pair of subsequent eigenvalues intersect in a conical
intersection. When there exists such a portion of the spectrum, called separated discrete spectrum,
this control strategy permits to attain (approximately) a state having a prescribed distribution
of probability (relative to the energy levels of the separated discrete spectrum) starting from an
eigenstate. In particular this entails a controllability property, that we call spread controllability,
which, although weaker than the usual approximate controllability property, is more practical.
Note indeed that the relative phases between pairs of components in the eigenbasis decomposition
are essentially uncontrollable since they evolve according to the gaps between the corresponding
energy levels. Furthermore, notice that this method allows us to control the population inside
some portion of the discrete spectrum, if well separated from the rest, even in the presence of
continuous spectrum, unlike many other classical methods.

Concerning the precision of the method, an application of the adiabatic theorem together
with [30, Corollary 2.5] shows that the maximal error is of the order of the square root of the
control speed. On the other hand in [10] it was shown that the precision of the transfer may be
remarkably improved if one follows some special paths in the space of controls; namely, such paths
permit to attain a state with a prescribed probability distribution with an error of the order of
the control speed. From a practical point of view this means that, to guarantee a given precision,
one may significantly reduce the duration of the process, whose extent constitutes one of the main
disadvantages of the implementation of adiabatic techniques.

The purpose of this paper is to adapt the control strategy introduced in [10] to the general
case of self-adjoint Hamiltonians, assuming that three controlled Hamiltonians are employed, and
to select the control paths that allow to improve the precision of the process as explained above.
Preliminary results in this sense were discussed in [11]. Notice that the chosen setting is quite
natural, since it is well-known, for Hermitian matrices or within spaces of self-adjoint operators
satisfying particular transversality conditions, that the set of operators admitting multiple eigen-
values is a submanifold of codimension three (see e.g. [3, 31, 33]). Moreover conical intersections
do not constitute a pathological phenomenon since, as shown in Appendix B, all eigenvalue in-
tersections are generically conical in the finite dimensional case and in some physically relevant
infinite dimensional models. Conical intersections are also structurally stable with respect to vari-
ations of the Hamiltonian operator, as shown in Theorem 4.8. Concerning the relation between
conical intersections and controllability properties of the bilinear Schrödinger equation, let us fi-
nally mention the main results of the recent paper [12]: if all subsequent energy levels of the
Hamiltonian are connected by means of conical intersections then the system is approximately
controllable and, in the finite dimensional case, it is even exactly controllable. Notice that these
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results have not been obtained by adiabatic techniques, although, as shown in Section 5, it is not
difficult to recover approximate controllability of the system by extending the results of this paper
(in a non-constructive way).

The structure of the paper is the following. In Section 2 we introduce the notations used
throughout the paper, the main assumptions and definitions, and we adapt the classical statement
of the adiabatic theorem to our setting. In Section 3 we discuss some properties of conical inter-
sections and related results that allow to propose the basic control strategy. In Section 4 we define
special paths and, by means of a series of technical results, we show that they can be included in
the control algorithm in order to improve its performance. As a byproduct, we get a structural
stability result concerning conical intersections. In Section 5 we briefly mention some extensions
of the control strategy and of the controllability results obtained earlier. Appendix A gathers the
technical results concerning the regularity of the spectrum and of the spectral projections that are
needed throughout the paper, while Appendix B discusses the genericity of conical intersections
in the finite and infinite dimensional cases.

2 Notations and preliminary results

We start this section by introducing the notations that will be used in the rest of the paper.
For a function f(·) of a real parameter s, we use the following notation for its right and left limits
at s0:

f(s±0 ) = lim
s→s±0

f(s).

Moreover we say that f(s) = o(sk) if lims→0
f(s)
sk

= 0.
Whenever γ(s), s ∈ [s1, s2] is a curve on R

3 and Q(·) is a function of v ∈ R
3 then, with abuse of

notations, we denote by Q̇(γ(r)) the derivative of the composition Q(γ(·)) computed at r, that is

Q̇(γ(r)) := d
dsQ(γ(s))|s=r = dQ

dv (γ(r))
dγ
ds (r). Similarly, Q(l)(γ(r)) := dl

dsl
Q(γ(s))|s=r.

The scalar product of two elements ψ1, ψ2 in the Hilbert state space is denoted by 〈ψ1, ψ2〉, while
the scalar product of two vectors w1,w2 in any other euclidean space is denoted by w1 · w2.
Analogously, the norm in the two cases is denoted respectively by ‖ · ‖ and | · |.
For a given vector v or matrix A the respective transpose is denoted by vT and AT . The inverse
of the transpose of an invertible square matrix A is denoted with A−T .
Given a vector v = (v1, v2, v3) ∈ C

3, we denote its complex conjugate (v∗1 , v
∗
2 , v

∗
3) by v∗ and its

real and imaginary parts respectively by

Re(v) = (Re(v1),Re(v2),Re(v3)) Im(v) = (Im(v1), Im(v2), Im(v3)).

The symbol id is used to denote the identity operator on a vector space which is specified at each
occurrence, whenever not clear from the context.

2.1 General setting

Let H be a separable complex Hilbert space with norm ‖ · ‖; let us introduce the following notion
of relative boundedness between operators:

Definition 2.1 (A-smallness and A-boundedness) Let A,B two densely defined operators with
domains D(A) ⊂ D(B). We say that B is A-bounded if there exist a, b > 0 such that ‖Bψ‖ ≤
a‖Aψ‖+ b‖ψ‖ for every ψ ∈ D(A). B is said to be A-small if for every α > 0 there exists β > 0
such that ‖Bψ‖ ≤ α‖Aψ‖ + β‖ψ‖ for every ψ ∈ D(A). (The latter notion is called infinitesimal
smallness with respect to A in [27].)

Given a self-adjoint operator A on H, for every A-bounded operator B we define its norm with
respect to A as

‖B‖A = sup
ψ∈D(A)

‖Bψ‖
‖Aψ‖+ ‖ψ‖ . (2)
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This provides a norm in the space L(D(A),H) of continuous linear operators from D(A) (endowed
with the graph norm of A) to H.

We consider the Hamiltonian

H(u) = H0 + u1H1 + u2H2 + u3H3,

with u = (u1, u2, u3) ∈ R
3, and where Hi, i = 0, . . . , 3 satisfy the following assumption:

(H0) H0 is a self-adjoint operator on a separable complex Hilbert space H, and Hi are H0-small
self-adjoint operators on H for i = 1, 2, 3.

Under assumption (H0), [27, Theorem X.12] guarantees that H(u) is self-adjoint with domain
D(H0). Moreover, it is easy to see that for every u, H0 is H(u)-bounded, and therefore Hi is
H(u)-small, for every i = 1, 2, 3, with constants a, b (as in Definition 2.1) that depend continuously
on u.

Schrödinger Hamiltonians are typical Hamiltonian operators describing quantum phenomena
and can be represented in the form −∆+ V on the Hilbert space L2(Ω), where Ω is a domain of
R
n, ∆ is the Laplacian on Ω (with Dirichlet or Neumann boundary conditions) and V : Ω → R

has to be interpreted as a multiplicative operator on L2(Ω). In particular such Hamiltonian
operators are unbounded operators. In this context Hypothesis (H0) is thus intended to describe
an Hamiltonian operator of the previous form that can be controlled by means of three external
inputs so that H0 = −∆+ V0 and Hi = Vi for some multiplicative operators Vi, for 0 ≤ i ≤ 3.

Finite dimensional representations of quantum systems are also common, for instance in the
description of spin systems. In this case the Hamiltonian operator H(u) is a Hermitian matrix.
Consider for instance the case of a spin-1/2 particle immersed in a controlled magnetic field. In
this case, Hi are the Pauli matrices, and the controls are the components of the magnetic field.

The dynamics of the quantum systems we consider are described by the time-dependent
Schrödinger equation

i
dψ

dt
= H(u(t))ψ(t). (3)

Such an equation has mild solutions under hypothesis (H0), u(·) piecewise C1 and with an initial
condition in the domain of H0 (see e.g. [27, Theorem X.70] and [5]).

We are interested in controlling (3) inside some portion of the discrete spectrum of H(u). Since
we use adiabatic techniques, some spectral gap condition is needed:

(H1) There exist a domain ω in R
3, a map Σ defined on ω that associates with each u ∈ ω a

subset Σ(u) of the discrete spectrum of H(u), and two continuous functions f1, f2 : ω → R such
that

• f1(u) < f2(u) and Σ(u) ⊂ [f1(u), f2(u)] ∀u ∈ ω.

• there exists Γ > 0 such that

inf
u∈ω

inf
λ∈Spec(H(u))\Σ(u)

dist(λ, [f1(u), f2(u)])) > Γ.

In this case we say that Σ(u) is a separated discrete spectrum.

Notation From now on we label the eigenvalues belonging to a separated discrete spectrum Σ(u)
in such a way that Σ(u) = {λ0(u), . . . , λk(u)}, where λ0(u) ≤ · · · ≤ λk(u) are counted according
to their multiplicity (note that the separation of Σ from the rest of the spectrum guarantees that
k is constant). Moreover we denote by φ0(u), . . . , φk(u) an orthonormal family of eigenstates
corresponding to λ0(u), . . . , λk(u). Notice that in this notation λ0 does not need to be the ground
state of the system.

Our techniques rely on the existence of conical intersections between the eigenvalues, which
constitute a well studied phenomenon in molecular physics (see for instance [8, 15, 16, 21, 34]). In
this paper we will adopt the following definition, consistent with the one already given in [10] for
the two-inputs case (Figure 1 shows a conical intersection in this latter setting).
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Figure 1: A conical intersection for a controlled Hamiltonian with two inputs.

Definition 2.2 Let H(·) satisfy hypothesis (H0). We say that ū ∈ R
3 is a conical intersection

between two subsequent eigenvalues λj and λj+1 if λj(ū) = λj+1(ū) has multiplicity two and there
exists a constant c > 0 such that for any unit vector v ∈ R

3 and t > 0 small enough we have that

λj+1(ū+ tv)− λj(ū+ tv) > ct . (4)

A discussion on the occurrence of conical intersections and on their genericity in some relevant
cases is provided in Appendix B.

To conclude this section, let us make some remarks on the regularity properties and the asymp-
totic behavior of the eigenfamilies of H(u) in our setting. Notice that in general the regularity
properties of the Hamiltonian induce similar regularity properties of the eigenfamilies, see Propo-
sition A.4. In particular, thanks to the Lipschitz continuity of the eigenvalues, (4) holds true in a
neighborhood of a conical intersection, that is there exists a suitably small neighborhood U of ū
and C > 0 such that

λj+1(u)− λj(u) ≥ C|u− ū|, ∀u ∈ U. (5)

Moreover, it is well known that the eigenvectors can be chosen analytic along straight lines u(·)
possibly passing through eigenvalues intersections (see [18],[28, Theorem XII.13]).

Consider a C1 curve u : I → R
3 and assume that the eigenvalues Λl : I → R and the

eigenstates Φl : I → H, l = 0, . . . , k are C1(I). By direct computations we obtain that for all t ∈ I
the following equations hold:

Λ̇l(t) = 〈Φl(t),
(
u̇1(t)H1 + u̇2(t)H2 + u̇3(t)H3

)
Φl(t)〉 (6)

(Λm(t)− Λl(t)) 〈Φl(t), Φ̇m(t)〉 = 〈Φl(t),
(
u̇1(t)H1 + u̇2(t)H2 + u̇3(t)H3

)
Φm(t)〉. (7)

If Λj(ū) = Λj+1(ū), then, thanks to (7), for every half-line rv(t) = ū + tv with v = (v1, v2, v3)
unit vector and t ≥ 0, we have

lim
t→0+

〈Φj(rv(t)),
(
v1H1 + v2H2 + v3H3

)
Φj+1(rv(t))〉 = 0. (8)

2.2 The adiabatic theorem

In this section we recall a classical formulation of the time-adiabatic theorem ([8, 17, 24, 26])
adapted to our framework. For a general overview see the monograph [30].

Let H(u) = H0 +
∑3
i=1 uiHi satisfy (H0)-(H1). Assume that the map I = [τ0, τf ] ∋ τ 7→

u(τ) = (u1(τ), u2(τ), u3(τ)) belongs to C2(I,R3). We introduce a small parameter ε > 0 that
controls the time scale, and the slow Hamiltonian H(u(εt)), t ∈ [τ0/ε, τf/ε]. In this notations,
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τ is a geometric parameter used to describe the curve in the space of controls, while t is the
“chronological” time of the evolution along the control path.

We denote by Uε(t, t0) the time evolution (from t0 = τ0/ε to t = τ/ε) generated by H(u(εt)),
and with Uεa(t, t0) the time evolution generated by the Hamiltonian Ha(εt), where Ha(τ) =
H(u(τ))− iεP∗(u(τ))Ṗ∗(u(τ))− iεP⊥

∗ (u(τ))Ṗ⊥
∗ (u(τ)) is the adiabatic Hamiltonian, P∗(u) denotes

the spectral projection of H(u) on Σ(u), and P⊥
∗ (u) = id− P∗(u).

Theorem 2.3 Assume that H(u) = H0 +
∑3
i=1 uiHi satisfies (H0)-(H1). Let I ⊂ R and u :

I → ω be a C2 curve. Then P∗ ∈ C2(I,L(H)) and there exists a constant C > 0 such that for all
τ0, τ ∈ I, and setting t0 = τ0/ε, t = τ/ε,

‖Uε(t, t0)− Uεa(t, t0)‖ ≤ Cε (1 + ε|t− t0|) . (9)

Remark 1 If there are more than two parts of the spectrum which are separated by a gap, then it is
possible to generalize the adiabatic Hamiltonian as ([24]) Ha(τ) = H(u(τ))−iε

∑
α Pα(u(τ))Ṗα(u(τ)),

where each Pα(u(τ)) is the spectral projection associated with the separated portion of the spectrum
labeled by α.

