
HAL Id: hal-01117766
https://hal.science/hal-01117766v1

Submitted on 17 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A PostgreSQL Extension for Continuous Path and
Range Queries in Indoor Mobile Environments

Imad Afyouni, Cyril Ray, Sergio Ilarri, Christophe Claramunt

To cite this version:
Imad Afyouni, Cyril Ray, Sergio Ilarri, Christophe Claramunt. A PostgreSQL Extension for Continu-
ous Path and Range Queries in Indoor Mobile Environments. Pervasive and Mobile Computing, 2014,
15, pp.128-150. �10.1016/j.pmcj.2013.09.008�. �hal-01117766�

https://hal.science/hal-01117766v1
https://hal.archives-ouvertes.fr

Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech

researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/9334

To cite this version :

Imad AFYOUNI, Cyril RAY, Sergio ILARRI, Christophe CLARAMUNT - A PostgreSQL Extension
for Continuous Path and Range Queries in Indoor Mobile Environments - Pervasive and Mobile
Computing - Vol. 15, p.128-150 - 2014

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

http://sam.ensam.eu
http://hdl.handle.net/10985/9334
mailto:archiveouverte@ensam.eu

A PostgreSQL Extension for Continuous Path and Range Queries in Indoor

Mobile Environments

Imad Afyounia,1,ú, Cyril Raya,1, Sergio Ilarrib,2, Christophe Claramunta,1

a
Naval Academy Research Institute, 29240 Brest Cedex 9, France

b
Department of Computer Science and Systems Engineering, University of Zaragoza, Maria de Luna 1, 50018 Zaragoza, Spain

Abstract

Continuous location-dependent queries are key elements for the development of location-based and context-
aware services. While most works on location-dependent query processing have been mainly oriented towards
outdoor environments, this paper develops an approach for the continuous processing of location-dependent
queries over indoor moving objects. A prototype for handling those queries has been developed as an
extension for the open source DBMS PostgreSQL. Several algorithms for the continuous processing of path
searches and range queries applied to both static and moving objects are performed on top of a hierarchical
and context-dependent data model. Experimental results have been conducted to report our findings.

Keywords: Context-aware indoor navigation, location-dependent queries, hierarchical spatial data model,
continuous processing, moving objects

1. Introduction

Mobile location-aware services have recently attracted extensive research attention as their development
is expected to have significant impact for end users in both indoor and outdoor environments [Schiller and
Voisard, 2004; Yu and Spaccapietra, 2010]. Location-aware services in indoor environments provide the user
with the ability to interact with his/her physical surroundings in order to achieve some tasks. More generally,
context-aware systems exploit contextual dimensions such as user-centred dimensions (e.g., user profile, user’s
physical/cognitive capabilities), the environmental context (e.g., location), the temporal context, and the
context of execution (e.g., network connectivity, nearby resources). This allows to anticipate the user’s needs
and to customize his/her navigation experience [Baldauf et al., 2007].

Many indoor mobile applications need to incorporate a mechanism for the continuous processing of
location-dependent queries over moving objects. Large indoor environments such as malls or commercial
centres encompass a complex indoor infrastructure3. Examples of such services include continuous crowd
monitoring within a given area, location-based alerts (e.g., continuously send E-coupons to all customers
within 200 metres of a certain store), crowd notification in an emergency situation, and location-based friend
finders (e.g., “let me know if I am near a restaurant while any of my friends are there”; and “if I continue

moving towards this direction, which will be my closest restaurants in the next 10 minutes?”).
Location-aware, user-centred services can be distinguished according to two modes of data access: the

pull mode depicts requests triggered by the user with the aim of pulling some location-dependent information
from the service provider [Ilarri et al., 2010; Zhang et al., 2003], while the push mode represents services
that are initiated by the service provider without having been requested by the user [Schiller and Voisard,

úCorresponding author
1E-mail: {imad.afyouni,cyril.ray,christophe.claramunt}@ecole-navale.fr
2E-mail: silarri@unizar.es
3For example, according to Shopinantes, the new Plaza Imperial Center in Zaragoza has an area of 159.000 square meters

and 180 shops.

Preprint submitted to Pervasive and Mobile Computing 20th August 2013

http://www.shopinantes.es/en/cc-plaza-imperial-zaragoza-zaragoza-es/

2004]. Location-dependent queries [Ilarri et al., 2010; Wang and Zimmermann, 2011], and more generally
context-dependent queries, represent typical examples of pull-based services needed in such context-aware
systems, as well as a key building block to detect situations of interest for push-based services. The context-
dependent character of these queries means that any change in the context (e.g., changes in the locations
and profiles of the objects that are involved in the query) may significantly a�ect the answer. For example, if
a user wants to find out his/her friends within a range of 100 meters while navigating a shopping centre,
the answer depends on both the user’s current position and the location of the nearby friends. This type of
query is particularly challenging because, in most cases, the user and the entities relevant for the query (e.g.,
the friends of the user) are moving.

An appropriate management of static and dynamic data is a key issue for processing location-dependent
queries. In fact, the result of a query is only valid for a particular location of the query issuer and for
certain locations of the objects of interest. As those queries are time-sensitive and location-dependent, they
may be valid only for a given period of time (e.g., shops in a mall have certain opening hours and are
not available outside that schedule), and within a given area. Therefore, those queries are expected to be
processed as continuous queries [Terry et al., 1992], which means that the system should continually keep
the answers up-to-date, until the query is explicitly cancelled by the user. Most work on location-dependent
query processing has been developed for outdoor environments (cf., [Ilarri et al., 2010] for a recent survey).
However, indoor environments have brought special features and constraints that should be considered during
query processing. For instance, a hierarchical structure is typical in an indoor environment. Furthermore,
small-scale indoor spaces encompass some specific properties, when compared with large-scale open spaces.
In particular, interactions among humans and/or other objects in a small-scale space are much more frequent
than in a large-scale one, which is usually beyond the range of humans’ physical interactions. For indoor
spaces, approaches for query processing based on the network distance are preferred and more realistic.
However, existing approaches for network-based query processing usually assume an outdoor environment
[Deng et al., 2009; Lee et al., 2005; Papadias et al., 2003], where for instance hierarchical networks do not
appear.

The objective of the research presented in this paper is to process di�erent kinds of location-dependent
queries in a flexible manner, and to take into account additional context information, time-dependency, and
the hierarchical layout of the indoor environment. In a previous work, a preliminary phase has been to
develop an indoor data model that relies on a hierarchical and context-dependent design to allow a large
spectrum of applications to be developed at di�erent levels of abstraction, while alleviating performance
and scalability issues in location-dependent query processing [Afyouni et al., 2013, 2010]. The present paper
addresses the continuous processing behind other relevant location-dependent queries in indoor contexts.
Particularly, continuous path searches and range queries represent the main focus of this paper. Those are
briefly described as follows:

1. Path queries encompass all the queries that directly help the users to find and reach points of interest, by
providing them with navigational information while optimizing some criteria such as the traversed distance
or the travel time. Examples of such queries are: (i) discovering optimal paths to a nearest point of interest
(e.g., landmark, place), and (ii) planning a path to a destination.

2. Range queries find and retrieve objects or places of interest within a user-specified range or area [Wu
et al., 2006]. Those queries support navigation by continuously updating relevant details according to the
users’ movements. Ranges may be characterized by a circular or rectangular-shaped window in which objects
of interest must be located. In addition, range queries may be static or dynamic according to whether or not
the starting query point is in a static location. Similarly, a range query can be applied on static or dynamic
data, depending on whether the objects that are the target of the query are moving or not.

An initial proposal presented in [Afyouni et al., 2012b] has discussed the principles of the continuous
processing of path and range queries in indoor environments. This paper extends and improves this previous
work by introducing a new prototype that has been fully implemented as a PostgreSQL extension for the
continuous processing of location-dependent queries. Secondly, new algorithms, a series of optimizations,
and more detailed explanations are provided. Thirdly, an experimental evaluation of the proposal has been

2

carried out, showing significant improvements thanks to the hierarchical and continuous query processing
approach.

The remainder of this paper is organized as follows. Section 2 summarizes the hierarchical and context-
dependent indoor data model, and emphasizes its role for location-dependent query processing. Section 3
introduces a hierarchical and incremental approach for the continuous processing of path queries over moving
objects, while Section 4 presents an incremental approach for the continuous processing of range queries.
Section 5 underlines the implementation experience by describing the PostgreSQL system architecture as well
as several optimizations performed at the algorithmic level. Experimental results of the proposed solutions
are provided in Section 6. Finally, Section 7 draws some conclusions and outlines future work.

2. Modelling Approach

The modelling approach summarized in this section has been introduced in a recent work [Afyouni
et al., 2013], and represents a hierarchical graph representation of an indoor system that can be integrated
into a context-aware system architecture. The preliminary requirements for the development of indoor
spatial models have been surveyed in [Afyouni et al., 2012a] from a context-aware system perspective. An
indoor data model should meet service-oriented (i.e., localisation, navigation, location-aware communication,
activity-oriented interaction, and simulation and behavioural analyses) and e�ciency-related (i.e., modelling
e�ort, flexibility, performance, and scalability) requirements. This section first gives a brief summary of indoor
space modelling approaches, and then presents a hierarchical and context-dependent indoor data model that
is hierarchically organised and can be viewed as a tree structure in which location information is represented
at di�erent levels of abstraction. The proposed hierarchical data model constitutes the foundations on which
query processing algorithms are performed.