Let us now assume that Σ = {λj , λj+1}; we can take advantage of the adiabatic theorem to
decouple the dynamics associated with the band Σ from those associated with the rest of the
spectrum, in order to focus on the former.

Let W(τ) denote the subspace spanned by the eigenstates associated with λj(u(τ)) and
λj+1(u(τ)). Since W(τ) is two-dimensional for any τ , it is possible to map it isomorphically
on C

2 and identify an effective Hamiltonian whose evolution is a representation of Uεa(t, t0)|W(εt0)

on C
2. In particular, if we can find a C1 eigenstate basis {Φ1(u(τ)),Φ2(u(τ))} of W(τ) (asso-

ciated with a reordering {Λ1(u(τ)),Λ2(u(τ))} of {λj(u(τ)), λj+1(u(τ))}), then the isomorphism
U(τ) : W(τ) → C

2 is continuous. Represented in C
2, the evolution Uεa(·, t0)|W(εt0) is governed by

the Hamiltonian Hε
eff(εt), where H

ε
eff(·) is the effective Hamiltonian, whose form is

Hε
eff(τ) =

(
Λ1(u(τ)) 0

0 Λ2(u(τ))

)
− iε

(
〈Φ1(u(τ)), Φ̇1(u(τ))〉 〈Φ2(u(τ)), Φ̇1(u(τ))〉
〈Φ1(u(τ)), Φ̇2(u(τ))〉 〈Φ2(u(τ)), Φ̇2(u(τ))〉

)
, (10)

with associated propagator Uεeff(t, t0) = U(εt)Uεa(t, t0)U∗(εt0).
Theorem 2.3 implies the following.

Theorem 2.4 Assume that {λj , λj+1} is a separated discrete spectrum on some ω ∈ R
3 and let

u : I → ω be a C2 curve such that there exists a C1-varying basis of W(·) made of eigenstates of
H(u(·)). Then there exists a constant C such that for all τ0, τ ∈ I, and setting t0 = τ0/ε, t = τ/ε,

‖ (Uε(t, t0)− U∗(εt)Uεeff(t, t0)U(εt0)) |W(εt0)‖ ≤ Cε(1 + ε|t− t0|).

3 Conical Intersections and general control strategy

3.1 Properties of conical intersections

Conical intersections have a characterization in terms of the non-degeneracy of a particular matrix,
which contains some geometric properties of the eigenspaces relative to the intersecting eigenvalues,
as shown below.

Definition 3.1 We define the conicity matrix associated with two orthonormal elements ψ1, ψ2 ∈
D(H0) as

M(ψ1, ψ2) =



〈ψ1, H1ψ2〉 〈ψ1, H1ψ2〉∗ 〈ψ2, H1ψ2〉 − 〈ψ1, H1ψ1〉
〈ψ1, H2ψ2〉 〈ψ1, H2ψ2〉∗ 〈ψ2, H2ψ2〉 − 〈ψ1, H2ψ1〉
〈ψ1, H3ψ2〉 〈ψ1, H3ψ2〉∗ 〈ψ2, H3ψ2〉 − 〈ψ1, H3ψ1〉


 .
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Lemma 1 The quantity detM(ψ1, ψ2) is purely imaginary and the function (ψ1, ψ2) 7→ detM(ψ1, ψ2)

is invariant under unitary transformation of the argument, that is if (ψ̂1, ψ̂2)
T = U(ψ1, ψ2)

T for

a pair ψ1, ψ2 of orthonormal elements of D(H0) and U ∈ U(2), then one has detM(ψ̂1, ψ̂2) =
detM(ψ1, ψ2).

Proof. The fact that the determinant is purely imaginary comes from direct computations. To
prove its invariance, we set

U =

(
ei(β1+β3) cosα ei(β2+β3) sinα
−e−iβ2 sinα e−iβ1 cosα

)
(11)

for some real scalars β1, β2, β3, so that ψ̂1 = eiβ3
(
eiβ1 cosα ψ1 + eiβ2 sinα ψ2

)
and ψ̂2 = −e−iβ2 sinαψ1+

e−iβ1 cosα ψ2.
By direct computations it follows that

M(ψ̂1, ψ̂2) = M(ψ1, ψ2)




e−2iβ1−iβ3 cos2 α −e2iβ2+iβ3 sin2 α −ei(β2−β1) sin 2α
−e−2iβ2−iβ3 sin2 α e2iβ1+iβ3 cos2 α −ei(β1−β2) sin 2α

e−i(β1+β2+β3) cosα sinα ei(β1+β2+β3) cosα sinα cos 2α


 ,

where the second matrix on the right-hand side of the equation above has determinant equal to
one. �

As a consequence of the result here above, the determinant of M(ψ1, ψ2) depends only on
the complex space spanned by ψ1 and ψ2. Therefore, in a neighborhood of a conical intersection
between the levels λj , λj+1 we can define the following function:

F (u) = detM(ψ1, ψ2) (12)

where {ψ1, ψ2} is an orthonormal basis for the sum of eigenspaces relative to the two crossing
levels. In particular, outside the intersection we can take, for instance, ψ1 = φj and ψ2 = φj+1.

If the levels λj , λj+1 are (locally) separated from the rest of the spectrum, the projection
associated with the sum of the eigenspaces of the intersecting levels is continuous with respect to
u (see Proposition A.3), which implies that F is continuous (see [10]).

The following result characterizes conical intersections in terms of the conicity matrix.

Proposition 3.2 Assume that {λj , λj+1} is a separated discrete spectrum with λj(ū) = λj+1(ū).
Let {ψ1, ψ2} be an orthonormal basis of the eigenspace associated with the double eigenvalue. Then
ū is a conical intersection if and only if M(ψ1, ψ2) is nonsingular.

Proof. Let rv(t) = ū + tv, where v is a unit vector in R
3, and let φvj , φ

v
j+1 be the limits of

φj(rv(t)), φj+1(rv(t)) as t → 0+ (recall that the eigenfunctions φj , φj+1 can be chosen analytic
along rv for t ≥ 0). Assume that the intersection is not conical. Then for every ε > 0 there is a
unit vector vε = (vε1, v

ε
2, v

ε
3) such that

d

dt

∣∣∣
t=0+

[
λj+1(rvε

(t))− λj(rvε
(t))
]
≤ ε,

that is

avε :=

3∑

i=1

vεi
(
〈φvε

j+1, Hiφ
vε

j+1〉 − 〈φvε

j , Hiφ
vε

j 〉
)
≤ ε,

while (8) implies that bvε :=
∑3
i=1 v

ε
i 〈φvε

j , Hiφ
vε

j+1〉 = 0. Consider an orthogonal matrix Aε having
vε as first row. Since | detAε| = 1, we have that

∣∣detM(φvε

j , φ
vε

j+1)
∣∣ =

∣∣det
(
AεM(φvε

j , φ
vε

j+1)
)∣∣ =

∣∣∣∣∣∣
det




0 0 avε

c1 c∗1 d1
c2 c∗2 d2



∣∣∣∣∣∣
= |2iavεIm(c1c

∗
2)|

≤ Cε(α|λj(u)|+ β)2,
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with C, α and β suitable positive constants, where we have used the fact that

|ci| ≤ |(〈φvε

j , H1φ
vε

j+1〉, 〈φvε

j , H2φ
vε

j+1〉, 〈φvε

j , H3φ
vε

j+1〉)|

for i = 1, 2 and that Hi is H(u)-bounded. Thus arbitrariness of ε and Lemma 1 imply that
M(ψ1, ψ2) is singular for any orthonormal basis {ψ1, ψ2} of the double eigenspace.

Let us now prove the converse statement: assume that ū is a conical intersection and, by
contradiction, that M(ψ1, ψ2) is singular for every orthonormal basis of the eigenspace associated
with the double eigenvalue. We introduce the matrix

M̃(ψ1, ψ2) =



Re (〈ψ1, H1ψ2〉) Im (〈ψ1, H1ψ2〉) (〈ψ2, H1ψ2〉 − 〈ψ1, H1ψ1〉)
Re (〈ψ1, H2ψ2〉) Im (〈ψ1, H2ψ2〉) (〈ψ2, H2ψ2〉 − 〈ψ1, H2ψ1〉)
Re (〈ψ1, H3ψ2〉) Im (〈ψ1, H3ψ2〉) (〈ψ2, H3ψ2〉 − 〈ψ1, H3ψ1〉)


 ,

and we notice that detM(ψ1, ψ2) = −2i detM̃(ψ1, ψ2) so that M(ψ1, ψ2) is singular if and only

if M̃(ψ1, ψ2) is. The condition of conical intersection implies that

av =

3∑

i=1

vi
(
〈φvj+1, Hiφ

v

j+1〉 − 〈φvj , Hiφ
v

j 〉
)
6= 0, ∀v ∈ R

3.

Moreover, equation (8) implies that bv =
∑3
i=1 vi〈φvj , Hiφ

v
j+1〉 = 0, so that the third column of

the matrix M̃(φvj , φ
v
j+1) is never linearly dependent from the first two. In particular the matrix

M̃(φvj , φ
v
j+1) is singular only if the first two columns of the matrix are linearly dependent. Thus, up

to multiplying φvj , φ
v
j+1 by a phase factor, we can always assume that 〈φvj , Hiφ

v
j+1〉 ∈ R, i = 1, 2, 3.

Let us now fix v ∈ R
3 and let us call W the orthogonal complement in R

3 of the vector(
〈φvj , H1φ

v
j+1〉, 〈φvj , H2φ

v
j+1〉, 〈φvj , H3φ

v
j+1〉

)
. We have that v ∈ W and dimW ≥ 2. It is easy to

prove that for every w ∈ W the limit basis {φwj , φwj+1} is equal to {φvj , φvj+1}, up to exchanges
between the two elements and up to phases. Indeed, by definition ofW we have that 〈φvj , (w1H1+

w2H2 + w3H3)φ
v
j+1〉 = 0, and writing (φvj , φ

v
j+1)

T = U(φwj , φ
w
j+1)

T for some U of the form (11),
we obtain that

0 = 〈φvj , (w1H1 + w2H2 + w3H3)φ
v

j+1〉

= e−iβ3

(
(e−2iβ1 cos2 α− e−2iβ2 sin2 α) bw + e−i(β1+β2) sinα cosα aw

)
,

therefore it must be α = k π2 , k ∈ Z, since bw = 0 and aw 6= 0.
Let us now consider the vector

Υ =
(
〈φwj+1, H1φ

w

j+1〉 − 〈φwj , H1φ
w

j 〉, 〈φwj+1, H2φ
w

j+1〉 − 〈φwj , H2φ
w

j 〉, 〈φwj+1, H3φ
w

j+1〉 − 〈φwj , H3φ
w

j 〉
)
,

which corresponds to the third column of M̃(φwj , φ
w
j+1). Notice that the definition of Υ, up to

a sign, does not depend on the choice of w ∈ W , by what precedes. Since Υ⊥, the orthogonal
complement of Υ in R

3, has dimension 2 there exists a non-zero w̃ ∈W ∩Υ⊥. By definition of w̃
we have that aw̃ = w̃ ·Υ = 0.

We get a contradiction, thus the matrix M̃(φvj , φ
v
j+1) must be nonsingular, and therefore also

M(φvj , φ
v
j+1) has to. �

As an example, consider the Hamiltonian H(u) ∈ iu(3), with

H0 =




0 0 0
0 0 0
0 0 1


 , H1 =




1 i 0
−i 0 1
0 1 −1


 , H2 =




0 0 i
0 1 0
−i 0 0


 , H3 =




−1 1 −1
1 1 0
−1 0 0


 .

(13)
The Hamiltonian H(·) admits a double eigenvalue at u = 0 corresponding to the two lowest levels.
A simple computation leads to detM(e1, e2) = −2i where e1 = (1, 0, 0)T , e2 = (0, 1, 0)T form a
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basis of the double eigenspace at 0. Thus the eigenvalue intersection is conical. An example of
conical intersection in an infinite dimensional setting is provided in Appendix B.2.

A peculiarity of conical intersections is that, when approaching the singularity from different
directions, the eigenstates corresponding to the intersecting eigenvalues have different limits. The
following proposition provides the relation between these limits.

Proposition 3.3 Let ū be a conical intersection between λj and λj+1. Let v0,v ∈ R
3 be two

unit vectors, and call φ0j , φ
0
j+1 the limits as t → 0+ of the eigenstates φj(r0(t)), φj+1(r0(t)) along

a straight line r0(t) = ū+ tv0, and φ
v
j , φ

v
j+1 the limit basis along the straight line rv(t) = ū+ tv.

Then, up to phases, the following relation holds:
(
φvj
φvj+1

)
=

(
cosΞ e−iβ sinΞ

−eiβ sinΞ cosΞ

)(
φ0j
φ0j+1

)
, (14)

where the parameters Ξ = Ξ(v) and β = β(v) satisfy the following equations:

tan 2Ξ(v) = (−1)ξ
2|〈φ0j , Hvφ

0
j+1〉|

〈φ0j , Hvφ0j 〉 − 〈φ0j+1, Hvφ0j+1〉
(15)

β(v)
(mod 2π)

= arg〈φ0j , Hvφ
0
j+1〉+ ξπ, (16)

where Hv =
∑m
i=1Hivi and ξ = 0, 1.

Proof. First of all, we notice that all pairs of orthonormal eigenstates of H(ū) relative to the
degenerate eigenvalue can be obtained by the action of the group U(2) through the pair (φ0j , φ

0
j+1).

Nevertheless, we are not interested on the global phases of the states, that is we consider the
equivalence relation (eiβ1ψ1, e

iβ2ψ2) ∼ (ψ1, ψ2) ∀ β1, β2 ∈ R. Therefore for any unit vector v ∈ R
3

we can obtain a representative of the pair (φvj , φ
v
j+1) through the transformation (14), for some

Ξ(v) and some β(v). This gives

0 = 〈φvj , Hvφ
v

j+1〉

=
(
〈φ0j , Hvφ

0
j+1〉, 〈φ0j , Hvφ

0
j+1〉∗, 〈φ0j+1, Hvφ

0
j+1〉 − 〈φ0j , Hvφ

0
j 〉
)



cos2 Ξ(v)
−e2iβ(v) sin2 Ξ(v)

eiβ(v) cosΞ(v) sinΞ(v)




= eiβ(v)
(
cos2 Ξ(v)|〈φ0j , Hvφ

0
j+1〉|ei(γ−β(v)) − sin2 Ξ(v)|〈φ0j , Hvφ

0
j+1〉|e−i(γ−β(v))+

+ cosΞ(v) sinΞ(v)(〈φ0j+1, Hvφ
0
j+1〉 − 〈φ0j , Hvφ

0
j 〉)
)
, (17)

with γ = arg
(
〈φ0j , Hvφ

0
j+1〉

)
, whenever 〈φ0j , Hvφ

0
j+1〉 6= 0.

If v = ±v0, then 〈φ0j , Hvφ
0
j+1〉 = 0, and the conicity condition implies that Ξ(v) = kπ/2. In

particular, β(v) can be any real number.
If v is not parallel to v0, then 〈φ0j , Hvφ

0
j+1〉 6= 0 and β(v) can only take the values arg〈φ0j , Hvφ

0
j+1〉+

ξπ, ξ = 0, 1. Indeed, since the term 〈φ0j+1, Hvφ
0
j+1〉 − 〈φ0j , Hvφ

0
j 〉 is real, the imaginary part of

the term into parenthesis of (17) is zero:

|〈φ0j , Hvφ
0
j+1〉| sin(γ − β(v)) = 0.

If we choose β(v) = γ, then we can prove by computation that Ξ(v) must satisfy

tan 2Ξ(v) =
2|〈φ0j , Hvφ

0
j+1〉|

〈φ0j , Hvφ0j 〉 − 〈φ0j+1, Hvφ0j+1〉
(18)

while if β(v) = γ + π, Ξ(v) must satisfy

tan 2Ξ(v) = −
2|〈φ0j , Hvφ

0
j+1〉|

〈φ0j , Hvφ0j 〉 − 〈φ0j+1, Hvφ0j+1〉
. (19)
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Notice that the two pairs (Ξ(v), β(v)) and (−Ξ(v), β(v)+π) give the same transformation in (14).
�

It can be seen that not all the solutions of (15)-(16) provide the correct transformation (14),
which, nevertheless, is easy to detect. The good solutions of (15)-(16) constitute four branches
which are continuous with respect to v, and they can be constructed as follows. Letw(s), s ∈ [0, s̄],
be a curve joining v0 to v such that w(s) /∈ {v0,−v0} for every s ∈ (0, s̄); for conical intersections,
it is possible to associate with such a curve a continuous solution (Ξ(w(s)), β(w(s))) of (15)-(16)
with Ξ(v0) = 0 and compatible with (14). In particular, if we choose Ξ(v) according to (18), it
is easy to see that Ξ(w(s)) ∈ [−π/2, 0] for s ∈ [0, s̄], from which one deduces that the final value
Ξ(v) = Ξ(w(s̄)) is independent of the chosen path and continuously depends on v. Moreover, it
is easy to see that Ξ(−v0) = −π/2. Similarly, one can show that β(v) = β(w(s̄)) is independent
of the chosen path and continuous outside {v0,−v0}. Note that the fact that β is discontinuous
at −v0 implies that the corresponding limit basis (φvj , φ

v
j+1) has a discontinuity at −v0, that is,

its limit depends on the path.
We can repeat the same argument choosing Ξ(v) according to (19), with Ξ(v0) = 0. The other

two continuous branches are obtained choosing the initial condition Ξ(v0) = π.

3.2 The basic control algorithm

Let us consider the following controllability problem.

Let H(·) satisfy (H0)-(H1) and Σ(·) = {λ0(·), . . . , λk(·)}. Then, given ε > 0, us,uf ∈
ω, j ∈ {0, . . . , k} and p ∈ [0, 1]k+1 such that

∑k
l=0 p

2
l = 1, find T > 0 and a path

u : [0, T ] → ω with u(0) = us and u(T ) = uf such that

‖ψ(T )−
k∑

l=0

ple
iϑlφl(u

f )‖ ≤ ε, (20)

where ψ(·) is the solution of (3) with ψ(0) = φj(u
s), and ϑ0, . . . , ϑk ∈ R are some

possibly unknown phases.

If all levels are connected by means of conical intersection occurring at different values of the
control, the results obtained in the previous section provide the basic elements in order to construct
a family of control paths solving the problem here above. This can be done by taking advantage of
the following proposition, which describes the spreading of occupation probabilities induced when
a path in the space of controls passes through a conical intersection.

Proposition 3.4 Let ū be a conical intersection between the eigenvalues λj , λj+1. Consider the
curve γ : [0, 1] → ω defined by

γ(t) =

{
ū+ (t− τ0)w0 t ∈ [0, τ0]

ū+ (t− τ0)v t ∈ [τ0, 1]
,

for some τ0 ∈ (0, 1) and some unit vectors w0,v. Then there exists C > 0 such that, for any
ε > 0,

‖ψ(1/ε)− π1e
iϑ1φj(γ(1))− π2e

iϑ2φj+1(γ(1))‖ ≤ C
√
ε (21)

where ϑ1, ϑ2 ∈ R, ψ(·) is the solution of equation (3) with ψ(0) = φj(γ(0)) corresponding to the
control u : [0, 1/ε] → ω defined by u(t) = γ(εt),

π1 = | cos (Ξ(v)) |, π2 = | sin (Ξ(v)) |,

and Ξ(·) is the only solution of equation (18) such that Ξ(v) ∈ (−π/2, 0] for v 6= −w0, and
Ξ(−w0) = −π/2, where the limit basis in (18) is given by the limits φj(γ(τ

−
0 )), φj+1(γ(τ

−
0 )),

respectively.
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Proof. We consider the Hamiltonian H(u(t)), t ∈ [0, 1/ε]. Since the control function u(·) is
not C2 at the singularity, we cannot directly apply the adiabatic theorem. Instead, we consider
separately the evolution on the two subintervals (in time t) [0, τ0/ε] and [τ0/ε, 1/ε].

Since the eigenstates φj(u(t)), φj+1(u(t)) are piecewise C1, we can apply [30, Corollary 2.5]
and obtain that there exists a phase θ1 (depending on ε) such that

‖ψ(τ0/ε)− eiθ1φj(γ(τ
−
0 ))‖ ≤ C

√
ε,

for some constant C > 0. By Proposition 3.3, this implies that

‖ψ(τ0/ε)− eiθ1
(
cosΞ(v) φj(γ(τ

+
0 ))− e−iβ(v) sinΞ(v) φj+1(γ(τ

+
0 ))
)
‖ ≤ C

√
ε,

with Ξ(v) as in the statement of the proposition and β(v) = arg〈φ0j , Hvφ
0
j+1〉.

Applying [30, Corollary 2.5] also in the time interval (τ0/ε, 1/ε], we conclude that there exists
two phases ϑ1 and ϑ2 (depending on ε) such that

‖ψ(1/ε)−
(
eiϑ1 cosΞ(v) φj(γ(1))− eiϑ2 sinΞ(v) φj+1(γ(1))

)
‖ ≤ C ′

√
ε,

for some constant C ′ > 0. �

For control purposes, it is interesting to consider the case in which the initial probability is
concentrated in the first level, the final occupation probabilities p21 and p22 are prescribed, and we
want to determine a path that induces the desired transition. For a given line reaching the conical
intersection, the outward directions that provide the required spreading of probability are given
in the following proposition. The proof follows from simple computations and is thus omitted.

Proposition 3.5 Let ū be a conical intersection between the eigenvalues λj , λj+1, and let π1, π2
be positive constants such that π2

1 + π2
2 = 1. Consider the line r(t) = ū + (t − τ0)w0, t ∈ [0, τ0],

for a unit vector w0 ∈ R
3 and some τ0 ∈ (0, 1), and set φ0j = φj(γ(τ

−
0 )) and φ0j+1 = φj+1(γ(τ

−
0 )).

Then the locus formed by the directions v ∈ R
3 that give rise to transformation (14) with

π1 = | cos Ξ(v)| and π2 = | sin Ξ(v)| is given by the following expression whenever π1 /∈ {0, 1}

M̃(φ0j , φ
0
j+1)

−T (K), (22)

where K =
{
(x, y, z) ∈ R

3 :
√
x2 + y2 = Cz

}
and

C =
π1π2
π2
1 − π2

2

.

Otherwise, if π1 = 0 then v = w0 and if π1 = 1 then v = −w0.

The controllability problem presented at the beginning of this section can be solved taking advan-
tage of the results shown above. The strategy consists in constructing a piecewise C2 path joining
us with uf that passes through the conical intersections ūj between the j-th and the (j+1)-th lev-
els, j = 0, . . . , k− 1, and avoids any other degeneracy point. The tangent directions at the conical
intersection are chosen according to the probability weights p2i , as explained in Proposition 3.5.

When we are far from all the conical intersections, we approximate the evolution with that of
the adiabatic Hamiltonian

ha(τ) = H(γ(τ))− iε

k∑

l=0

Pl(τ)Ṗl(τ)− iεP⊥(τ)Ṗ⊥(τ), (23)

where Pl(τ) is the spectral projection onto the eigenspace relative to λl(γ(τ)) and P⊥(τ) =

id−∑k
l=0 Pl(τ). The evolution associated with (23) conserves the occupation probabilities relative

to each energy level λl, l = 0, . . . , k, then so does the evolution of H(γ(τ)), with an approximation
of order ε (see Remark 1).
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In a neighborhood of the conical intersection between λj and λj+1, j = 0, . . . , k − 1, we
decouple the evolution inside the band of the two intersecting levels from that relative to the rest
of the spectrum, that is we approximate the dynamics with the ones associated with the adiabatic
Hamiltonian

ha(τ) = H(γ(τ))− iεP (τ)Ṗ (τ)− iε

k∑

l=0
l 6=j,j+1

Pl(τ)Ṗl(τ)− iεP⊥(τ)Ṗ⊥(τ) (24)

where P (τ) is the spectral projection relative to {λj(γ(τ)), λj+1(γ(τ))}. The evolution associated
with (24) conserves the occupation probability relative to the band {λj , λj+1}, the ones relative
to all other energy levels in {λ0, . . . , λk} and the one associated with the rest of the spectrum.
The evolution given by (24) inside the band {λj , λj+1} is described in [30, Corollary 2.5] and in
Proposition 3.4.

Let us now explicitly determine the path in a neighborhood of each conical intersection. With-
out loss of generality, we assume that ψ(0) = φ0(u

s); in the other cases a path can be obtained
similarly. We construct a (piecewise C2) path γ : [0, 1] → ω as follows.

We set γ(0) = us and, for some 0 < τ0 < 1 we choose γ|[0,τ0] in such a way that γ(τ0) = ū0

and all the eigenvalues λl(γ(τ)) are simple for every l = 0, . . . , k and τ ∈ [0, τ0). Moreover, γ(·)
is chosen tangent to a segment in a neighborhood of ū0, and we call v−

0 the tangent direction
of γ(·) at t = τ−0 . In a neighborhood of ū0 and for τ ≥ τ0, γ(·), is chosen to be tangent to v+

0

where the outward direction v+
0 is chosen according to Proposition 3.5 with w0 = v−

0 , π1 = p0,

π2 =
√
1− p20.

The rest of the path is constructed recursively. Assume that the path has been defined up to
time τj−1, for some j = 1, . . . , k − 1, with γ(τj−1) = ūj−1, and that an outward direction v+

j−1

has been selected. Then choose τj ∈ (τj−1, 1) and the smooth path γ|(τj−1,τj ](·) joining ūj−1 with
ūj such that all the eigenvalues λl(γ(τ)), are simple for every l = 0, . . . , k and for τ ∈ (τj−1, τj),
in a neighborhood of ūj−1 the curve is tangent to v+

j−1, and in a neighborhood of ūj the curve is

tangent to some segment that we call v−
j . To choose the outward direction v+

j of γ(·) at ūj we

apply Proposition 3.5 with w0 = v−
j , π1 =

pj−1√∑
k
l=j−1 p

2
l

and π2 =
√
1− π2

1 .

The last arc defined on (τk−1, 1] is simply constructed by joining ūk−1 with uf , taking care of
choosing γ(·) tangent to the outward direction in a neighborhood of ūk−1.

To avoid highly non-homogeneous parameterizations, the path γ(·) can be reparameterized by
arc-length.

Let us now reparameterize the time setting t = τ/ε, for some small positive ε. The adiabatic
theorem and Proposition 3.4 lead to the estimate

‖ψ(1/ε)−
k∑

l=0

ple
iϑlφl(u

f )‖ ≤ C
√
ε,

for some ϑ0, . . . , ϑk ∈ R and some C > 0 depending on the path γ(·) and on the gaps in the
spectrum. The geometric construction of the path γ(·) is represented in Figure 2.

4 An improvement of the efficiency of the algorithm: the

non-mixing field

The problem of reducing transition times is quite important in quantum control, in particular for
the need of reducing decoherence. Therefore, in this section we will show how to do it by means
of some special paths in the space of controls that eliminate, in the adiabatic approximations,
the error coming from the intersection of the eigenvalues, so that the only error induced by the
application of the adiabatic theorem comes from the gap among the remaining eigenvalues and
those among these eigenvalues and the band of the intersecting ones.
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u0

u1

u
s

u
f

u2




p0
p1√

1 − p20 − p21
0







p0√
1 − p20

0
0







p0
p1
p2
p3






1
0
0
0




Figure 2: Construction of the path γ(·). The corners at the points ui, corresponding to conical
intersections, are chosen in such a way that they induce the desired spreading.