2.1. Indoor Space Modelling Approaches
Modelling approaches are classified into two main classes: symbolic and geometric spatial models.

Geometric-based approaches (otherwise referred to as metric or coordinate-based approaches) consider that
locations are represented as points, lines, areas or volumes. In contrast, symbolic-based approaches provide
qualitative human-readable descriptions about objects based on symbolic points of interest (e.g., room or
floor identifier, building name, etc.). Symbolic-based approaches are often preferred, from an application
perspective, over conventional geometric-based approaches, and have been used in many application scenarios
[Becker and Durr, 2005], as they can capture the semantics of entities and places represented in an indoor
space. For instance, deployment graphs have been proposed in Jensen et al. [2009] by using di�erent types
of positioning sensors in order to improve indoor tracking accuracy. Navigation between cells representing
ranges of the deployed sensors is supported, which also allows for range-based analysis. However, the accuracy
of location information in such techniques is relatively low since it depends on the sensor range. Furthermore,
an optimised deployment strategy of the sensors is needed so that a more compact and more e�cient graph
can be created.

A generic data model for representing the complete movement of a moving object (i.e., indoor and
outdoor movements), where the roads, streets and rooms are considered as constituting entities, has been
also described in [Xu and Guting, 2011]. Specific data types have been provided for representing a room by a
2D area plus a value denoting the height above some ground level of the building. Besides, an indoor graph
has been designed based on the room and door elements in order to support indoor trip planning at the
room level. Doors in this graph represent nodes and edges correspond to rooms. Searches for optimal routes
are made available through this model, based on a preprocessing step that computes paths between all pairs
of doors. However, this model does not represent objects’ movements at a fine-grained level. In addition, this
approach does not deal with the continuous processing of current movements but rather with histories of
movements.

Hybrid spatial models (i.e., with both geometric and symbolic representations) provide a good trade-o� to
e�ciently integrate metric properties, while maintaining a more abstract view of space with easily-recognizable
information about relationships between entities [Afyouni et al., 2012a]. A hierarchical data model embodies

3

Imad Afyouni

Imad Afyouni

knowledge of the environment at di�erent levels of abstraction. A hierarchical design can support a large
spectrum of applications, and o�ers a solution to alleviate performance and scalability issues in location-
dependent query processing. Hierarchical models usually scale very well to large environments since queries
such as path search can be performed hierarchically by switching from finer to coarser levels and vice versa.
For more details about indoor space modelling approaches, please see [Afyouni et al., 2012a].

2.2. Preliminaries
This approach assumes that moving objects cooperate with a given system by providing up-to-date

location data when needed. Thus, a minimum intervention of a user device is required for query processing by
communicating the location of the user to the system according to a certain location update policy [Wolfson
et al., 1999]. As soon as a location update is received from a moving object involved in a given query,
the server starts the reevaluation process by considering the impact of such updates on the active queries.
Accurate location data are assumed to be received in real-time from an indoor positioning system, based on
recent technologies such as MEMS sensors, Wireless fingerprinting, and magnetic fields [Liu et al., 2007; Gu
et al., 2009; Ray et al., 2010; IndoorAtlas, 2012].

For each location-dependent query, the following terms are used (as suggested in [Ilarri et al., 2006]).
A reference object denotes an object that represents the reference for a given location-dependent query
(e.g., for a range query, the object that indicates the centre of the range). A target object represents an
object of interest to the location-dependent query, and which belongs to a specific target class. It is worth
noting that no constraints are imposed on the movements and directions of the reference and target objects.
Accordingly, a reference object is assumed to be either in a static location or moving freely in a spatial
network with time-dependent edge weights. Similarly, a location-dependent query can request information
about static or dynamic data, depending on whether the target objects are moving or not. For instance, a
reference/target object could be a person or a point of interest -POI- (e.g., a room). Therefore, a unique
combination of challenges arises, as the proposed architecture must be able to continuously process di�erent
kinds of location-dependent queries, and to take into account additional context information, such as the
time-dependency and the user profiles (e.g., some areas may be restricted to special kinds of users, such as
the security personnel), as well as the hierarchical layout of the indoor environment.

On the modelling side, the concept of location granule, first introduced in [Ilarri et al., 2011], represents
a location at a given level of granularity (i.e., a node at the base level of the hierarchical data model, a
room, a floor or a building). The idea is that it should be possible to express the queries and retrieve the
results according to a given location granularity specified by the user. Location granules have an impact
on: 1) the presentation of results; 2) the semantics of the queries; and 3) the performance of the query
processing. A query language that takes advantage of these location granules to improve the expressiveness
of location-dependent queries in indoor environments has been introduced in [Afyouni et al., 2013]. The
query processing algorithms presented in Sections 3 and 4 constitute the main execution engine behind this
query grammar, and allow for the continuous processing of those queries at di�erent levels of granularity.
Location granules allow to formulate queries with a location resolution which is appropriate for the intended
application. With them, it is possible to formulate queries using the location terminology required by the
user (e.g., vertices at the fine-grained level, rooms, floors, buildings, etc.). For example, a user may be
interested in persons that are near the room where another (moving) object is currently located. In such a
case, the location granularity is set to the room level.

2.3. Hierarchical Data Model
This section presents the hierarchical spatial component of the indoor data model. This component

constitutes the foundations on which the algorithms for the continuous processing of location-dependent
queries are performed. A spatial component S =

t
i=1...|S| S

i

is made of a set of layers (S
i

) hierarchically
organised and representing the indoor environment. The core layer (S1) is hereafter presented. Then, other
coarser layers that are incorporated into the query processing are discussed.

4

2.3.1. Core Spatial Layer
The core layer S1 (referred to as S

micro

) of the indoor data model is made of a fine-grained graph G
micro

= (V
micro

, E
micro

, W
length

,W
time

) embedded within a spatial grid with a regular cell size, and which covers
the indoor space (Figure 1). The extent and the level of granularity are two mandatory parameters that
have to be determined a priori for the derivation of the grid. The accuracy of the resulting grid depends on
the cell resolution. A fine-grained grid supports accurate location data, but could introduce heavy processing
workloads [Afyouni et al., 2012a]. For example, the spatial resolution selected in the scenario illustrated in
Figures 1 and 2 is 50 cm, which roughly corresponds to the human spatial extent [Raubal, 2001]; this fine
spatial resolution assumes highly accurate location data, but other coarser resolutions can be used depending
on the application constraints. A coarser resolution results in a less accurate representation of space as well
as a distorted perception of the objects’ movements. The resulting grid graph encompasses vertices (i.e.,
nodes) that represent cells within the grid, and connections between cells are explicitly materialized by edges.

Each node is located at the centre of a cell, and is connected to its eight neighbours (not only the four
ones located in the boundary) with horizontal, vertical, and diagonal edges. The size of cells a�ects the
computation time as well as the accuracy of paths. A high resolution allows an optimal and accurate path to
be computed, but consumes a higher computation time. In contrast, a big cell size favours better performance
when computing navigational paths, but it is possible for narrow pathways to be missed in the modelling
process. The choice of the appropriate level of granularity regarding the cell size is made at the application
level in order to perform queries at the fine or coarse levels of granularity depending on the query objectives.
For a context-aware navigation system, a fine resolution has been chosen so that accurate and optimal paths
can be computed, and performance results are shown in Section 6 based on this resolution. Clearly, better
performance results can be achieved by adopting a coarser cell resolution.

Figure 1: A fine-grained network of a two-storey building: first level of the hierarchical spatial data model

This modelling approach achieves a maximum coverage of the indoor space. An indoor environment is
represented as a continuous space that supports continuous positioning techniques used in indoor navigation.
Besides, the cell- and graph-based representation supports the modelling of structural properties (i.e.,
connections and relationships between nodes) at di�erent levels of granularity, while keeping geometrical
properties. Nodes of the grid graph are labelled according to their membership to a given spatial unit such as
a room or a connecting space (i.e., a hallway). Therefore, each node has one and only one membership value
since it belongs to one and only one spatial unit, whereas an edge might have multiple membership values

5

Imad Afyouni

when it intersects several spatial units. Nodes and edges can be labelled with impedances defined at the
application level (i.e., node’s and edge’s accessibilities). Figure 2 illustrates a closer view of the fine-grained
network, and shows that a room at the abstract level may contain multiple nodes of the fine-grained graph
(green points represent nodes, and links between them depict edges). The set of exits (i.e., brown polygons)
illustrated in Figures 1 and 2 are considered afterwards (Section 2.3.2) in order to constitute an abstract
layer as a part of the hierarchical data model.

Figure 2: A closer view of the fine-grained graph (V
micro

, E

micro

) at Room 113 (R113) of the first floor. Each point represents
a node located at the centre of a cell

S
micro

is characterized by V
micro

= {v
i

} as the set of vertices and E
micro

™ V
micro

◊ V
micro

as the set of
edges. For each edge e = (v

i

, v
j

) œ E
micro

, there exist two time-dependent cost functions Êl
i,j

(t) œ W
length

and Êt
i,j

(t) œ W
time

that compute the length and travel-time from v
i

to v
j

, respectively, if traversal is started
at instant t. Besides time, this model also takes into account other contextual dimensions such as user
profiles and real-time events, to further associate impedances with edge weights (cf., [Afyouni et al., 2013]).