Let us consider a pair {λj , λj+1} of eigenvalues, which are simple and separated from the rest
of the spectrum, according to assumption (H1), in a certain open set ω ⊂ R

3, except for a point
ū ∈ ω, where they have a conical intersection. We are interested in the dynamics inside the
subspace P uH, where P u denotes the projection associated with the two levels {λj(u), λj+1(u)}
for u ∈ ω: we know that, under adiabatic evolution, the dynamics are described by the effective
Hamiltonian (10). To improve the precision of the result, the idea is to cancel the off-diagonal
terms in the effective Hamiltonian, which are responsible of the error of order

√
ε the estimates

given in [30, Corollary 2.5] and in Proposition 3.5. In order to do that, we choose some special
trajectories in ω along which the term 〈φj , φ̇j+1〉 is null, that is, thanks to (7), we look for curves
γ(·) in the space of controls that satisfy the equation

〈φj(t), (γ̇1(t)H1 + γ̇2(t)H2 + γ̇3(t)H3)φj+1(t)〉 = 0. (25)

We denote the first column of the conicity matrix M(ψ1, ψ2) by

m(ψ1, ψ2) = (〈ψ1, H1ψ2〉, 〈ψ1, H2ψ2〉, 〈ψ1, H3ψ2〉)T ,

and its components 〈ψ1, Hiψ2〉 as mi. It follows by definition that the real vector

X(ψ1, ψ2) =
m(ψ1, ψ2)×m

∗(ψ1, ψ2)

2i
(26)

= (Im(m2m
∗
3), Im(m3m

∗
1), Im(m1m

∗
2))

T
,

where × denotes the cross product, is orthogonal to both m(ψ1, ψ2) and m
∗(ψ1, ψ2).

Remark 2 Let us remark that the vector X(ψ1, ψ2) is invariant under phase changes in the
argument, that is X(ψ1, ψ2) = X(eiβ1ψ1, e

iβ2ψ2). Notice however that X(ψ1, ψ2) = −X(ψ2, ψ1).

Definition 4.1 The vector field

XP (u) = X(φj(u), φj+1(u)), (27)

defined in ω \ {ū}, is called the non-mixing field associated with the conical intersection ū.

The non-mixing field is smooth in its domain of definition. From (7) and (26), we have 〈φj , φ̇j+1〉 =
0 along its integral curves. Moreover, a simple computation leads to

X(ψ1, ψ2) ·



〈ψ2, H1ψ2〉 − 〈ψ1, H1ψ1〉
〈ψ2, H2ψ2〉 − 〈ψ1, H2ψ1〉
〈ψ2, H3ψ2〉 − 〈ψ1, H3ψ1〉


=

1

2i
detM(ψ1, ψ2), (28)

which implies the following result.
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Proposition 4.2 Let γ(·) ⊂ ω \ {ū} be an integral curve of the non-mixing field. Then

d

dt

[
λj+1(γ(t))− λj(γ(t))

]
=

1

2i
F (γ(t)).

In particular, all the integral curves of the non-mixing field starting from a punctured neighborhood
of the conical intersection reach it in finite time (up to a time reversal).

Without loss of generality, we can assume that ū = 0. Denote every u ∈ R
3 by u = ρv,

where ρ is its module and v the versor. Let us call µ(ρ,v) = m(φj(ρ,v), φj+1(ρ,v)), where
φj(ρ,v), φj+1(ρ,v) denotes a choice of the eigenstates relative respectively to λj(ρv) and λj+1(ρv)
(extended by continuity for ρ = 0). We remark that µ(ρ,v) is defined up to a phase, therefore its
module and the quantity

µ(ρ,v)× µ∗(ρ,v) = 2i Im(µ(ρ,v))×Re(µ(ρ,v)) (29)

are well defined. Finally, set Xµ(ρ,v) = XP (ρv). Notice that, for different values of v, Xµ(ρ,v)
has a priori different limits as ρ→ 0.

The following estimates hold.

Lemma 2 Assume that ū = 0 is a conical intersection. Then the inequality

|µ(ρ,v) · v| ≤ Cρ (30)

holds in a neighborhood of 0 for some constant C > 0 uniform with respect to v.

Proof. Without loss of generality, we assume that the double eigenvalue is equal to 0. Then

ρµ(ρ,v) · v = ρ 〈φj(ρ,v), (v1H1 + v2H2 + v3H3)φj+1(ρ,v)〉
= −〈φj(ρ,v), H0φj+1(ρ,v)〉 = −〈φj(ρ,v)− P 0φj(ρ,v), H0φj+1(ρ,v)〉.

Assumption (H0) implies that

‖H0φj+1(ρ,v)‖ = ‖λj+1(ρv)φj+1(ρ,v)−
3∑

i=1

ρviHiφj+1(ρ,v)‖

≤ |λj+1(ρ,v)|+ ρ
3∑

i=1

‖Hiφj+1(ρ,v)‖

≤ cρ,

for some c > 0, locally around the intersection. By smoothness of the projection, we get that

∣∣〈φj(ρ,v)− P 0φj(ρ,v), H0φj+1(ρ,v)〉
∣∣ ≤ C ′ρ2,

for a suitable C ′ > 0, then we get the thesis. �

We are now ready to prove the following result, which provides some information on the
behavior of the trajectories of the non-mixing field.

Proposition 4.3 With the notations introduced above and for ρ small enough, there exist three
constants c1, c2, c3 > 0 such that c1 ≤ |ρ̇| ≤ c2 and |v̇| ≤ c3 along the trajectories of the non-mixing
field.

Proof. Direct computations lead to the equations

ρ̇ = Xµ · v,

v̇ =
1

ρ
(Xµ − (Xµ · v)v) .
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The upper bound for |ρ̇| comes easily from the H(u)-boundedness of Hi for every i.
From (28) and (29), we get that |Xµ| = |Im(µ(ρ,v)) × Re(µ(ρ,v))| ≥ c for some c >

0 in a neighborhood of the singularity. An immediate consequence is that the three vectors
Re(µ(ρ,v)), Im(µ(ρ,v)) and Xµ(ρ,v) are three linearly independent vectors in R

3. Then we define
the corresponding three unit vectors z1(ρ,v) = Re(µ(ρ,v))/|Re(µ(ρ,v))|, z2(ρ,v) = Im(µ(ρ,v))/|Im(µ(ρ,v))|
and w(ρ,v) = Xµ/|Xµ|. We can then decompose v in this basis as

v = a(ρ,v)z1(ρ,v) + b(ρ,v)z2(ρ,v) + γ(ρ,v)w(ρ,v).

Notice that there exists some δ < 1 such that |z1(ρ,v) · z2(ρ,v)| ≤ δ for every (ρ,v). Estimating
the scalar product of v with z1 and z2, using (30), we obtain that

|a(ρ,v) + b(ρ,v) z1(ρ,v) · z2(ρ,v)| ≤ Cρ |b(ρ,v) + a(ρ,v) z1(ρ,v) · z2(ρ,v)| ≤ Cρ,

that easily leads to |a(ρ,v)| ≤ C̄ρ and |b(ρ,v)| ≤ C̄ρ, for some uniform constant C̄.
From (30) and the fact that |v| = 1 we get that

|w(ρ,v) · v| ≥ |γ(ρ,v)w(ρ,v) · v|
= |(v − (a(ρ,v)z1(ρ,v) + b(ρ,v)z2(ρ,v))) · v|
= |1− |a(ρ,v)z1(ρ,v) + b(ρ,v)z2(ρ,v)|2| ≥ 1− 4C̄ρ2.

This implies that

|w(ρ,v)− (w(ρ,v) · v)v|2 = |v − (w(ρ,v) · v)w(ρ,v)|2 = 1− (v ·w(ρ,v))2 ≤ 8C̄ρ2.

The thesis comes from the fact that

|(Xµ − (Xµ · v)v)| = |Xµ||w(ρ,v)− (w(ρ,v) · v)v| and |Xµ · v| = |Xµ||w(ρ,v) · v|.

�

The following proposition is a generalization of [10, Proposition 5.9] in the three dimensional
case. The proof follows the same lines, thanks to Proposition 4.3, and is thus omitted.

Proposition 4.4 For every unit vector v in R
3 there exists an integral curve γ : [−η, 0] → ω of

XP with γ(0) = 0, η > 0, such that

lim
t→0−

γ̇(t)

‖γ̇(t)‖ = v.

Thanks to Proposition 4.3, the integral curves of the non-mixing field are C1 up to the singular-
ity included. In particular, they satisfy the hypotheses of Proposition A.4 with k = 1, so that the
projections Pj(u) and Pj+1(u) on the eigenspaces relative to the intersecting eigenvalues are C1

along the integral curves of the non-mixing field outside the singularity, and can be continuously
extended at the singularity. On the other hand, P u is C1 along such curves, singularity included.

We remark moreover that, if γ : [t0, t1] → R
3 is an integral curve of the non-mixing field such

that λj(γ(t)) 6= λj+1(γ(t)) for t ∈ [t0, t1), by definition of the non-mixing field, it holds

Pj(γ(t))Ṗj+1(γ(t)) = 0 Pj+1(γ(t))Ṗj(γ(t)) = 0 ∀ t ∈ [t0, t1). (31)

We have the following.

Proposition 4.5 Along every integral curve of the non-mixing field, there is a choice of the
eigenstates relative to the intersecting eigenvalues which is C1 up to the singularity included.

Proof. Let I = [−T, 0], and let γ : I → R
3 be an integral curve of XP such that γ(0) = ū is a

conical intersection between λj and λj+1. Outside the singularity, the eigenstates are well defined,
up to a phase. To fix the phase, we set

ψj(t) =
Pj(γ(t))ψ̂

‖Pj(γ(t))ψ̂‖
,
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where ψ̂ is an eigenstate of H(ū) relative to λj(ū) = λj+1(ū) such that limt→0 Pj(γ(t))ψ̂ 6= 0.

Possibly reducing T , we can assume that Pj(γ(t))ψ̂ 6= 0 on the whole I, thus ψj(t) is a normalized

eigenstate of H(γ(t)) relative to λj(γ(t)). Since ‖Pj(γ(t))ψ̂‖ 6= 0, in order to prove that ψj(t) is

C1 it is enough to prove that Pj(γ(t))ψ̂ is.

Since Pj(γ(t))+Pj+1(γ(t)) = P γ(t) for t ∈ [−T, 0), and by (31), we get that Pj(γ(t))Ṗj(γ(t)) =

Pj(γ(t))Ṗ γ(t), and therefore

〈ψj(t), Ṗj(γ(t))ψ̂〉 =
〈ψ̂, Pj(γ(t))Ṗ γ(t)ψ̂〉

‖Pj(γ(t))ψ̂‖
,

which has limit for t→ 0−.
Let us notice that P γ(t)Pj(γ(t))ψ̂ = Pj(γ(t))ψ̂. This, together with (31), implies that

Ṗj(γ(t))ψ̂ = Ṗ γ(t)Pj(γ(t))ψ̂ + P γ(t)Ṗj(γ(t))ψ̂

= Ṗ γ(t)Pj(γ(t))ψ̂ + 〈ψj(t), Ṗj(γ(t))ψ̂〉ψj(t),

where the right hand side has limit for t→ 0−.
We can repeat the same procedure to show that there is a choice for ψj+1(t) such that ψ̇j+1(t)

has limit for t→ 0−. �

As an immediate consequence of the above proposition, we get the following corollary.

Corollary 4.6 In a neighborhood of a conical intersection, the integral curves of its associated
non-mixing field are C2 up to the singularity included.

The regularity results proved earlier can be improved as shown below.

Proposition 4.7 In a neighborhood of a conical intersection, the integral curves of its associated
non-mixing field are C∞ up to the singularity included. In particular, we can choose C∞ eigenstates
ψj , ψj+1 along such a curve, up to the singularity included.

Proof. Let γ : [−T, 0] → R
3 be an integral curve of XP such that γ(0) = ū and |γ̇(t)| > 0

for every t ∈ [−T, 0] (this is true up to choosing T sufficiently small), and define the eigenstates
ψj(·), ψj+1(·) as in Proposition 4.5. We prove by induction on n that, if the curve is Cn([−T, 0]),
then also ψj(·) and ψj+1(·) are Cn([−T, 0]). In particular, this last fact implies that the integral
curves of the non-mixing field are Cn+1([−T, 0]).

In Proposition 4.5 the claim is proved for n = 1. Assume that it is true up to n − 1, with
n > 1, that is ψj(·) and ψj+1(·) are Cn−1([−T, 0]), and then the integral curves of the non-mixing
field are Cn([−T, 0]). In particular, we know that P γ(·) ∈ Cn([−T, 0]), and Pj(γ(·)), Pj+1(γ(·)) ∈
Cn−1([−T, 0]).

Differentiating n times the identity ψj(t) = P γ(t)ψj(t), we obtain that for every t ∈ [−T, 0)
ψ
(n)
j (t) is a linear combination of the terms P

(l)
γ(t)ψ

(n−l)
j (t), for l = 0, . . . , n. By inductive hypoth-

esis, all the terms relative to l ≥ 1 are known to be continuous on [−T, 0]. Then we have to prove

the continuity of P γ(t)ψ
(n)
j (t) at t = 0, which is equivalent to the continuity of P γ(t)P

(n)
j (γ(t))ψ̂.

We can develop P γ(t)P
(n)
j (γ(t)) as

PP
(n)
j = PjP

(n)
j + Pj+1P

(n)
j

= PjP
(n) − PjP

(n)
j+1 + Pj+1P

(n)
j ,

where we omitted to precise that all projections are evaluated along γ for simplicity of nota-
tion. Notice that the term PjP

(n) is continuous on the closed interval. By (31), it follows
dn−1

dtn−1

(
Pj(γ(t))Ṗj+1(γ(t))

)
≡ 0, t ∈ [−T, 0), then we can write Pj(γ(t))P

(n)
j+1(γ(t)) as a linear
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Figure 3: Trajectories of the non-mixing field for the Hamiltonian corresponding to (13)

combination of the terms P
(l)
j (γ(t))P

(n−l)
j+1 (γ(t)), for l = 1, . . . , n − 1. Since all these terms are

continuous on [−T, 0] by induction hypothesis, it follows that also Pj(γ(t))P
(n)
j+1(γ(t)) is.

Analogous computations prove the same for Pj+1(γ(t))P
(n)
j (γ(t)), therefore also PP

(n)
j can be

defined continuously on [−T, 0]. In particular, P γ(t)ψ
(n)
j (t) is continuous on [−T, 0], and we get

the thesis. The same argument proves the smoothness of ψj+1(t). �

Figure 3 describes the behavior of the trajectories of the non-mixing field relative to the first
two eigenvalues of the Hamiltonian H(u) ∈ iu(3) defined by (13). Consistently with the results
shown above, the flow corresponding to the non-mixing vector field allows to identify two conical
intersections, one of them being the origin, among the two levels. In particular, the trajectories
converge or diverge from them, locally.

To conclude this section, we present below a result providing some information on the structural
stability of conical intersections based on the properties of the non-mixing fields.

Theorem 4.8 Assume that H(u) = H0 + u1H1 + u2H2 + u3H3 satisfies (H0)-(H1) and let ū
be a conical intersection for H(u) between the eigenvalues λj and λj+1 belonging to the separated-

discrete spectrum Σ. Then for every ε > 0 there exists δ > 0 such that, if Ĥ(u) = Ĥ0 + u1Ĥ1 +
u2Ĥ2 + u3Ĥ3 satisfies (H0)-(H1) and

3∑

i=0

‖Ĥi −Hi‖H0
≤ δ, (32)

then the operator Ĥ(u) admits a conical intersection of eigenvalues at û, with |ū− û| ≤ ε.

Proof. First of all, by equivalence of all norms ‖ · ‖H(u), without loss of generality we can
assume that ū = 0. We notice that our assumptions guarantee that in a neighborhood of the
conical intersection the eigenvalues λj and λj+1 are well separated from the rest of the spectrum.
Continuous dependence of the eigenvalues with respect to perturbations of the Hamiltonian (see

Lemma 5) ensures that, if δ is small, then Ĥ(·) admits two eigenvalues λ̂j , λ̂j+1 close to λj , λj+1.

Moreover {λ̂j , λ̂j+1} is separated from the rest of the spectrum, locally around ū.
From the conicity of the intersection between λj and λj+1, there exists ε > 0 small enough

such that |F (u)| ≥ c for some c > 0 on B(ū, ε) and moreover, by Proposition 4.3, the vector
field XP (up to a global sign) points inside the ball B(ū, ε) at every point of its boundary. If
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δ is small enough then λ̂j 6= λ̂j+1 on ∂B(ū, ε) and the gap between the two eigenvalues can be

assumed to be of order ε. Therefore we can define the conicity matrix M̂ associated with Ĥ(·) and
the function F̂ (u) = detM̂(ψj(u), ψj+1(u)), where {ψj(u), ψj+1(u)} is an orthonormal basis for

the sum of eigenspaces relative to {λ̂j(u), λ̂j+1(u)}. Since the conicity matrix varies continuously
with respect to the control operators and the vectors on which it is evaluated, we can take δ small
enough such that |F̂ (u)| ≥ c/2 on B(ū, ε). This allows us to define, whenever λ̂j 6= λ̂j+1, the

non-mixing field X̂P associated with Ĥ(·) and corresponding to the band {λ̂j , λ̂j+1}; thanks to

Proposition 4.2, up to a time reversal the time derivative of λ̂j+1 − λ̂j along the integral curves of

X̂P is smaller than −c/4. By Corollary A.2 if δ is small enough, then X̂P points inside B(ū, ε) at
every point of ∂B(ū, ε).

Any trajectory γ̂(·) of X̂P starting from B(ū, ε) remains inside B(ū, ε) in its interval of defi-

nition and reaches in finite time a point û corresponding to a double eigenvalue λ̂j(û) = λ̂j+1(û).
The conclusion follows from Proposition 3.2. �

4.1 A spread controllability result

In this section we show how the curves tangent to the non-mixing field allow to improve the
performances of the control algorithm presented in Section 3.2. The result is stated here below.

Theorem 4.9 Let H(u) = H0+u1H1+u2H2+u3H3 satisfy hypotheses (H0)-(H1). Assume that
there exist conical intersections ūj ∈ ω, j = 0, . . . , k − 1, between the eigenvalues λj , λj+1, with
λl(ūj) simple if l 6= j, j + 1. Then, for every us and uf such that the eigenvalues λl, l = 0, . . . , k
are non degenerate at us and uf , for every φ̄ ∈ {φ0(us), . . . , φk(us)}, and p ∈ [0, 1]k+1 such that∑k
j=0 p

2
j = 1, there exist C > 0 and a continuous control γ(·) : [0, 1] → R

m with γ(0) = us and

γ(1) = uf , such that for every ε > 0

‖ψ(1/ε)−
k∑

j=0

pje
iϑjφj(u

f )‖ ≤ Cε, (33)

where ψ(·) is the solution of (3) with ψ(0) = φ̄, u(t) = γ(εt), and ϑ0, . . . , ϑk ∈ R are some phases
depending on ε and γ.

Proof. The strategy is analogous to the one presented in Section 3.2 and consists in constructing
a piecewise smooth path joining us with uf that passes through all the conical intersection; in
particular, we assume that the path γ : [0, 1] → ω satisfies γ(0) = us, γ(1) = uf and γ(τj) =
ūj , j = 0, . . . , k − 1, for some 0 < τ0 < · · · < τk−1 < 1. The only difference concerns the
choice of the paths in the neighborhoods of each conical intersection: indeed, in these regions our
paths are chosen to be tangent to the non-mixing field. At the intersection, the inner and outer
directions are selected according to Proposition 3.5, as explained in Section 3.2, and the existence
of corresponding trajectories tangent to the non-mixing field is guaranteed by Proposition 4.4.

Let us show that, given such a curve γ(·), the adiabatic approximations lead to the esti-
mate (33).

Far from all the conical intersections, we approximate the evolution with that of the adiabatic
Hamiltonian (23), which conserves the occupation probabilities relative to each energy level in the
separated discrete spectrum.

On the other hand, in a neighborhood of the conical intersection between λj and λj+1,
j = 0, . . . , k−1, we approximate the dynamics with the ones associated with the adiabatic Hamil-
tonian (24).

We show the details concerning the passage through ū0, and the others can be treated anal-
ogously. Since the path is tangent to the non-mixing field, we can apply Theorem 2.4 in order
to study the evolution inside the space P u(t)H. For τ in a left neighborhood of τ0, we can then
construct the effective Hamiltonian and its associated evolution operator Uεeff , which is diagonal,
which implies that there exists a phase θ0 (depending on ε) such that

‖ψ(τ0/ε)− eiθ0φ0(γ(τ
−
0 ))‖ ≤ C0ε,
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where ψ(·) is the solution of equation (3) with ψ(0) = φ0(γ(0)) corresponding to the control
u(t) = γ(εt), defined on [0, 1/ε].

By Proposition 3.3, this implies that

‖ψ(τ0/ε)− eiθ0
(
cosΞ(v) φ0(γ(τ

+
0 ))− e−iβ(v) sinΞ(v) φ1(γ(τ

+
0 ))
)
‖ ≤ C0ε,

with Ξ(v) and β(v) satisfying equations (15)-(16), and v is the outer direction.
Since the effective Hamiltonian is diagonal also for τ belonging to a right neighborhood of τ0,

we conclude that there exist two phases α0 and α1 (depending on τ and ε) such that

‖ψ(τ/ε)− eiα0p0 φ0(γ(τ))− eiα1

√
1− p20 φ1(γ(τ))‖ ≤ Ĉ0ε.

Since analogous estimates hold on each passage through a conical intersection and outside the
corresponding neighborhoods the theorem is proved. �

5 Final remarks

The control strategy presented in the last section (Theorem 4.9) highlights the role played by the
integral curves of the non-mixing field to obtain controllability results with an approximation of
order ε on time intervals of order 1/ε even in neighborhoods of conical intersections, while the
classical theory would guarantee an error of order

√
ε.

As proved for the two-inputs case in [10], also for the three-inputs case it is possible to see that
the 1-jet of the control path at the conical intersection determines the target probabilities, while
the 2-jet is responsible of the error introduced by the adiabatic approximation. In other words, C2

approximations (in the sense precised just below) of the integral curves of the non-mixing field also
ensure an adiabatic approximation of order ε. Indeed, let us consider an arc-length parametrized
curve γP (τ), τ small, tangent to the non-mixing field, that reaches a conical intersection between
λj and λj+1 at time τ = 0, and let γ be a C3 curve such that |γ(τ) − γP (τ)| ≤ Cτ3, for τ small
enough and some positive constant C. In particular, Proposition A.4 implies that there exists
a constant C ′ > 0 such that |φl(γ(τ)) − φl(γ

P (τ))| ≤ C ′τ2 and |φ̇l(γ(τ)) − φ̇l(γ
P (τ))| ≤ C ′τ ,

l = j, j + 1, where as usual φl(u) denotes the eigenstate relative to λl(u) ∈ Σ(u), evaluated at u.
Let t = τ/ε and consider the effective Hamiltonians evaluated along the two curves. It is then easy
to see by simple computations that there is a constant C ′′ > 0 such that the difference between
the two effective Hamiltonians is less or equal than C ′′ε2t. This term, integrated along a time
interval of order 1/ε, gives a difference of order ε.

An interesting controllability problem alternative to the one introduced in Section 3.2 aims
at sending (approximately) an initial state ψs =

∑k
j=0 cjφj(u

s) to a final state concentrated in a
single energy level. This problem may appear completely equivalent to the previous one, but is
actually more delicate, due to the presence of relative phases among the levels in the initial state.
Indeed, a natural way to induce the desired transition would be to run backward in time one of
the paths that produces any state with the same probability distribution as ψs starting from the
concentrated state, constructed as in Section 3.2 and Theorem 4.9. However, a simple computation
shows that, at each passage through a conical intersection, the components corresponding to the
intersecting eigenvalues recombine in a concentrated state only if their relative phase coincides
with the one induced by the unitary transformation of the limit basis (that is, the phase β(v) of
Proposition 3.3).

There are several strategies that in principle could overcome this issue. For instance, when
following the given path backward in time and before reaching a conical intersection, it is always
possible to stop for a certain time period at some point in the control space in order to control
the relative phase between the two intersecting levels. Note that in the adiabatic evolution the
effective stopping periods depend on the chosen speed ε, while the geometric path in the space of
controls does not depend on it. An alternative strategy consists in exploiting the non-uniqueness
property underlined in Proposition 3.5: it is indeed possible to see that, for a path reaching a
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conical intersection and for any superposition of the two intersecting levels, there always exists a
choice of outward direction allowing to concentrate the probability on a single level. Nevertheless,
since the path is determined taking into account the dynamical phases, its construction depends
on the time parameterization.

It is clear that the main drawback of the methods here above is that they rely on the com-
putation of dynamical phases, which comes from the integration of the energy on intervals whose
length is of order 1/ε and which are very sensitive to changes in the speed ε. This compromises
the constructiveness of the algorithm.

Let us finally mention that, to further improve the above controllability property, under as-
sumptions (H0)-(H1) it is possible to modify the strategy, again with non-constructive arguments
(for instance, by exploiting the rational independence of the gaps between the eigenvalues under-
lined in [12, Lemma 14]) in order to approximate at the final point not only any given choice of
probability weights associated with Σ, but also any choice of the corresponding phases.

Summing up, the constructions above combined with the control algorithm in Section 3.2
provide the following approximate controllability result:

under assumptions (H0)-(H1), assuming that all energy levels in the separated dis-
crete spectrum are connected through conical intersections, and for any given initial
and target states ψs, ψf distributed in Σ and ε > 0, there exists a control input steering
the system from ψs to a final state whose distance from ψf is less than ε.

It is opinion of the authors that all the results here above still hold in a non-linear sufficiently
smooth setting, that is for Hamiltonians of the form H(u) whose derivatives with respect to the
parameter u are H(u0)-small up to a suitable order and under hypothesis (H1). This case is
interesting, since it covers relevant physical models, such as those described by Hamiltonians with
controlled electromagnetic potentials. This topic will be the subject of further studies by the
authors.

A Regularity properties

Let H be a complex separable Hilbert space; all operators in the following are assumed to be
operators on H. In this section we derive some regularity results on the eigenvalues and the
eigenstates of self-adjoint operators with respect to the norm defined in (2). The results here
below - partially already known in literature (see for instance [18]) - are proved by classical means.

In the following, ρ(A) denotes the resolvent set of the operator A and σ(A) its spectrum. The
resolvent of A in ζ ∈ ρ(A) is denoted by R(A, ζ) = (A − ζid)−1; we recall that it is a bounded
linear operator that maps H into D(A), and that, given two self-adjoint operators A1, A2 with the
same domain, their resolvents satisfy the Second Resolvent Identity

R(A2, ζ)−R(A1, ζ) = R(A1, ζ)(A1 −A2)R(A2, ζ). (34)

First of all let us state the following technical lemma, which will be largely used in the following.
Its proof easily comes from the definition of ‖ · ‖A and is thus omitted.