Each node (or vertex) v œ V
micro

has a set of attributes that describe its physical location or state
(i.e., whether it is accessible or not). A node v is formally defined by the tuple Èv

id

, x

v

, y

v

, s

v

, L

v

Í, where
v

id

is the node identifier, (x
v

, y

v

) denotes the geometric location of v according to a local reference system,
and s

v

œ {free, occupied} determines whether or not the node v is physically occupied by an object at that
moment, and L

v

is a set of labels. Nodes that are occupied by static objects (or a�ected by real-time events
that indicate that the node is inaccessible) are assumed to be unusable for path planning4.

Let �
label

= {�
fine≠grained

fi �
room

fi �
floor

fi �
building

} be a set of labels or symbolic values that consists
of all the identifiers of the topological hierarchy (i.e., local identifiers of nodes at the fine-grained level, as well
as room, floor, and building identifiers) for a given space. Hence, L

v

µ �
label

= {local-id, room-id, floor-id,
building-id} is a set of labels assigned to v, where local-id denotes its local identifier at the fine-grained level,
and the others are associated according to their belonging to the topological hierarchy. We assume at this
level that v belongs to one and only one room, and one building. In contrast, floor-id is a subset of the set of
floor identifiers since, for instance, a node located on a staircase may belong to several floors (Figure 1).

An edge e œ E
micro

is defined by a tuple È(v
i

, v
j

), L

e

, Êl
i,j

(t), Êt
i,j

(t)Í, where v
i

,v
j

œV
micro

, v
i

, v
j

, and
L

e

µ �
label

is a subset of the set of labels (e might have multiple labels when it intersects several spatial
units -e.g., rooms-). Besides, Êl

i,j

(t) and Êt
i,j

(t) are time-dependent functions associated with the traversal
of e. The traversal of some edges may be constrained by a temporal interval defined at the application level,

4Moving objects are usually not considered as obstacles, and even if they are obstructing the path (e.g., a cleaning machine
blocking a pathway) they are expected to move in a short time. Nevertheless, there is no problem to model this kind of situations
in our modelling approach, as a closed pathway can be considered as a real-time event that temporarily prevents passing by.

6

Imad Afyouni

and within which the traversal is possible; otherwise the corresponding edge cannot be traversed. These
functions are defined as follows:

Êl
i,j

(t) =

Y
]

[

Ed(v
i

, v
j

) if t œ [t
start

, t
end

]

Œ otherwise
where Ed(v

i

, v
j

) is the Euclidean distance between v
i

and v
j

, and t
start

and t
end

are defined at the application
level (for example, [08 : 00, 17 : 00] could be specified for an o�ce building).

Êt
i,j

(t) =

Y
]

[

f (Êl
i,j

(t)) if t œ [t
start

, t
end

]

Œ otherwise
where f (Êl

i,j

(t)) is a length-dependent time function that further associates impedances to compute the
travel time between v

i

and v
j

.
The network distance and the travel time of a navigational path from v

s

to v
d

are computed as indicated in
Definitions 1 and 2, respectively. These functions take the Euclidean distance derived from the fine-grained
network in order to compute the optimal navigational network-based path, depending on either the distance
and/or time criteria, as well as other semantic constraints. Therefore, the fine-grained graph implicitly
integrates the notion of minimal indoor walking distance (as introduced in [Yang et al., 2010]) to compute
navigational paths. This graph only includes accessible links from a given node, and links that intersect
physical obstacles are directly removed at the modelling phase. Therefore, the Euclidean distance is only
used at the very fine level to compute distances between cells. Navigational paths are computed based on
accessible links and the resulting path represents the minimal walking distance from a source to a destination.

Definition 1. Fine-grained and time-dependent network distance: Let p = Èv
start

=v1 æ v2 æ
. . . æ v

k

=v
goal

Í be a path that contains a sequence of nodes v
i

œ V
micro

, i=1, . . . , k. The time-dependent
network distance of p is given by length

start,goal

(t
start

) =
q

k≠1
i=1 Êl

i,i+1(t
i

), where t
i

= t
i≠1 + Êt

i≠1,i

(t
i≠1)

represents the estimated time instant at node v
i

, ’ i=2, . . . , k, and t1 = t
start

.

Definition 2. Fine-grained and time-dependent travel time: Let p = Èv
start

=v1 æ v2 æ . . . æ
v

k

=v
goal

Í be a path that contains a sequence of nodes v
i

œ V
micro

, i=1, . . . , k. The time-dependent travel
time of p is given by time

start,goal

(t
start

) =
q

k≠1
i=1 Êt

i,i+1(t
i

), where t
i

= t
i≠1 + Êt

i≠1,i

(t
i≠1) represents the

estimated time instant at node v
i

, ’ i=2, . . . , k, and t1 = t
start

.

2.3.2. Coarser Spatial Layers
A coarse-grained model can be derived from a finer-grained representation depending on the application

and context-aware constraints and capabilities. Our approach assumes that a given user acting in an
indoor space can be continuously located in real-time, using for instance a MEMS sensor, thus providing a
fine-grained representation for that user. In contrast, when WLAN or RFID positioning systems are deployed
in the environment, a coarser level of granularity might be provided to locate users in the environment.
Similarly, the spatial representation to consider in order to relate mobile users to the environment is chosen
appropriately by taking into account some application constraints and properties. For instance, if one asks
how many users are located in a given room, it may be inappropriate to display the precise locations of
those users and their trajectories. In such a case, a representation at the room level is likely to be su�cient.
Alternatively, a finer level of granularity might be appropriate when one is interested in the relative location
of some users in a given room, and also with respect to the location of some sensors in that room. The
relevant layers considered in the data model are summarized hereafter.

Exit hierarchy. Exits represent connections between rooms at the abstract level. An exit may also contain
multiple nodes and edges at the fine-grained level (see Figure 1 and 2). Based on these exits, a coarser
network (at a higher level of abstraction) can be designed, in which nodes depict those exits and links
represents optimal navigational paths between directly reachable exits. An exit is an important element of
the data model used for query processing. Through them, a user can leave or enter a place (e.g., doorways or
staircases), and therefore the terms exit and entrance can be used interchangeably to emphasize the real

7

Imad Afyouni

direction of movement. An exit is represented as an abstract node that belongs to two di�erent spatial units
(i.e., brown polygons in Figure 1). By means of these exits, optimal network distances and travel times
between directly reachable pairs of exits are pre-processed and cached in order to reduce the cost of on-the-fly
computation of hierarchical path searches. An exit exÕ is directly reachable from exit ex if and only if there
is an accessible passageway for pedestrians from ex to exÕ which does not involve any other exit. Based on
this concept, a network of exits/entrances, referred to as exit hierarchy, is constructed at a higher level of
abstraction as illustrated in Figure 3. This layer is built on top of the fine-grained network represented in
Figure 1.

FloorExit12

FloorExit02 ex122 ex123

ex111 ex130 ex129 ex125 ex126 ex127 ex128

ex121 ex120 ex119

ex113

ex101 ex102 ex103 ex108

ex118 ex117 ex109 ex107 ex112

ex104 ex105 ex106 ex111

ex110

ex115 ex114

FloorExit11

FloorExit01

hierarchical link (parent-child)
horizontal link (directly accessible)

Figure 3: Part of the exit hierarchy derived from the fine-grained graph (first floor)

A link between two directly reachable exits is represented by a path (i.e., a sequence of nodes and edges
in (V

micro

, E
micro

)) at the fine-grained layer. More formally, let r, rÕ œ �
label

be the labels of two connected
rooms, the exit representing the doorway between r and rÕ is given by: ex

r,r

Õ = {v
i

, v
j

œ V
micro

| ÷ex œ
E

micro

, ex = (v
i

, v
j

) · r œ ex.L
ex

· rÕ œ ex.L
ex

}. An exit is also characterised by: L

ex

r,r

Õ ={local-id, {r, rÕ},
floor-id, building-id}. FloorExit11 is an example of an exit depicted in Figure 3, which belongs to two
structural units: Stair01 and HW12. Therefore, L

F loorExit11 = {FloorExit-11, {Stair01, HW12}, Floor-1,
Building-1}. An abstract edge (ex

r,r

Õ , ex
r

Õ
,r

ÕÕ) in the exit hierarchy is a path made of a sequence of nodes
and edges of the fine-grained level that compose the optimal network distance from a node v

start

œ e
r,r

Õ

to a node v
goal

œ ex
r

Õ
,r

ÕÕ . An edge of the exit hierarchy is referred to as exit-path and is denoted by
Èsource_exit_id, target_exit_id, length, timeÍ. A generalisation of this hierarchy that covers a multi-storey
building is used for path planning. Consequently, an exit of a ground floor has a building exit as a parent
node, and a first-floor exit as a child node since both are parts of a staircase.