Lemma 3 Let A,B be self-adjoint operators with B A-bounded and ζ ∈ ρ(A). Then the following
inequality holds:

‖BR(A, ζ)‖ ≤
(
1 + (|ζ|+ 1) ‖R(A, ζ)‖

)
‖B‖A. (35)

The following result shows that the resolvent set for a self-adjoint operator A enjoys some
continuity properties with respect to small perturbation in the space L(D(A),H). The proof
follows from the definition of resolvent set ρ(A) and properties of the resolvent R(A, ζ).

Lemma 4 Let A1 be a self-adjoint operator, and assume [ζ1, ζ2] ⊂ ρ(A1) for some real ζ1 ≤ ζ2.
Then there exists a δ > 0 such that if ‖A1 − A2‖A1

≤ δ, then A1 and A2 have the same domain
and [ζ1, ζ2] ⊂ ρ(A2). Moreover, the inequality

‖R(A2, ζ)−R(A1, ζ)‖ ≤ δC (36)
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holds on [ζ1, ζ2] for some constant C depending on ζ1, ζ2 and A1.

Proof. Let ζ ∈ ρ(A1). If the operator id + (A2 − A1)R(A1, ζ) is invertible then the resolvent
R(A2, ζ) is well defined and bounded, and satisfies

R(A2, ζ) = R(A1, ζ)
(
id + (A2 −A1)R(A1, ζ)

)−1

.

Thus the thesis follows once proved that, for every ζ ∈ [ζ1, ζ2], we have ‖(A2−A1)R(A1, ζ)‖ < δC ′

for ‖A1 − A2‖A1
≤ δ with δ small enough and for some C ′ > 0. This fact is a consequence of the

uniform boundedness of ‖R(A1, ζ)‖ on [ζ1, ζ2] (see [18]) and from (35), and the thesis holds with

C = 2maxζ∈[ζ1,ζ2] ‖R(A1, ζ)‖
(
1 + (|ζ|+ 1) ‖R(A1, ζ)‖

)
. �

Let λ ∈ σ(A) be an eigenvalue of the self-adjoint operator A. For every positively-oriented
closed path Γ ⊂ C encircling λ, and not encircling any other element in σ(A), the projection P
onto the eigenspace relative to λ is given by

P = −(2πi)−1

∮

Γ

R(A, ζ) dζ.

Proposition A.1 Let A1 be a self-adjoint operator, and let λ be a simple eigenvalue of A1 such
that σ(A1) ∩ [λ − g, λ + g] = {λ} for some g > 0. Then for every ǫ > 0 there exists a δ > 0
depending on g and on |λ| such that if ‖A1 −A2‖A1 ≤ δ, then

i) σ(A2) ∩ [λ− g, λ+ g] is made of only one point µ, which is a simple eigenvalue of A2;

ii) Calling PA1

λ the projection onto the eigenspace of A1 relative to λ and PA2
µ the projection

onto the eigenspace of A2 relative to µ, it holds

‖PA1

λ − PA2
µ ‖ ≤ ǫ.

Proof. From preceding lemma, for every δ > 0 small enough, if ‖A1 − A2‖A1
≤ δ, then σ(A2) ∩

[λ− g, λ+ g] is contained in the interval (λ− g, λ+ g). Let Γ be the circle in the complex plane
of radius g centered at λ, and consider the projection PA2 = −(2πi)−1

∮
Γ
R(A2, ζ) dζ. From (36)

we obtain that

∥∥∥PA1

λ − PA2

∥∥∥ ≤ (2π)−1

∮

Γ

‖R(A1, ζ)−R(A2, ζ)‖ dζ

≤ gCδ

that is, ‖PA1

λ − PA2‖ < 1 for δ small enough, which easily implies that dimRange(PA2) =

dimRange(PA1

λ ) = 1, therefore σ(A2)∩ [λ− g, λ+ g] contains exactly one spectral point µ, which
is a simple eigenvalue for A2 (see [28, Theorem XII.6]).

In particular, PA2 = PA2
µ is the projection on the eigenspace relative to µ, and satisfies ii) for

δ small enough. �

Corollary A.2 Under the hypothesis of Proposition A.1, for every ǫ > 0 there exists a δ > 0 such
that if ‖A1 −A2‖A1 ≤ δ, then

‖φA1

λ − φA2
µ ‖ ≤ ǫ.

where φA1

λ and φA2
µ denote respectively the eigenstate of A1 corresponding to λ and the eigenstate

of A2 corresponding to µ (normalized and with a particular choice for the global phases).

The next result provides an estimate concerning regularity properties of the eigenvalues.
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Lemma 5 Let A1 be a self-adjoint operator such that σ(A1) ∩ I is discrete and without finite
accumulation points for some open, possibly unbounded, interval I. If δ > 0 is small enough and
A2 is a self-adjoint operator satisfying ‖A2−A1‖A1

≤ δ, then the eigenvalues of A2 contained in I
are close to those of A1, in the following sense. Up to appropriately indexing on a subset of Z the
eigenvalues (counted with multiplicity) in σ(Aj) ∩ I, for j = 1, 2, and denoting them with µi(Aj)

we have |µi(A1)− µi(A2)| ≤ ǫ(1 + |µi(A1)|), where ǫ = e
δ

1−δ − 1.

Proof. Let A1 satisfy the hypotheses of the lemma, and let A2 be a self-adjoint operator with
‖A1 − A2‖A1 ≤ δ, where without loss of generality we assume that δ < 1; define A(t) = A1 +
t(A2 − A1), for t ∈ [0, 1]. Let λi(t) be the analytic branch of the eigenvalues of A(t) emanating
from λi(0) = µi(A1), and denote by φi(t) a corresponding analytic eigenstate. By hypothesis

‖(A2 −A1)φi(t)‖ ≤ δ‖A1φi(t)‖+ δ

≤ δ‖(A(t)− t(A2 −A1))φi(t)‖+ δ

≤ δ|λi(t)|+ δt‖(A2 −A1))φi(t)‖+ δ,

which implies that ‖(A2 −A1)φi(t)‖ ≤ δ
1−δ (|λi(t)|+ 1).

From
|λ̇i(t)| = |〈φi(t), (A2 −A1)φi(t)〉| ≤ ‖(A2 −A1)φi(t)‖

and Gronwall Lemma we easily get

|λi(0)− λi(1)| ≤
(
e

δ
1−δ − 1

)
(|λi(0)|+ 1),

and then the thesis. �

When we consider parameterized families of self-adjoint operators, we can prove some prop-
erties concerning the differentiability of spectral projections associated with separated portion of
the spectrum. The statement here below deals with affine families, but can be generalized to more
general settings (see e.g. [18, 29] for similar arguments).

Proposition A.3 Let K0 be a self-adjoint operator, Y be a Banach space with norm ‖ · ‖Y and
K(·) be a linear and continuous operator from Y to the space of K0-bounded self-adjoint operators,
endowed with the norm ‖·‖K0

. Let moreover q0 ∈ Y and I ⊂ R be an interval whose boundary points
belong to the resolvent set of K0 +K(q0). Then the spectral projection PI(q) on I associated with
the self-adjoint operator K0 +K(q) is well defined and (Fréchet) differentiable on a neighborhood
of q0.

Proof. By assumption we have that ‖K(q)−K(q0)‖K0
≤ C‖q− q0‖Y for some C > 0. Therefore

for q in a sufficiently small neighborhood of q0, ζ belonging to the resolvent set of K0+K(q0) and
setting Rζ(q) = R(K0 +K(q), ζ), we can write, thanks to (35),

Rζ(q) = Rζ(q0)
(
id + (K(q)−K(q0))Rζ(q0)

)−1

= Rζ(q0)

∞∑

k=0

(
(K(q0)−K(q))Rζ(q0)

)k
.

Thus, from

Rζ(q)−Rζ(q0)−Rζ(q0)(K(q0)−K(q))Rζ(q0) = Rζ(q0)

∞∑

k=2

(
(K(q0)−K(q))Rζ(q0)

)k

we conclude that there exists a constant Ĉ > 0, continuously depending on ζ, such that

‖Rζ(q)−Rζ(q0)−Rζ(q0)(K(q0)−K(q))Rζ(q0)‖ ≤ Ĉ‖q − q0‖2Y ,

which guarantees that

lim
‖q−q0‖Y→0

1

‖q − q0‖Y

∥∥∥∥
∮

Γ

(
Rζ(q)−Rζ(q0)−Rζ(q0)(K(q0)−K(q))Rζ(q0)

)
dζ

∥∥∥∥ = 0,
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where Γ is closed curve in C enclosing I (and not containing any other element of σ(K0+K(q0))).
�

In the last part of this section, we focus on control-dependent Hamiltonians satisfying assump-
tion (H0) and, when explicitly said, assumption (H1) too.

First of all, it is easy to see that for any u1,u2 the norms ‖ · ‖H(u1), ‖ · ‖H(u2) are equivalent,
thanks to the H0-smallness of the control Hamiltonians.

Let us now focus on the eigenvalues of H(u). From Lemma 5, and the equivalence of the
norms ‖ ·‖H(u), the eigenvalues λi(·) of H(·) are locally Lipschitz, and the corresponding Lipschitz
constants locally depend on the magnitude of λi(·).

Let ū be a conical intersection between the eigenvalues λj and λj+1, that satisfy a gap condition,
according to (H1). By the definition of conical intersection and the Lipschitz continuity of the
eigenvalues we can conclude that there exist a suitably small neighborhood U of ū and two
constants C1 > 0 and C2 > 0 such that

λj+1(u)− λj(u) ≥ C1|u− ū| ∀ u ∈ U (37)

and

|λi(u)− λi(u
′)| ≤ C2|u− u′| ∀ u,u′ ∈ U, i = j, j + 1. (38)

Moreover, if we consider two eigenvalues λj , λj+1, possibly intersecting, and isolated from the
rest of the spectrum, the projection P u associated with these two levels is smooth with respect to
u. The result holds also for any portion of the spectrum of H(u), in presence of a gap (see [30]).

On the other hand, the projections Pj , Pj+1, associated respectively with λj and λj+1, are
smooth with respect to u outside the singularity, while the presence of the conical intersection
determines a lack of continuity at ū. Nevertheless, along regular curves passing through the
singularity, it is possible to extend these projections, obtaining operators whose regularity depends
on the one of the curve, as stated in the following result.

Proposition A.4 Let γ : I → R
3, I = [−R, 0], be a Ck(I) curve such that γ(0) = ū is a conical

intersection between the eigenvalues λj and λj+1 and γ̇(t) 6= 0 for every t ∈ I, and consider its

k-jet at the origin ℓk(t) = γ(0) +
∑k
j=1

1
j! t

j dj

dtj γ(t)|t=0. Then Pj(γ(·)) is Ck on [−R, 0), it is Ck−1

at the singularity, and

lim
t→0−

dl

dtl
Pj(γ(t)) = lim

t→0−

dl

dtl
Pj(ℓk(t)), l = 0, . . . , k − 1,

where the limit above holds in the operator norm. The same result holds for Pj+1(γ(·)).

Proof. We first consider the case k = 1. Without loss of generality we assume |γ̇(0)| = 1. Let
ρ = C1/4, where C1 is as in (37), and for every t ∈ [−R, 0) consider the circle Γt ⊂ C of radius ρt
centered at λj(γ(t)). For a set A ⊂ C, we denote by d(z,A) = infx∈A |z− x| the distance between
the point z and the set A. There exists 0 < T ≤ R such that for every t ∈ [−T, 0)

|λj+1(γ(t))− λj(γ(t))| ≥
3

4
C1t = 3ρt

so that |λj+1(γ(t)) − ζ| ≥ 2ρt for every ζ ∈ Γt. Thus d(ζ, σ(H(γ(t)))) = ρt and, by (38) and
the definition of ℓ1(·), d(ζ, σ(H(ℓ1(t)))) ≥ ρt/2, up to reducing T . Therefore from the classical
identity holding for self-adjoint operators ‖(X − ζid)−1‖ = d(ζ, σ(X))−1 (see e.g. [18]), for ζ ∈ Γt
there hold

‖R(γ(t), ζ)‖ =
1

d(ζ, σ(H(γ(t))))
=

1

ρt
, ‖R(ℓ1(t), ζ)‖ =

1

d(ζ, σ(H(ℓ1(t))))
≤ 2

ρt
. (39)

23



In order to get the thesis, we prove that

lim
t→0−

∥∥∥∥
∮

Γt

(R(γ(t), ζ)−R(ℓ1(t), ζ)) dζ

∥∥∥∥ = 0.

Estimate (35) gives

‖(H(ℓ1(t))−H(γ(t)))R(γ(t), ζ)‖ ≤ C

∣∣∣∣
ℓ1(t)− γ(t)

t

∣∣∣∣

for some C > 0, which, together with (34)-(39) and the definition of ℓ1(·), yields the thesis.

Let us now tackle the general case; the proof follows similar arguments. We define the circuit
Γτ as above, and we notice that for every fixed τ ∈ (−T, 0) there is a neighborhood Iτ of τ such
that (39) can be replaced by the similar estimate

‖R(γ(t), ζ)‖ ≤ 2

ρt
, ‖R(ℓk(t), ζ)‖ ≤ 2

ρt
, (40)

holding for every ζ ∈ Γτ and t ∈ Iτ . For every t ∈ Iτ we have that

dl

dtl
Pj(γ(t)) = −(2πi)−1 d

l

dtl

∮

Γτ

R(γ(t), ζ) dζ = −(2πi)−1

∮

Γτ

dl

dtl
R(γ(t), ζ) dζ, l ≤ k − 1

and thus, by applying (34),

dl

dtl
Pj(γ(t))−

dl

dtl
Pj(ℓ(t)) = −(2πi)−1

∮

Γτ

dl

dtl

(
R(ℓk(t), ζ)(H(ℓk(t))−H(γ(t)))R(γ(t), ζ)

)
dζ, l ≤ k−1.

The proof can then be easily completed by applying recursively the identity

d

dt
R(f(t), ξ) = R(f(t), ξ)

( d
dt
H(f(t))

)
R(f(t), ξ),

the estimates (40) and (35), and by exploiting the regularity of γ(·) and the definition of ℓk(·). �

B Genericity of conical intersections

In this section we discuss the occurrence of conical intersection for certain classes of Hamiltonians.
More precisely, we show that conical intersection are not a pathological phenomena: indeed, in
the finite dimensional case and for some specific families of infinite dimensional control-affine
Hamiltonians, the fact of being a conical intersection is a generic property of eigenvalue crossings,
with respect to the controlled Hamiltonians.1

To prove this genericity property, in this paper we use transversality theorems that rely on
the second countability of the family of Hamiltonian operators under consideration. In the finite-
dimensional case, all these hypotheses are fulfilled. Concerning the general infinite-dimensional
case, where we take the controlled Hamiltonians H1, H2, H3 as self-adjoint operators on H, clas-
sical transversality theorems do not apply, since the space of self-adjoint operators is not second
countable (even if we restrict our attention to bounded self-adjoint operators). However physi-
cally relevant Hamiltonians often belong to particular families of operators which happen to be
second-countable: we will focus on one of these cases.

In the following, we will consider the class F of Hamiltonians of the form K (q) = K0 +K(q),
where K0 is a fixed self-adjoint operator, q belongs to a Banach space Y and K(·) is an injective
linear and continuous operator from Y to the space of K0-small self-adjoint operators, endowed

1We recall that a property is said to hold generically in a Baire space X if it is satisfied for all elements belonging
to a residual subset of X, that is a set containing an intersection of (at most) countably many open and dense
subsets of X.
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with the norm ‖ · ‖K0 . We will also assume that the parameterized family F satisfies the following
condition called Second Strong Arnold Hypothesis.

Second Strong Arnold Hypothesis (SAH2) : Assume that λ is an eigenvalue of K (q0) for
some q0 ∈ Y of multiplicity greater or equal than two. Then there exist two orthonormal eigenstates
ψ1, ψ2 of K (q0) pertaining to λ such that the three linear functionals

f11 − f22 : q 7→ 〈ψ1,K(q)ψ1〉 − 〈ψ2,K(q)ψ2〉
f12 : q 7→ 〈ψ1,K(q)ψ2〉
f21 : q 7→ 〈ψ2,K(q)ψ1〉

are linearly independent. Equivalently, the linear map Φ(·) = (f11(·)−f22(·),Re(f12(·)), Im(f12(·)))
is surjective from Y to R

3.

We call D the subset of Y such that the Hamiltonians in K (D) have double eigenvalues. For
every interval I and every open set U in Y, we denote by DI,U the subset of elements in U such
that the corresponding Hamiltonians have an eigenvalue in I of multiplicity two, isolated from the
rest of the spectrum.

In particular, under some additional regularity assumptions on the spectrum of the operators,
(SAH2) guarantees that D has codimension 3 in Y. More precisely, for a sufficiently small interval
I and a sufficiently small open set U the set DI,U is a smooth manifold of codimension 3 (see [31]).

The conicity of eigenvalue intersections correspond to a geometric property in the space of
parameters, as the following result shows.

Lemma 6 Let H(u) = H0 + u1H1 + u2H2 + u3H3 belong to F for every u ∈ R
3, and assume

that it has an isolated double eigenvalue λ at u = ū; then there exists a unique q̄ ∈ Y such that
H(ū) = K (q̄) and unique q1, q2, q3 ∈ Y such that Hi = K(qi), i = 1, 2, 3. Assume moreover that
there is a neighborhood U of q̄ in Y and an interval I containing λ such that DI,U is a submanifold
of codimension three in Y. Then ū is a conical intersection for H(·) if and only if for every
direction v ∈ R

3 the vector qv = v1q1 + v2q2 + v3q3 is not tangent to DI,U at q̄, that is, the affine
space {q̄ + qv : v ∈ R

3} is transversal to DI,U at q̄.

Proof. The existence of q̄ and qi as in the thesis comes directly from linearity and injectivity of
K.

If there exists some v ∈ R
3 such that qv is tangent to DI,U at q̄, then ū cannot be a conical

intersection, since in that case the distance between the eigenvalues intersecting at ū is of order
o(t) along the line t 7→ ū+ tv.

Let us now prove the converse statement. Denote by λ1(u) and λ2(u) the two eigenvalues of
H(u) crossing at ū, with λ1(ū) = λ2(ū) = λ.

Under the assumptions of the lemma, we can deduce the following facts.

• Possibly reducing I (still containing λ in its interior) and the neighborhood U of q̄, K (q)
contains exactly two eigenvalues in I, counted with their multiplicity, for every q ∈ U .

• Denoting with M(q) the sum of the eigenspaces of K (q) associated with the eigenvalues in
I and with PI(q) the orthogonal projection on M(q), we have that, possibly reducing U ,

‖PI(q)− P̄‖ < 1 ∀q ∈ U ,

where P̄ = PI(q̄), and moreover PI(q) is a differentiable function of q in U , by Proposition A.1
and Proposition A.3.

• The map S(q) = PI(q)
(
id+ P̄ (PI(q)− P̄ )P̄

)−1/2
P̄ is an isometric transformation fromM(q̄)

onto M(q) (see e.g. [29, Section 105]), and it is differentiable with respect to its argument.
Therefore the map

f(q) = S(q)−1
K (q)S(q)

is a differentiable mapping from U to the space of self-adjoint operators on M(q̄), and the
eigenvalues of f(q) are the same as the eigenvalues of K (q) in I.
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It is easy to see that DI,U ⊂ f−1({µ id : µ ∈ R}), where id denotes the identity on M(q̄).
Let us now assume that the intersection between the eigenvalues λ1 and λ2 is not conical, that

is there exists a unit vector v ∈ R
3 such that

λ2(ū+ tv)− λ1(ū+ tv) = o(t),

and we consider the curve N(t) = f(q̄ + tqv) in the space of self-adjoint operators on M(q̄), that
we write as two dimensional Hermitian matrices in a basis made of eigenstates relative to λ1 and
λ2; it holds

N(t) =

(
a(t) b(t)
b∗(t) c(t)

)
,

for some complex functions a(·), b(·), c(·) satisfying a(0) = c(0) = λ and b(0) = 0. Since the eigen-
values of N(t) coincide with those of H(ū+tv) contained in I, it holds

√
(a(t)− c(t))2 + 4|b(t)|2 =

o(t) and in particular, by the analiticity of λ1(ū+ tv) and λ2(ū+ tv) with respect to t, it is easy
to conclude that limt→0+(ȧ(t) − ċ(t)) = 0 and limt→0+ ḃ(t) = 0, that is, N(t) is tangent to the
space {µ id : µ ∈ R} at the point λ id.

Since by definition the family F satisfies the condition (SAH2), the map f is transversal to
{µ id : µ ∈ R}. Then we can conclude that

(Dq̄f)
−1({µ id : µ ∈ R}) = Tq̄DI,U

(see e.g. [1, Corollary 17.2]) and, in particular, qv is tangent to DI,U at q̄. �

B.1 Finite-dimensional case

The class of Hamiltonians under consideration is here F = iu(n), that is the set of Hermitian
n × n matrices. Trivially, in this case Y coincides with F . It is well known (see e.g. [3, 33])
that for sufficiently small I and U the set DI,U is a smooth manifold of codimension 3 in iu(n),
and, moreover, that the subset of Hermitian n × n matrices having at least one eigenvalue of
multiplicity 3 has codimension 8 in iu(n). By second countability we can extract a countable
family of pairs {(Ik,Uk)}k∈N that satisfy the property above in such a way that D = ∪kDIk,Uk .

Lemma 7 Fix H0 ∈ iu(n). Borrowing notation from [1], let us define the map ρ : iu(n)3 →
C(R3 \ {0}, iu(n)) as

ρ(H1, H2, H3) = H(·) (41)

with H(u) = H0 + u1H1 + u2H2 + u3H3, and let evρ : (R3 \ {0}) × iu(n)3 → iu(n) be defined as
evρ(·, H1, H2, H3) = ρ(H1, H2, H3). Then evρ is transversal to DIk,Uk for every k ∈ N.

Proof. If evρ(u, H1, H2, H3) /∈ DIk,Uk , then the thesis trivially holds. Assume then that H(ū) =
evρ(ū, H1, H2, H3) ∈ Uk has a double eigenvalue λ ∈ Ik for ū 6= 0.

The differential of evρ at (ū, H1, H2, H3) along the direction (δu, δH1, δH2, δH3) is given by

Devρ|(ū,H1,H2,H3)
[δu, δH1, δH2, δH3] =

3∑

i=1

(ūiδHi + δuiHi) .

Let us consider the three directions vl = (0, 0, 0, ū1σl, ū2σl, ū3σl), where the operators σl, l = 1, 2, 3,
are given by

σ1 = 〈ϕ2, ·〉ϕ1 + 〈ϕ1, ·〉ϕ2 σ2 = i〈ϕ1, ·〉ϕ2 − i〈ϕ2, ·〉ϕ1 σ3 = 〈ϕ1, ·〉ϕ1 − 〈ϕ2, ·〉ϕ2,

and ϕ1 and ϕ2 define an orthonormal basis of the eigenspace of H(ū) relative to λ.
Let us consider the eigenvalues of

H(ū) + ǫDevρ|(ū,H1,H2,H3)
[α1v1 + α2v2 + α3v3] = H(ū) + ǫ|ū|2

3∑

i=1

αiσi.
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It is easy to check that the degenerate eigenvalues split and their difference is equal to 2ǫ|ū|2|α|.
Therefore, span{Devρ|(ū,H1,H2,H3)

[vl] : l = 1, 2, 3} is a three dimensional space having trivial inter-

section with TH(ū)DIk,Uk . Since the codimension ofDIk,Uk is 3, this means that span{Devρ|(ū,H1,H2,H3)
[vi] :

i = 1, 2, 3} is transversal to TH(ū)DIk,Uk , and by definition of transversality of a map we get the
proof. �

Proposition B.1 Let H0 ∈ iu(n). Then generically with respect to (H1, H2, H3) ∈ iu(n)3, all

double eigenvalues of H0 +
∑3
i=1 uiHi correspond to conical intersections.

Proof. Define H(u) = H0 +
∑3
i=1 uiHi. Thanks to Lemma 7 we can apply the Transversal

Density Theorem [1] with W = DIk,Uk for k ∈ N, and ρ(H1, H2, H3) = H(·), and obtain that the
set of Hamiltonians (H1, H2, H3) such that H(·), as a function defined in R

3 \ {0}, is transversal
to DIk,Uk is residual in iu(n). In particular by applying Lemma 6 and taking the intersection of
the previous residual sets over all k we get that, generically, all double eigenvalues of H(u) with
u 6= 0 correspond to conical intersections.

Let us now consider the case where H0 has a double eigenvalue λ, and let ψ1 and ψ2 define an
orthonormal basis of the eigenspace relative to λ. Consider the real-valued multi-linear map

F (H1, H2, H3) = det



Re (〈ψ1, H1ψ2〉) Im (〈ψ1, H1ψ2〉) (〈ψ2, H1ψ2〉 − 〈ψ1, H1ψ1〉)
Re (〈ψ1, H2ψ2〉) Im (〈ψ1, H2ψ2〉) (〈ψ2, H2ψ2〉 − 〈ψ1, H2ψ1〉)
Re (〈ψ1, H3ψ2〉) Im (〈ψ1, H3ψ2〉) (〈ψ2, H3ψ2〉 − 〈ψ1, H3ψ1〉)


 .

Recall that u = 0 is a conical intersection for H0 +
∑3
i=1 uiHi if and only if F (H1, H2, H3) 6= 0.

Moreover, being F continuous, we obtain that F−1(R \ {0}) is an open subset of iu(n)3. This
subset is non-empty because the map

H ∈ iu(n) 7→
(
Re (〈ψ1, Hψ2〉) , Im (〈ψ1, Hψ2〉) , (〈ψ2, Hψ2〉 − 〈ψ1, Hψ1〉)

)
∈ R

3

is surjective. The density comes directly from multi-linearity. �

B.2 Infinite dimension: the case of electromagnetic Hamiltonians

Let us consider the class F of Hamiltonians of the form H = −∆+ V − i (∇A+A∇), where ∆
denotes the Dirichlet Laplacian on a given Lipschitz bounded domain Ω ⊂ R

3, V is a scalar con-
tinuous real-valued function on its closure Ω̄, that should be thought as a multiplication operator,
and A is a C1 vector-valued real function from Ω̄ to R

3. We focus on this family of Hamiltonians,
since they happen to be largely used to model quantum systems driven by electromagnetic fields.

The self-adjoint operator HA = −i (∇A+A∇) acts on the elements of its domain as follows:

−i (∇A+A∇)ψ = −iA · ∇ψ − i div(Aψ).

Since, as it can be easily seen, the map (V,A) 7→ V +HA is linear and injective, F has a Banach
manifold structure modeled on the space Y = C(Ω̄,R)× C1(Ω̄,R3); moreover, since Ω is bounded,
it turns out that both Y and F are separable, and thus second countable.

It is not difficult to show, by a direct integration by parts and applying the inequality 〈ψ1, ψ2〉 ≤
1
2 (ε‖ψ1‖2 + 1

ε‖ψ2‖2), that self-adjoint operators of the form HA are ∆-small. Therefore they can
play the role of control Hamiltonians in our setting. Similarly it can be shown that each HA is
form-bounded with respect to −∆ (as a quadratic form, see [27, Chapter X]) with a relative bound
that can be chosen smaller than one. Thus [28, Theorem XIII.68] ensures that the Hamiltonians
of the form −∆ + V − i (∇A+A∇) have compact resolvent so that their spectrum is purely
discrete with a finite number of eigenvalues in each compact subset of R. Notice moreover that
the topology induced by the norm ‖ · ‖∆ on F is coarser than the topology inherited from Y.