Location hierarchy. Incorporating information about exits into the topological hierarchy enables the
modelling of optimal paths at an abstract layer. Those are used to facilitate hierarchical path searches
and to alleviate performance issues raised while traversing the fine-grained graph. Although connectivity
relationships between those elementary structural units can be computed from the exit hierarchy, an adjacency
relationship needs to be associated to each unit in a separate abstraction layer. A room consists of a set of
nodes at the fine-grained layer as illustrated in Figure 2. An abstract view of an indoor space considers rooms
as abstract nodes and connections between rooms as links. Such topological properties are not explicitly
materialised in the exit hierarchy, even though information representing their belonging to the topological
hierarchy has been incorporated. Consequently, a location hierarchy that is based on a connectivity graph,
which represents rooms as nodes and doorways as edges, can be automatically derived from the fine-grained
graph as an additional layer in order to preserve topological relationships (Figure 4).
A room in the location hierarchy is characterized by Èroom_id, room_type, Adj_room_list, L

r

Í, where
room_type describes whether this unit is a room, a meeting room, a hallway, etc., Adj_room_list denotes
the list of identifiers of the adjacent units, and L

r

is introduced in a similar way as in the fine-grained level.
Such a location hierarchy can be directly derived from the fine-grained layer. A staircase that connects a
given floor to another is represented as a room that belongs to the two corresponding floors, and which is
bounded by two floor exits. On the other hand, an elevator is represented in a similar way to stairs. A
multi-floor elevator consists of several stages that correspond to the number of floors of the building. Each
stage of the elevator is modelled as a room that belongs to the two corresponding floors and bounded by
exits/entrances to/from the corresponding floors.

8

Lift0≠1

HW03 HW13

HW14

R116 R115 R114 BR13 R113 R112

MR13 R111 HW12

MR12

R101 R102 BR11

R110 R109 R108 MR11

HW11 BR12 R103 R104 R105 R106

Stair0≠1

HW02

Figure 4: Part of the location hierarchy derived from the fine-grained graph (first floor); “HW ” stands for Hallway, “MR” for
Meeting Room, “R” for Room, and “BR” for Bathroom

From the fine-grained graph, a typical clustering process results in an abstract layer as illustrated in
Figure 4. Graph partitioning is thus carried out based on the set of room labels associated to the nodes of
the base graph. Consequently, this process consists of: (1) extracting and aggregating nodes whose room
labels are identical to form the new abstract nodes of the location hierarchy; and (2) creating abstract edges
between connected structural units, thus favouring topology-based queries. These steps are as follows:

• Step 1. Based on the set of room labels, the fine-grained graph is partitioned into subgraphs. Let Ï =t
i=1...|�

room

| Ï
¸

i

be the set of subgraphs of S
micro

such that ¸
i

œ �
room

, and where ’i œ {1, . . . , |�
room

|},
Ï

¸

i

= (V
¸

i

, E

¸

i

) µ S
micro

is a subgraph extracted from the fine-grained graph according to node and
edge labels, and where

u
¸

i

œ�
room

V

¸

i

= ÿ. An abstract node that represents each subgraph is then
created, having ¸

i

as its local-id.

• Step 2. The set of outgoing edges between connected subgraphs is defined by: E

¸

i

,¸

j

= (Ï
¸

i

, Ï
¸

j

)
’i, j œ {1, . . . , |�

room

|}, i , j. It should be noted that, for geometric-based queries (e.g., path, range,
and nearest neighbour queries), the exit hierarchy is more likely considered, as it lends itself to more
accurate and more realistic pre-processing techniques. On the other hand, the location hierarchy is
more suitable for topology-based queries (e.g., connectivity, adjacency, etc.) or when one looks for
the optimal path that contains the smaller number of rooms. Therefore, there is no need to associate
precomputed network distances to each edge in the location hierarchy.

Similarly, there exists a relationship between exit and location hierarchies since exits belong to structural
units. For instance, by retrieving the list of room labels associated to all exits, one can derive connected
rooms and rebuild the corresponding location hierarchy. Accordingly, switching between a location hierarchy
and an exit hierarchy is always possible, thus covering a larger range of queries based on the di�erent levels
of granularity being managed.

3. Continuous Processing of Indoor Path Queries

In contrast to conventional location-dependent queries which consider static target objects, the algorithms
presented in this paper seek maximum generality by assuming that the target objects can be either in a
static location or moving freely in space. For simplicity, the query processing approach assumes that the
reference object will follow its optimal path towards the target. Therefore, incremental search algorithms are
required in order to e�ciently execute continuous location-dependent queries, thus avoiding solving each
search problem independently from scratch [Sun et al., 2009]. Incremental search implies reusing information
from previous searches for each query to obtain the current result without having to recompute everything
each time.

This section firstly discusses the most related work supporting path queries in indoor environments.
Secondly, an overview on the approach for the continuous processing of path queries is given. Lastly, a
detailed description along with pseudocodes of the corresponding algorithms are provided.

9

3.1. Background
Path queries implies finding an optimal route to a specified place or object of interest. One static/moving

target object is considered is this kind of query. Few works have studied the problem of continuously
processing path queries over moving objects located on a spatial network [Lee et al., 2007; Sun et al., 2010a,b,
2009]. The approach presented by [Lee et al., 2007] employs a mechanism to monitor the specified area
for the continuous evaluation of fastest path queries. In addition, a grid-based index has been proposed to
increase the e�ciency of multiple query processing. Sun et al. have proposed a series of A*-based algorithms
referred to as Fringe-retrieving A* -FRA*- [Sun et al., 2009], Generalized FRA* [Sun et al., 2010a], and
Moving target D* lite [Sun et al., 2010b], that aim at providing an e�cient incremental approach for moving
target path search.

In particular, FRA* is an incremental version of A* that is applied on moving targets in grid maps, and
aims at repeatedly finding the shortest path without having to process each search iteration independently
from scratch. The algorithm regularly transforms the previous search tree to an updated tree based on the
new locations of the reference and target objects. The current search tree is always rooted at the current
location of the reference object. Each cell within the search tree maintains a pointer to its parent cell, so that
a shortest path to the root can be directly obtained by traversing the tree in reverse following the ancestor
nodes. Although this algorithm performs well on moving objects, its scalability to a large environment (i.e.,
a large campus with multi-storey buildings) is still an issue to address, since fine-grained grids have been
adopted, which have not be proven to be scalable to large spaces [Afyouni et al., 2012a]. Moreover, FRA*
does not take into account the hierarchical structure of an indoor environment, and thus cannot handle
continuous path searches in multi-storey buildings.

On the other side, a hierarchical but static version of A*, referred to as Hierarchical Path-finding A*
(HPA*), has been proposed in [Botea et al., 2004], which decomposes a grid map into linked clusters and
pre-computes optimal distances for crossing linked clusters at an abstract level. A bottom-up approach
applied on a two-level hierarchy has been proposed. The technique is e�cient, but has been used for path
planning computations applied only on static data, and not to moving objects.

Those last two approaches have inspired our work on the continuous processing of general hierarchical
path searches on moving objects described in Sections 3.2 and 3.3. Our approach transforms an initial search
tree to an updated tree depending on the movements of the objects and the changes in the environment.

3.2. Algorithm Principles
Let us introduce an approach for the continuous processing of path queries that relies on a bottom-up

technique, and which uses two levels of abstraction, that is, a fine-grained layer at the first level and the
exit hierarchy at the second level of abstraction5. The search starts from a user-defined level of granularity
(depending on the location granule specified in the request and which contains the initial query point) to
the highest level of abstraction to find the optimal route at an abstract level. Refinement processes are
executed, when needed, to find the exact location of the target object. The main steps of the process can be
summarized as follows:

1. Find the optimal path within the initial granule until reaching the optimal exit.

2. Search at the abstract level (exit hierarchy) for the optimal path from the exit of the initial granule to
the granule containing the target object.

3. Find the optimal path within the last granule to the target object, starting from the corresponding
entrance of the granule.

4. Start a continuous path search by taking into account updated locations of both the reference and the
target objects (considering the general case of moving targets). This implies transforming an initial search

5The location hierarchy presented in Section 2.3.2 could also be used if exact positions of objects of interest and accurate
distances are not critically important for the user.

10

tree rooted at the previous location of the reference object to an updated tree rooted at its current location.
The process continues by either expanding new subtrees from the leaves towards the target and/or by
removing subtrees that are no longer needed.

Steps 1 to 3 represent the first iteration, which performs the hierarchical path search algorithm, presented
in detail in Algorithm 1. Step 4 addresses the continuous processing of the query, which is presented in detail
in Algorithm 2. Those are generic steps that may or may not be completely executed depending on whether
the reference and the target objects are moving or not, and on the location granule specified in the query.
Below is a typical example of a continuous path query that shows the applicability of the described approach:

SELECT gr(‘room - level ’, RO)
FROM Person AS P1 , Person AS P2 ,

All - routes (gr(‘micro -level ’, P1.id), gr(‘micro -level ’, P2.id)) AS RO
WHERE P1.id = ‘userID1 ’ AND P2.id = ‘userID2 ’
MINIMIZE length (RO)

This query finds the shortest route from person ‘userID1’ to person ‘userID2’, showing the results at
the room level. Notice that a location granule can be seen here as a cluster of nodes specified by the user
and representing the current place (e.g., a room) containing an object. The gr operator expressed in this
query can be referenced in the SELECT clause, the FROM clause and/or the WHERE clause of a query,
depending on whether the granules are used for the visualisation of the results and/or for the processing
of constraints or routes. For instance, SELECT gr(‘room-level’, RO) is used to illustrate the sequence of
rooms of the route obtained. On the other hand, gr(‘micro-level’, ‘P1.id’) represents the fine-grained granule
corresponding to the current fine-grained location of the object identified by ‘P1.id’ (cf., [Afyouni et al.,
2013]). Two algorithms are described in the following section, which represent the implementation behind
the All-routes operator used in this query.