For the family of Hamiltonians F defined above we essentially repeat the same argument as in
the finite-dimensional case to show a genericity property of conical intersections. Before stating
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the main results of this section, some important remarks are in order. First of all we observe
that the operator HA plays a crucial role for the existence of conical intersections for controlled
Hamiltonian operators of the form H0 + u1H1 + u2H2 + u3H3 belonging to F . Indeed if one
considers controlled operators belonging to the class of Schrödinger operators of the form −∆+V
with V a real-valued function, then conical intersections are never present. This can be seen as a
consequence of the fact that the terms 〈ψj , Hiψk〉, with i = 1, 2, 3, computed with respect to an
appropriately chosen orthonormal basis of eigenfunctions {ψj}j∈N of −∆ + V , are real and thus
the first two columns of each conicity matrix are equal. On the other hand, examples of conical
intersections for controlled Hamiltonian belonging to the family F are not difficult to find, as
shown below.

Example. Consider the Hamiltonian H(u) = −∆+ u1V1 + u2V2 + u3HA, where

V1(x) = x22 + x23, V2(x) = x2x3, A = (0,−x3/2, x2/2)T ,
x = (x1, x2, x3) ∈ Ω = (0, 1)× (0,

√
3)× (0,

√
5)

with Dirichlet boundary conditions. We claim that H(0) (representing the potential well in Ω)
admits conical intersections of eigenvalues. Indeed eigenvalues and eigenfunctions of H(0) take
the form

λj1,j2,j3 =
π2

2

(
j21 +

j22
3

+
j23
5

)
, ψj1,j2,j3(x) =

2
√
2

4
√
15

sin(j1πx1) sin
(j2πx2√

3

)
sin
(j3πx3√

5

)

where j1, j2, j3 are strictly positive integers. Then one has that for instance λ1,1,3 = λ1,2,2 corre-
sponds to a double eigenvalue. A direct computation shows that the associated conicity matrix is
nonsingular.

Here we focus on the three-dimensional case since, unlike the other cases, it has a clear physical
interest: in that case the vector A, called vector potential, is related to the action of a magnetic
field B on the physical system determined by the relation B = ∇ ×A. However, let us observe
that the fact that the domain Ω is assumed to be a subset of R3 is not crucial for the mathematical
formulation of the problem and the correctness of the following results (the previous example, for
instance, can be directly recast in a two dimensional setting since the variable x1 does not play any
role there), unless the dimension is one. Indeed, in the latter case, it is easy to see that for every
continuously differentiable A, the energy levels of the Hamiltonian −∂2x + V (x) + HA coincide
with those of the Hamiltonian −∂2x + V (x)−A2. It can be easily shown that Hamiltonians of the
latter form, on bounded intervals and with Dirichlet boundary condition, do not admit degenerate
eigenvalues. Therefore the results below do not provide any information in the one dimensional
case. Note that the fact that for one dimensional systems a magnetic field can always be reabsorbed
by an electric field is well known in physics.

Let us now proceed with the study of the genericity properties of conical intersections for the
class F of controlled Hamiltonians under consideration.

First of all, we notice that the class F fits the formulation given at the beginning of this
appendix, with K (V,A) = −∆ + V + HA. We claim that the set D ⊂ Y which parametrizes
the operators admitting double eigenvalues has codimension three in Y. The claim is proved once
shown that all elements in F satisfy (SAH2) (see [31]).

Lemma 8 Every element of F satisfies (SAH2) for any multiple eigenvalue. Moreover, the
restriction Φ|{(V,0):V ∈C(Ω̄,R)} (defined in the statement of (SAH2)) has rank at least two.

Proof. Let us consider H̄ ∈ F , and assume that λ is a multiple eigenvalue of H̄. By contradiction,
assume that there exist three complex scalars a, b, c and two eigenstates of H̄ relative to the
eigenvalue λ such that the functional

a(f11(V,A)− f22(V,A)) + bf12(V,A) + cf21(V,A) (42)
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is identically zero. Notice that this fact does not depend on the particular choice of the orthonormal
eigenstates ψ1, ψ2.

Integrating by parts the terms of the kind 〈ψi, HAψj〉 taking into account boundary conditions
on the eigenfunctions, we can write the functional above as

∫

Ω

V B − iA · E ,

where

B = a|ψ1|2 − a|ψ2|2 + bψ∗
1ψ2 + cψ1ψ

∗
2 ,

E = a(ψ∗
1∇ψ1 − ψ1∇ψ∗

1 − ψ∗
2∇ψ2 + ψ2∇ψ∗

2) + b(ψ∗
1∇ψ2 − ψ2∇ψ∗

1) + c(ψ∗
2∇ψ1 − ψ1∇ψ∗

2).

By arbitrariness of V and A, the expression (42) is identically zero only if B and E are identically
zero on Ω.

Let us start by assuming that there exist two orthonormal eigenfunctions ψ1, ψ2 such that
|ψ1| ≡ |ψ2| on Ω and three scalars a, b, c such that the functional (42) is zero. Without loss of
generality we can assume that a ∈ R. In particular, from B = 0 we obtain that either ψ1 and
ψ2 differ only by a constant phase, which contradicts their linear independence, or b = c = 0. In
the latter case, denoting ψj = ψeiθj , j = 1, 2, it turns out that E = 2ia|ψ|2∇(θ1 − θ2). Then
∇(θ1 − θ2) = 0 wherever |ψ| 6= 0, and in particular θ1 − θ2 is constant on a open set. Up to a
phase change of the eigenfunctions, ψ1 −ψ2 is an eigenfunction which is null on a open set, which
implies, by the unique continuation property (see e.g [19]), that ψ1 ≡ ψ2, which is a contradiction.
We can then conclude that there are no orthonormal eigenfunctions with equal absolute value that
make (42) identically zero.

Let us now assume the general case in which there exist ψ1, ψ2 and a, b, c with a ∈ R such that
the functional (42) is zero. Again from B = 0, we obtain that

Im(B) = Im(bψ∗
1ψ2 + cψ1ψ

∗
2) = (b− c∗)ψ∗

1ψ2 + (c− b∗)ψ1ψ
∗
2 ≡ 0 a.e. on Ω.

If b = c∗, this condition is automatically satisfied and we write B as

a|ψ1|2 − a|ψ2|2 + bψ∗
1ψ2 + cψ1ψ

∗
2 = (ψ∗

1 , ψ
∗
2)

(
a b∗

b −a

)(
ψ1

ψ2

)
.

We can then diagonalize this quadratic form, ending up with two orthogonal eigenfunctions ϕ1, ϕ2

of H̄, associated with λ, such that

√
a2 + |b|2(|ϕ1|2 − |ϕ2|2) ≡ 0,

which is not possible thanks to the arguments above.
Let now b 6= c∗. By unique continuation property, we can assume that ψ∗

1ψ2 is not identically
zero, that implies that

b− c∗

b∗ − c
=
ψ1ψ

∗
2

ψ∗
1ψ2

,

which proves that the difference between the phases of ψ1 and ψ2 is constant on Ω and, in partic-
ular, it can be set to zero. This in particular leads to Im(b) = −Im(c). Let us then set b = β+ ir,
c = γ − ir, for some β, γ, r ∈ R.

Let us write ψ1 = φ1e
iζ and ψ2 = φ2e

iζ , for some real-valued functions φ1, φ2 and ζ. Then by
computations it follows from E = 0 that

(β − γ)(φ1∇φ2 − φ2∇φ1) + 2i
(
r(φ1∇φ2 − φ2∇φ1) + a(∇ζ)(φ21 − φ22) + (γ + β)(∇ζ)φ1φ2

)
= 0.

By direct computation one checks that φ1∇φ2 − φ2∇φ1 is proportional to ψ1∇ψ2 − ψ2∇ψ1, and
applying again the unique continuation property it turns out that the latter cannot be identically
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zero on an open set in Ω. Therefore it must hold β = γ, that is c = b∗. By contradiction, we see
that (SAH2) is verified.

The proof of the second statement follows the same arguments and is thus omitted. �

We remark that, thanks to the fact that the spectrum of any operator in F is discrete with
no finite accumulation points, and that the eigenvalues are continuous with respect to the pair
(V,A) (see Lemma 5), then for every (V̄ , Ā) ∈ Y such that K (V̄ , Ā) has a double eigenvalue λ
there exist a neighborhood I of λ and a neighborhood U of (V̄ , Ā) such that the subset DI,U is a
smooth submanifold of codimension three in Y. In particular, as in the finite dimensional case we
can find a countable family {(Ik,Uk)}k such that D = ∪kDIk,Uk , with DIk,Uk smooth submanifold
of Y of codimension three.

Let us now consider controlled Hamiltonians in F of the kind H0+u1V1+u2V2+u3HA, where
H0 ∈ F , V1, V2 ∈ C(Ω̄,R) and A ∈ C1(Ω̄,R3).

Lemma 9 Let H̄ = −∆+ V̄ +HĀ, for some V̄ ∈ C(Ω̄,R) and Ā ∈ C1(Ω̄,R3). Let X = {u ∈ R
3 :

u21 +u22 6= 0 and u3 6= 0} and let us define the following map ρ : (C(Ω̄,R))2 ×C1(Ω̄,R3) → C(X,Y)
as

ρ(V1, V2,A)(u) = (u1V1 + u2V2, u3A). (43)

Let evρ : X × (C(Ω̄,R))2 × C1(Ω̄,R3) → Y be defined as evρ(·, V1, V2,A) = ρ(V1, V2,A). Then evρ
is transversal to DIk,Uk for every k ∈ N.

Proof. Let us fix some notations: we set K(V,A) = V +HA and K (V,A) = H̄ +K(V,A).
If evρ(u, V1, V2,A) /∈ DIk,Uk , then the thesis trivially holds.
Assume then that H(ū) = K (evρ(ū, V1, V2,A)) has a double eigenvalue λ ∈ Ik for some ū ∈ X

and (V1, V2,A) with evρ(ū, V1, V2,A) ∈ Uk, and that ψ1, ψ2 are two orthonormal eigenstates of
H(ū) pertaining to λ. Without loss of generality, we assume that ū1 6= 0. Lemma 8 ensures that
the rank of the map

(V,A) 7→
(
〈ψ1, (V +HA)ψ2〉, 〈ψ1, (V +HA)ψ2〉∗, 〈ψ2, (V +HA)ψ2〉 − 〈ψ1, (V +HA)ψ1〉

)

is three, and its restriction to the space {(V, 0) : V ∈ C(Ω̄,R)} has rank at least two. Then we can
find three functions δU, δW ∈ C(Ω̄,R) and δA ∈ C1(Ω̄,R3) such that the conicity matrix

M(ψ1, ψ2) =




〈ψ1, δUψ2〉 〈ψ1, δUψ2〉∗ 〈ψ2, δUψ2〉 − 〈ψ1, δUψ1〉
〈ψ1, δWψ2〉 〈ψ1, δWψ2〉∗ 〈ψ2, δWψ2〉 − 〈ψ1, δWψ1〉
〈ψ1, HδAψ2〉 〈ψ1, HδAψ2〉∗ 〈ψ2, HδAψ2〉 − 〈ψ1, HδAψ1〉




is non-singular. In particular, this means that v = 0 is a conical intersection for the Hamiltonian

H̃(v) = H(ū) + v1δU + v2δW + v3HδA.

Moreover, we can write the Hamiltonian H̃(v) as

H̃(v) = H(ū) +

3∑

j=1

vjK
(
Devρ|(ū,V1,V2,A)

[wj ]
)

= H̄ +K(ū1V1 + ū2V2, ū3A) +
3∑

j=1

vjK
(
Devρ|(ū,V1,V2,A)

[wj ]
)

where Devρ|(ū,V1,V2,A)
[w] denotes the differential of evρ at (ū, V1, V2,A) evaluated on the variation

w ∈ R
3 × (C(Ω,R))2 × C1(Ω̄,R3), and the variations wj are

w1 = [0, 0, 0, δU/ū1, 0, 0],

w2 = [0, 0, 0, δW/ū1, 0, 0],

w3 = [0, 0, 0, 0, 0, δA/ū3].
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Therefore, since the codimension ofDIk,Uk is three, and applying Lemma 6 with qi = Devρ|(ū,V1,V2,A)
[wi]

and q̄ = (ū1V1 + ū2V2, ū3A), we get that

Y = {qv : v ∈ R
3}+ Tq̄DIk,Uk ⊂ Im(Devρ|(ū,V1,V2,A)

) + Tq̄DIk,Uk ,

and this concludes the proof. �

Proposition B.2 Let H0 ∈ F and X as in the lemma above. Then generically with respect to
(V1, V2,A) ∈ (C(Ω̄,R))2×C1(Ω̄,R3), all the double eigenvalues of H(u) = H0+u1V1+u2V2+u3HA

with u ∈ X correspond to conical intersections.

Proof. Thanks to Lemma 9 we can apply the Transversal Density Theorem and obtain that the
set of triples (V1, V2,A) such that ρ(V1, V2,A), as a function defined on X, is transversal to DIk,Uk

(at ρ(V1, V2,A)) is residual in (C(Ω̄,R))2×C1(Ω̄,R3). We can conclude as in Proposition B.1 that,
generically, all double eigenvalues of H(u) with u ∈ X correspond to conical intersections.
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[33] J. Von Neumann and E. Wigner. Über das Verhalten von Eigenwerten bei adiabatischen
Prozessen. Physikalische Zeitschrift, 30:467–470, 1929.

[34] D. R. Yarkony. Diabolical conical intersections. Reviews of Modern Physics, 68:985–1013,
1996.
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