3.3. Hierarchical and Incremental Path Search Algorithm
Algorithms 1 and 2 introduced in this section perform continuous path queries in two phases by taking

advantage of the previously mentioned techniques. This approach is considered as a hierarchical and
incremental version of A* applied to indoor moving objects. It is based on the hierarchical data model
previously described in Section 2.3. Without loss of generality, a complex path query that requires performing
all the steps described at the beginning of Section 3.2 is considered, which in the example given implies
finding an optimal route from person p1 to person p2, assuming that p2 is moving freely in space. Other
cases, for instance where the target object is in a static location, can be easily tackled by performing a first
iteration of the whole process and then skipping other unnecessary processing tasks (i.e., only Algorithm
1 would be executed). For the sake of clarity, handling granules is also not detailed in the pseudocodes.
Scenarios where, for instance, granules at the room level are considered for the reference and/or the target
objects, are easier to process and can be directly derived from this general scenario since no fine-grained
network search is required.

As a variant of A*, our approach keeps two main data structures: 1) the CLOSED list contains exactly
all the nodes that have been expanded (i.e., generated and added to the search tree); and 2) the OPEN list
comprises all the nodes of the outer perimeter of the CLOSED list (i.e., outgoing neighbours of the leaves in
the CLOSED list) that are not yet expanded. For each node v in the CLOSED list, the following properties
are associated:

• The network distance from v to current location of the reference object v
start

is computed, and referred
to as the g-value g(v); it holds that: g(v) = g(parent(v)) + length

parent(v),v

, and g(v
start

) = 0.

• An estimated heuristic value to the target node v
goal

is applied, and referred to as the h-value, h(v),
which helps propagating a “wavefront” expansion towards the target node. h(v) is computed as
follows: h(v) = Ed(v

start

, v
midway1) + pathLength

EX

s

,Ex

g

+ Ed(v
midway2,v

goal

), where Ed(v, vÕ) is the
Euclidean distance between two nodes at the fine-grained level, v

midway1 and v
midway2 represent two

midway nodes that belong to the reference and the target exits, respectively, and pathLength
EX

s

,Ex

g

11

is the precomputed optimal network distance between the optimal exit at the start granule and the
corresponding target exit. pathLength() is equal to zero if the reference room is equal to the target
room or if the dimension of the optimal exit path is equal to one.

• In addition, each generated node is stored along with its path to the start node, a pointer to the
predecessor node, the f(v) = g(v) + h(v) value, and whether it has been expanded or not.

Notice that g(v) and h(v) are also time-dependent functions since they are computed by invoking the
other time-dependent methods previously defined. The pointer to the parent node, parent(v), is assigned in
order to identify a reverse optimal path from the current node to the start node by following v’s ancestors.
The algorithm expands the node v with the smallest f(v) = g(v) + h(v) from the OPEN list, and terminates
when the OPEN list is empty or when the target node has been expanded.

Two main methods are frequently invoked during the execution of Algorithms 1 and 2. They are explained
as follows:

• The adaptedAstar(source, target, inPath, out outPath, out outLength) method is used by the hier-
archical path search for computing the fine-grained paths at the reference and the target granules. This
method can also manage the di�erent layers of the hierarchical data model. It can perform search
either on the fine level separately or on the exit hierarchy to search for optimal exit paths. The main
feature of this method is that it uses a priority-queue-like data structure which is indexed based on the
value of f(v) and represents the CLOSED list. A node with the minimum f(v) is indexed on the top
of the queue and thus retrieved first. Several information is dynamically inserted in the priority queue
and used afterwards for the continuous processing. The inPath parameter of the adaptedAstar(...)
method is used by the hierarchical path search to concatenate searches at di�erent layers. Otherwise,
inPath is considered to be NULL. An expansion procedure expand(v) is performed throughout this
method, and consists of checking for each neighbour vÕ of v whether it belongs or not to the OPEN
list. If vÕ < OPEN, the method generates vÕ by setting g(vÕ) to g(v) + length

v,v

Õ(t), setting its parent
to v, and inserting it into the OPEN list. If vÕ is already in the OPEN list, then it checks whether
g(vÕ) > g(v) + length

v,v

Õ(t); if so, then the algorithm sets g(vÕ) to g(v) + length
v,v

Õ(t), and parent(vÕ)
to v. The way the heuristic function is computed and other optimizations developed to improve the
performance of the adaptedAstar(...) method are presented in Section 5.2.

• The computeRefTarExits(vstart, vgoal) method is used for computing the optimal exit path that
minimizes the path between the current locations of the reference and target objects. The result
contains an optimal path at the exit hierarchy starting from the granule containing the reference object
and ending with the corresponding entrance at the target granule. Notice that an optimal exit to a
given object’s location should not be necessarily the nearest one in term of distance, but rather the one
that optimizes the whole network distance between the reference and the target objects. This function
is invoked when applying the continuous processing of hierarchical path and range searches.

Hierarchical path search. The pseudocode of the hierarchical path search is illustrated in Algorithm 1.
Figure 5(a) shows an example of a hierarchical path returned as a first path result between two moving
objects. The main steps performed in this algorithm are explained as follows:

• The first part (lines 2 æ 4) depicts the initialization of variables by involving the queryLocation()
and getNode() methods, which return the current location of the object and the corresponding node
in G

micro

, respectively. getDirectGranule(v) returns the identifier of the granule containing v. The
getNode method computes the nearest node to the current location of the moving object.

• The lines 5 æ 8 check whether the current granules of the reference and target objects match. In
that case, no hierarchical search is needed, but instead an invocation the adaptedAstar method is
performed, and a first result is returned. Otherwise, the computeRefTarExits(vstart, vgoal) method
is invoked to retrieve the best pair of exit/entrance that correspond to the source and target granules,
along with the corresponding optimal exit path (lines 10 æ 11).

12

Algorithm 1: hierarchicalPathSearch(locRef, locTarg, out outPath, out outLength)
Data: S :

t
i=1,2 S

i

: G
i

= (V
i

, E
i

) : hierarchical graph data; q: path query.
Result: A sequence of nodes of the optimal path outPath = {v

start

, v2, . . . , v

goal

} to the target object where
v

i

œ S1 fi S2, and the resulting network distance outLength

// locRef/locT arg: Reference/target object location; g(v) = length

v

start

,v

(t), h(v), parent(v): a
predecessor is associated with each node and for each query; CLOSED: set of expanded
nodes; OP EN: set of boundary nodes;

1 begin

2 CLOSED Ω≠ ÿ;
3 v

start

= getNode(locRef); SGranuleId = getDirectGranule(v
start

); OP EN = {v
start

};
// A new position implies a new root of the tree;

4 v
goal

= getNode(LocT arg); T GranuleId = getDirectGranule(v
goal

);
5 if SGranuleId = T GranuleId then

6 outRecord = adaptedAstar(v
start

, v
goal

);
7 outP ath = outRecord.outP ath;
8 outLength = outRecord.outLength;
9 else

// Retrieve the best pair of exits of the source and target granules, and the
corresponding optimal path;

10 optimalExitP ath = computeRefT arExits(vstart, vgoal);
11 sourceExit = optimalExitP ath[1];

// Step 1: Directed A* in G
micro

from v
start

to the source exit;
12 select a node v

midway1 such that {v
midway1 œ sourceExit.nodeListIds and v

midway1 œ SGranuleId};
13 outP ath = adaptedAstar(v

start

, v
midway1);

// adaptedAstar removes v with f(v) = g(v) + h(v) = min
v

Õœneighbours(v)
f(vÕ) from OP EN ;

// And then inserts v into CLOSED;
// Step 2: Insert all exits of optimalExitP ath into OP EN ;

14 generate(sourceExit); insert(sourceExit) into OP EN ; parent(sourceExit) = v
midway1;

15 foreach exit e œ optimalExitP ath do

// All-pairs optimal network paths between exits are already precomputed;
16 generate(e); insert(e) into OP EN ; parent(e) = eÕ; // eÕ is the predecessor of e;
17 end

// Step 3: Directed A* in G
micro

until reaching v
goal

;
18 targetExit = optimalExitP ath[length(optimalExitP ath)];
19 select a node where {v

midway2 œ targetExit.nodeListIds And v
midway2 œ T GranuleId};

20 currentP ath = append(outP ath, optimalExitP ath);
// The final outP ath is obtained by applying a reverseP ath procedure from v

goal

to v
start

following v
goal

’s ancestors;
21 outRecord = adaptedAstar(v

midway2, v
goal

, currentP ath);
22 outP ath = reverseP ath(v

goal

, v
start

);
23 outLength = outRecord.outLength;
24 end

25 end

13

(a) Hierarchical path search (b) 1st scenario: target object is moving

(c) 2nd scenario: target object is changing its current granule (d) 2nd scenario: adapting the pair of exits

Figure 5: Hierarchical and incremental path search algorithm

• Step 1: Once the optimal exit path is computed, the algorithm starts the hierarchical path search
by firstly performing a fine-grained search at the reference granule until reaching a midway node that
belongs to the source exit previously identified (lines 12 æ 13).

• Step 2: Upon identifying and reaching the first exit of the computed optimal exit path, the algorithm
moves up to the upper level at the exit hierarchy, and inserts all exits of the optimal exit path into
the priority queue (i.e., CLOSED list), so that concatenated paths of two levels of granularity will be
associated to each of those generated exits (lines 14 æ 17). The generate(e) methods sets g(e) to
g(v) + length

v,e

(t), and parent(e) to v. This step continues until reaching the optimal entrance at the
target granule.

• Step 3: The hierarchical path search algorithm ends by performing a fine-grained search starting from
an identified midway node at the target granule towards the exact location of the target, and then
by identifying a shortest path in reverse by following v

goal

’s ancestors until reaching the source node
(lines 18 æ 23).

Continuous query processing. A continuous processing of path queries starts at this phase by taking
into account the updated locations of the reference and the target objects. A pseudocode of this algorithm is
illustrated in Algorithm 2. A description of this algorithm is given as follows:

• A fundamental step consists of invoking the hierarchical path search method previously described in
order to build for the first time the search tree, which will be stored in the priority queue structure
(lines 2 æ 4). After this step, a first path result is returned to the user, and all generated nodes in the
search tree rooted at v

start

are associated with the above mentioned properties.

14

Algorithm 2: continuousHPath(refObjId, tarObjId) returns SETOF [outPath, outLength]
Data: S :

t
i=1,2 S

i

: G
i

= (V
i

, E
i

) : hierarchical graph data; q: path query; up-to-date location data of
ref/target objects.

Result: A continuous set of optimal paths outPath, and the resulting network distance outLength

// refObjId/tarObjId: Reference/target object identifier; CLOSED: set of expanded nodes;
OP EN: set of boundary nodes.

1 begin

2 locRef = q.queryLocation(refObjId); v
start

= getNode(locRef);
3 locT arg = q.queryLocation(tarObjId);
4 [outP ath, outLength] = hierarchicalP athSearch(locRef, locT arg);

// At this stage, a complete search tree has been built and stored;
// Continuous path search (keeping the initial answer up-to-date);

5 while v
start

, v
goal

do

6 previous-v
start

= v
start

;
7 v

start

= getNode(q.queryLocation(refObjId));
8 v

goal

= getNode(q.queryLocation(tarObjId));
9 if previous-v

start

== v
start

and v
goal

œ CLOSED then

// The answer is returned without extra computation;
10 [outP ath, outLength] = {reverseP ath(v

goal

, v
start

), g(v
goal

)};
11 else

12 if previous-v
start

, v
start

then

// An updated search tree is being created with a new root v
start

;
13 updateT reeRootedAt(v

start

); // g-values are not affected;
14 deleteUnnecessaryNodes(); // Unnecessary nodes from CLOSED are deleted;
15 completeOP EN(); // Nodes of the outer perimeter are added;
16 end

17 if v
goal

< CLOSED then

// Tracking of v
goal

, check the new optimal pair <exit/entrance>;
18 newOptimalExitP ath = computeRefT arExits(vstart, vgoal);
19 if (newOptimalExitP ath == optimalExitP ath) then

20 continue A* in G
micro

with the same OP EN and CLOSED lists until reaching v
goal

;
21 else

// v
goal

is either nearer to another exit within the same granule or has left
the last granule;

22 delete subtree rooted at LastExit from CLOSED;
23 insert not generated exits from newOptimalExitP ath into OP EN ;
24 repeat Step 3 of Algorithm 1 starting from parent(newOptimalExitP ath[n]) until

reaching v
goal

;
25 end

26 end

27 [outP ath, outLength] = {reverseP ath(v
goal

, v
start

), g(v
goal

)};
28 end

29 sleepUntilNextP ositionUpdate(minW aitingT ime); // The thread remains asleep while no
location update is performed or the minimum waiting time between iterations (if
specified) has not been consumed

30 end

31 end

15

• A continuous path search starts with the aim of keeping the initial tree up-to-date. At each iteration,
the algorithm looks for up-to-date locations of the reference and target objects, and then matches those
locations to nodes at the fine-grained network (lines 6 æ 8). As long as the search tree is rooted at
the same v

start

(i.e., the reference object is not moving) and the target object is located on a node
in the CLOSED list, a shortest path can be easily determined in reverse from v

goal

towards v
start

(lines 9 æ 10).

• When the reference object moves (lines 12 æ 15), additional steps to transform an initial search tree
rooted at the previous v

start

to an updated tree rooted at the current v
start

are needed. Three main
functions are invoked to perform this transformation: 1) The updateTreeRootedAt method firstly
updates pointers to parent nodes at the reference granule so that nodes of the reference granule are
rooted at the new v

start

; 2) secondly, the deleteUnnecessaryNodes() method removes unnecessary
nodes from the previous CLOSED list; and finally 3) completeOPEN is called to add nodes of the
outer perimeter of the new CLOSED list to the new OPEN list.

• In case v
goal

is not located in the CLOSED list, a new invocation to the computeRefTarExits()
method is performed to determine the new optimal exit path towards the target (lines 17 æ 21). If the
new optimal exit path matches the previous one (i.e., this means that the same target exit is still the
nearest one), the algorithm performs a directed search in G

micro

with the same OPEN and CLOSED
list until reaching v

goal

(Figure 5(b)).

• Otherwise, the target is either nearer to another exit within the same granule or has left the last granule
(lines 22 æ 25). In that case, additional checks are performed to detect the last common exit between
the new and previous exit paths. Once determined, the subtree rooted at that Last exit is no longer
needed and will be removed from the CLOSED list, along with the nodes at the fine-grained level.
Instead, a new subtree is created starting from the Last exit and by inserting exits of the new optimal
exit paths, if any, until reaching the new optimal target exit. Finally, a similar search similar to the
one performed in step 3 of Algorithm 1 is afterwards completed to reach the target (see Figures 5(c)
and 5(d)).

• An optimal path is returned for each iteration from the current location of the reference object towards
the current location of the target object. The sleepUntilNextPositionUpdate() method is then invoked
so that the thread remains asleep until the reference and/or target objects update their locations.
Additionally, to keep the query processing overhead low in the presence of high location update
rates, we may require a minimum time interval between iterations, by passing an optional argument
minWaitingT ime.

Notice that we are refreshing the answer periodically, as advocated in other works such as [Ilarri et al.,
2006]. This is necessary because the answer will change all the time (even if slightly) due to the movements
of the reference object and the target objects.

4. Continuous Processing of Indoor Range Queries

This section starts with a discussion of related work on continuous range queries in indoor environments.
Next, we introduce our approach for the continuous processing of range queries which considers the mobility
of both the reference and the target objects. This approach is based on a hierarchical range network expansion
mechanism. The principle behind that approach is to continuously update the set of visited nodes that
compose the range around the reference object. Furthermore, an indexed data structure referred to as range

queue is built as a result of the hierarchical network expansion. Similarly to the priority queue structure
described in Section 3.2, this structure maintains several properties associated to the generated nodes, such as
the optimal path from the current node towards the source node. This particular property o�ers a significant
advantage since it allows the system to provide not only information about whether an object is inside a
specified range, but also to return a complete optimal path to that target object. Consequently, the result of

16

a continuous range query includes the set of qualifying object identifiers, their optimal path towards the
reference object, and the corresponding network distance. A detailed description along with pseudocodes for
the corresponding algorithms are hereafter provided.

4.1. Background
Range queries are used to retrieve information about objects or places within a specified range or area.

Some range queries have a static reference object and others have a moving reference object. Similarly, the
target objects of the queries can be static or moving. Recent works have studied location-dependent queries
in indoor environments [Yang et al., 2009; Yuan and Schneider, 2010]. Specific graph data models that
represent an indoor space have been designed in these approaches, thus allowing the processing of specific
kinds of queries on top of the generated spatial network. These two related works are summarized as follows:

• In [Yuan and Schneider, 2010], the authors have introduced an approach to support range queries
based on a virtual cell-based network generated for each query. Besides, an extension of this method
has been proposed in the same paper to continuously process range queries whenever the query point
(i.e., the reference object) moves. However, this approach is designed to address only range queries,
and is only applied to static data (i.e., static points of interest). Moreover, for each query, a new
virtual network that connects the query point to the predetermined points of interest is required, and
additional computations are also needed to update the network each time the query point leaves its
safe area. Furthermore, only information about whether static data are within the specified range is
returned, without returning the optimal paths to those qualifying data.

• The method proposed in [Yang et al., 2009], is developed on top of a graph data model, and deploys
a set of sensors to continuously monitor the users’ movements, thus maintaining the query result
up-to-date. The experimental results show that the provided data model is flexible, since it allows
for di�erent kinds of queries to be performed, and the solutions are e�cient and scalable. However,
the aim of this approach was to monitor indoor moving objects, so it only processes range queries
over moving targets, but without taking into account a moving reference object as a starting point
for the query. In addition, the model underneath relies on sensor-range-based positioning techniques,
which is not perfectly suitable for navigation queries that may require fine-grained location information.
Moreover, no information about the optimal path to the starting query point is obtained.

4.2. Hierarchical Range Network Expansion
A hierarchical network expansion is first computed starting from the location of the reference object

in a similar way to the Dijkstra algorithm with multiple destinations and the Range Network Expansion
algorithm [Papadias et al., 2003], see Figure 6(a). It consists of a “wavefront” expansion of the hierarchical
network starting from the initial query point in all directions to find all nodes whose network distances
to the source are less than the maximum specified threshold (i.e., the radius of the range query). The
original idea here is that the valid routes are expanded hierarchically (cf. Figure 6(b)). The hierarchical
network expansion mechanism is introduced in Algorithm 3 and takes into account the bottom-up approach
explained in Section 3 to e�ciently expand the valid routes within the specified radius. The main steps of
the hierarchicalNetworkExpansion(refObjId, radius, objectIds[]) algorithm are described as follows:

• Step 1: Gradually expand the valid routes in all directions within the initial granule of the reference
object v

start

, located at LocRef , while length
v,v

Õ(t
v

) < radius (lines 3 æ 4). Nodes that are
temporarily inaccessible or occupied by physical objects are automatically ignored. An internal
invocation to the networkExpansion(v

start

, radius, inPath[]) method is performed to execute this
step. The range queue data structure is created for storing nodes accessible within the specified range.
The networkExpansion(...) method also handles expansion at di�erent layers of granularity depending
on the input values. When the network is expanded at the fine-grained level, only nodes that belong to
the same granule as the reference object are expanded. Moreover, an inPath parameter is also used
to smoothly generate routes that are concatenated to previously expanded paths from earlier range

17

Algorithm 3: hierarchicalNetworkExpansion(refObjId, radius, objectIds[])
Data: S :

t
i=1,2 G

i

= (V
i

, E
i

) : hierarchical graph data; q: range query; up-to-date location data.
Result: ResultSet: Returns a SETOF [targObjID, outPath, outLength] for the qualifying target objects
// C ™ objectIds[]: candidate set; LocRef; g(v); parent(v); RANGE: set of nodes around the

reference object; coveredRooms: set of totally/partially covered rooms.
1 begin

2 C Ω≠ ÿ; coveredRooms Ω≠ ÿ;
// Step 1: At this stage, only nodes of the reference object’s granule are expanded;

3 v
start

= getNode(q.queryLocation(refObjId)); SGranuleId = getDirectGranule(v
start

);
4 RANGE = networkExpansion(v

start

, radius);// Network expansion only at the reference granule;

// A new search tree RANGE is built after Step 1 and stored in the range queue;
// Step 2: Network expansion at the Exit Hierarchy;

5 foreach accessible exit e œExits of the reference granule do

6 select an expanded node v
midway1 in e;

7 RANGE = append(RANGE, networkExpansion(e, radius - g(v
midway1), v

midway1.path));
8 end

// Step 3: Search for the qualifying objects;
9 foreach potentialQualifyingObject œ objectIds do

10 v
goal

= getNode(q.queryLocation(objectIds[i])); T GranuleId = getDirectGranule(v
goal

);
// Totally/partially covered rooms have at least one accessible exit;

11 if objectIds[i] œ coveredRooms then

// Apply Euclidean restriction at the target granule;
12 retrieve exit e œ T GranuleId that minimizes g(e) + Ed(e, v

goal

);
13 if g(e) + Ed(e, v

goal

) > radius ≠ g(e) then

14 display objectIds[i] is out of range;
15 else

// A fine-grained search at the target granule is required;
16 select an expanded node v

midway2 in e;
17 RANGE = append(RANGE, networkExpansion(v

midway2, radius ≠ g(e), e.path));
18 if v

goal

is expanded then

19 [targObjID, outP ath, outLength] = {objectIds[i], reverseP ath(v
goal

, v
start

), g(v
goal

)};
20 else

21 display objectIds[i] is finally out of range;
22 end

23 end

24 else

25 display objectIds[i] is out of covered rooms;
26 end

27 end

28 end

18

(a) Fine-grained search at the reference granule (b) Network expansion at the exit hierarchy

(c) Totally/partially covered rooms are retrieved (d) Objects outside covered rooms are directly eliminated

(e) First object in range is returned (f) Second object is eliminated by Euclidean restriction

Figure 6: Incremental algorithm for continuous range search: A range of 50 meters is applied in this example

searches (inPath takes NULL as a default value). In a similar way to Algorithm 1, an expanded node
is stored along with its path to the reference object, a pointer to the predecessor node, and its g value.

• Step 2: On the exit hierarchy, start an expansion in all directions from the detected exits of the initial
granule by taking into account the set of precomputed network distances (exitPaths) between directly
reachable exits (lines 5 æ 8). The expansion stops when no more exits can be added (i.e., when
g(e) Ø radius). The resulting search tree includes all valid routes that consists of sets of vertices at two
di�erent levels of granularity. The rooms that are reachable from at least one entrance are considered
as covered rooms (Figure 6(c)). Those covered rooms are determined to limit the search scope, so that
target objects located outside this area are directly discarded.

• Step3: Search for the qualifying target objects by taking into account their up-to-date locations
(lines 10 æ 11). Di�erent filtering processes are applied in order to avoid extra-computations resulting
from searches at the fine-grained level (lines 11 æ 15). The algorithm first discards an object if its
current location is out the covered rooms (Figure 6(d)). For an object located within the covered
rooms, it is checked whether the Euclidean distance between the optimal exit of the target granule

19

and its current location is greater than the radius. If the check is successful, the object will also be
discarded for that iteration (Figure 6(f)). Otherwise, the algorithm proceeds by performing a network
range expansion at the fine-grained level within the target granule until reaching all valid nodes that
satisfy the specified threshold (lines 16 æ 22). if v

goal

has been discovered, a composite result that
consists of a triple ÈtargObjID, outPath, outLengthÍ is returned (Figure 6(e)).

At the end of this process, all the generated nodes that constitute the valid routes within the radius
are stored, along with their associated properties. The leaves, also referred to as boundary nodes, resulting
from the range search are also returned. Such a hierarchical expansion provides a light way of exploring the
network around the reference object and is performed just for the first time. It should be clarified that only
exits and the paths between those exits are examined, but knowledge of nodes of the corresponding granules,
which are not necessarily reachable with the same specified threshold, is not available. Therefore, all the
corresponding granules of the valid exits are assumed to be accessible, but extra computations are required
to determine, for each candidate object located at one of those nodes, whether that object really satisfies
the distance constraint (i.e., to avoid false positives). This is done by computing the optimal path at the
fine-grained level starting from the entrance of the target granule until reaching the target object.

4.3. Incremental Algorithm for Continuous Range Search
The algorithm introduced for the continuous processing of range queries in indoor environments applies

an Euclidean restriction mechanism to retrieve candidate target objects that might be relevant to the final
answer, as well as the hierarchical network expansion mechanism previously described. The continuous
processing of range queries consists of:

1. Hierarchically expanding all the routes whose network distance from the source node is less than or equal
to the specified radius. A hierarchical network expansion is performed once for the first iteration so that all
the visited nodes within the range around the reference object are stored.

2. Continuously maintaining the set of parent nodes up-to-date when changing the root of the search tree
(i.e., when the reference object moves). Boundary nodes are checked to decide, for each of them, whether to
further expand that node or to perform a reverse search towards the source in order to remove nodes that
are not relevant any more.

An example of such queries is: retrieve the identifiers of persons accessible at a network distance smaller
than 100 meters from the room where object o1 is located:

SELECT Person .id
FROM Person
WHERE inside (100 meters , gr(‘room -level ’, ‘o1’), Person)

Algorithm 4 illustrates the implementation of the inside constraint used in this kind of query. The
algorithm is described as follows:

• Two functions are first invoked in lines 3 æ 5. The first one applies the Euclidean restriction principle
to retrieve candidate target objects, and the second one performs the hierarchical network expansion
mechanism previously described in Algorithm 3.

• The first round of the algorithm returns a set of triples for the qualifying target objects. For the
continuous processing, the main point is to update the set of parent nodes when changing the root of
the search tree (i.e., when the reference object moves). There is no need to update all the distances to
the new root. Instead, only distances and the parent pointers of nodes that belong to the granule of the
reference object need to be rechecked, so that the tree rooted at the new position of the reference object
is rebuilt (lines 10 æ 12). This update allows to perform checks and to modify properties associated
to the leaves as explained in the next step.

20

Algorithm 4: : continuousRangeSearch(refObjId, radius, objectIds[])
Data: S :

t
i=1,2 G

i

= (V
i

, E
i

) : hierarchical graph data; q: range query; r: network distance; up-to-date
location data; NetDistanceSet.

Result: ResultSet: Returns a SETOF [targObjID, outPath, outLength] for the qualifying target objects
// C ™ objectIds: candidate set; locRef; g(v); parent(v); RANGE: set of accessible nodes

around the reference object; N ™ RANGE: set of boundary nodes, tempSet: temporary
set of nodes.

1 begin

2 C Ω≠ ÿ;
3 locRef = q.getRefObj.queryLocation(refObjId);
4 C = getObjectsInEuclideanRange(locRef, objectIds, radius);
5 RANGE = hierarchicalNetworkExpansion(refObjId, radius, C);
6 while NotCancel do

7 if locRef != q.getRefObj.queryLocation(refObjId) then

// A new position implies a new root of the tree;
8 locRef = q.getRefObj.queryLocation(refObjId);
9 C = getObjectsInEuclideanRange(locRef, objectIds, radius);

10 foreach v œ RANGE and v œ getDirectGranule(getNode(locRef)) do

11 UpdateP arent(v);
// After this step, all the nodes in RANGE are rooted at the new locRef

12 end

13 foreach v œ N do

14 length

locRef,v

(t
v

) = updateLength(v); // reverse path search to locRef ;
15 if length

locRef,v

(t
v

) Æ radius then

16 tempSet = networkExpansion (v, radius ≠ length

v,locRef

(t
v

), v.path);
17 append(RANGE, tempSet);
18 else

19 v
current

= parent(v);
20 delete(RANGE, v);
21 length

LocRef,v

current

(t
v

current

) = updateLength(v
current

);
22 while length

LocRef,v

current

(t
v

current

) > radius do

23 v
current

= parent(v
current

);
24 delete(RANGE, v

current

);
25 end

26 end

27 end

28 end

29 foreach o œ C do

// computeP artOfP ath will repeat steps similar to Step 3 in Algorithm 3;
30 v

goal

= getNode(q.queryLocation(o));
31 if intersect(RANGE, getNode(o.LocT arg)) and

computeP artOfP ath(e.path, getNode(o.LocT arg)) < radius then

32 [targObjID, outP ath, outLength] = {o, reverseP ath(v
goal

, v
start

), g(v
goal

)}; // e is the
optimal target exit to o;

33 else

34 display objectIds[i] is finally out of range;
35 end

36 end

37 end

38 end

21

• Only boundary nodes (i.e., leaves) of the RANGE list are checked to decide, for each of them, whether
to further expand that node or to perform a reverse search towards the ancestors to remove nodes that
are not relevant any more (i.e., the network distance to the new source is greater than the radius).
For each boundary node, the algorithm first updates the network distance to the new source node,
and checks whether that new distance is still less than the specified threshold (lines 13 æ 17). If the
check is successful, it completes the RANGE list by starting a new network expansion, and adds the
valid nodes to the RANGE list. Otherwise (lines 18 æ 25), it starts searches in the reverse direction
from each boundary node, and removes nodes that are no longer needed from the RANGE list. This
reverse search continues while the network distance from the current node towards the source node is
exceeding the specified threshold. After this step, a new set of valid routes around the current position
of the reference object is rebuilt.

• Lines 29 æ 35 determine whether the target object is located on a node of the RANGE list. If so, the
algorithm completes the partial path computation, as explained in Step 3 of Algorithm 3, starting from
the optimal entrance of the target granule, and then checks whether that distance satisfies the specified
threshold (i.e., computePartOfPath(e.path, getNode(o.LocTarg)) < radius). Target objects whose
network distances to their current positions satisfy the maximum distance constraint are returned in
the result.

5. Implementation

In this section, the PostgreSQL system architecture that has been developed is first presented, and then
some optimizations implemented to improve the query processing algorithms are discussed.

5.1. PostgreSQL System Architecture
A database extension based on the open source DBMS PostgreSQL [Matthew and Stones, 2005] for

handling continuous path searches and range queries has been implemented on top of a hierarchical network-
based indoor data model. PostgreSQL is an object-relational DBMS (Database Management System) that
allows implementing relational data models, new data types, functions, operators, triggers, etc. Several
procedural languages are supported in PostgreSQL for developing functions and algorithms directly at the
server side, so that the connection overhead and interprocess communication can be avoided. As a result,
queries that are written as internal functions have the same access privileges and speed as native database
functions and statements. The main parts of the prototype developed are:

• The hierarchical network-based data model of the indoor environments. Automatic methods to build
the multi-storey fine-grained network and the time-dependent functions described in Section 2.3 have
been developed. Methods to derive the exit and location hierarchies are also included.

• The operators and location-dependent constraints introduced in [Afyouni et al., 2013]. Those are
implemented as PL/pgSQL functions applied on user-defined types.

• The algorithms to process continuous location-dependent queries over moving objects (cf. Sections 3
and 4).

The main advantage of implementing this prototype as a core database solution is that user-defined
PL/pgSQL functions are used afterwards with native SQL statements to write location-dependent queries.
However, the major problem encountered in implementing those functions was the lack of data structures
supported. This required the use of temporary tables in the implementation of the priority and range queues.
For testing, synthetic moving object datasets have been generated by using the Brinkho�’s network-based
generator of moving objects [Brinkho�, 2002], and then adapted to fit our needs.

22

5.2. Optimization
A series of optimization techniques have been employed to improve the e�ciency of the proposed solutions.

Those are explained with respect to their use in the path and range query processing as follows:

• A specific heuristic function has been developed and applied overall in the continuous path query
processing, which tries to optimize network distance based on the hierarchical data model previously
described. As mentioned earlier, a heuristic value is computed as follows: h(v) = Ed(v

start

, v
midway1) +

pathLength
EX

s

,Ex

g

(t) + Ed(v
midway2,v

goal

). This heuristic function has been specifically designed to
fit the hierarchical structure of the indoor environment. Consequently, a best estimation of the network
distance towards the destination is taken into account during the expansion process, so that the node
that minimizes the gval + fval value is expanded first. The hierarchical-based heuristic function is
used in the adaptedAstar(...) method for directed path search, and in the computeRefTarExits(...)
method for computing the optimal exit path.

• An indexed priority-queue-like data structure for implementing the CLOSED list. A priority queue is
characterized by a tuple ÈvertexID, gval, fval, path, predecessor, expandedÍ, where vertexID depicts
the node identifier, gval represents the network distance, fval = gval + hval is an indexed parameter
that is used as the priority measure to allow optimal network expansion, predecessor contains the
parent node, and the expanded field depicts whether the node has been expanded or not. On the other
hand, the range queue is indexed based on the gval, since no heuristic function is used in the network
expansion mechanism. Those two data structures constitute the foundations on which the continuous
processing for both algorithms is performed.

• Directional bounding boxes that help propagating a “wavefront” path search either towards the optimal
exit or the target (cf. Figures 5(a) and 5(b)). Directional bounding boxes are considered as an
important optimization of the adaptedAstar(...) method. Those directional boxes limit the search for
the neighbour nodes to those that are in the route direction towards the next goal. As a result, only five
neighbours are generated and stored in the priority queue each time, instead of eight (the maximum
number of neighbours). This reduces the execution time by 40%. A directional box is either oriented
towards the next nearest exit or towards the target node if the reference and target objects are in the
same room.

• The computeRefTarExits(...) method computes, for path searches, the best pair of exit/entrance
when the reference and/or the target objects move. For example, in Figure 1 let us consider MR12
and HW 14 as a reference room (i.e., a room where the reference object is located) with five exits and
a target room (i.e., a room where a target object is located) with seven exits, respectively. Next, a
basic approach is to check all combinations of pairs of exits to determine the best pair. To optimize
this process, an additional filtering process is developed in order to prune exits that do not have direct
links to the target room and where no other open paths through them are available.

• For the continuous processing of range queries, two filtering techniques are employed, thus reducing the
number of fine-grained network expansions at the target granules. First, totally/partially covered rooms
are determined to limit the search scope, so that objects out of that search scope are directly discarded.
Secondly, an Euclidean restriction at the target granule is applied to detect candidate objects that are
far enough away from the reference object.

6. Experimental Evaluation

To the best of the authors’ knowledge, no other work in the field of location-dependent query processing
deals with hierarchical and continuous path searches and/or range queries on both moving reference and
target objects in indoor environments. As mentioned in Sections 3.1 and 4.1, other approaches do not consider
a multi-storey network, and in the case of range queries, either the reference or the target objects are assumed
as static. Therefore, experimental results to evaluate the intrinsic properties of the proposed solutions are

23

presented in this section, since it is not possible to experimentally compare our approach with other proposals.
In particular, a specific comparison between hierarchical and non-hierarchical processing approach is shown
throughout these experiments. This criterion shows to what extent the continuous processing of a query is
a�ected with respect to the mean execution time (in milliseconds), as well as the total number of expanded
nodes in the search tree. The mean execution time shows the average CPU time of a continuous query answer
for each location update. In contrast, the criterion about the total number of nodes shows the usefulness
of the incremental processing approach by giving an indication of the global size of the search tree for a
complete query evaluation.

To test the non-hierarchical configuration of both algorithms, two main methods have been developed.
The nonHierarchicalCPS(refObjId, tarObjId) method is an enhanced variant of the FRA* algorithm that
integrates the multifloor settings as well as the time-dependent constraints for path computation. This
method uses the adaptedAstar function to build a complete search tree at the fine-grained level, instead
of making use of the hierarchical path search described in Section 3.3. This nonHierarchicalCPS method
applies techniques for the continuous path search similar to those applied in Algorithm 5, in order to
update the search tree. Regarding continuous range queries, two main studies consider this problem in
indoor environments [Yang et al., 2009; Yuan and Schneider, 2010]. The approach presented in [Yuan and
Schneider, 2010] is only applied to static points of interest, and has not been experimentally evaluated. In
contrast, the aim of the approach introduced in [Yang et al., 2009] was to monitor indoor moving objects,
so it only processes range queries over moving targets, but without taking into account a moving reference
object as a starting point for the query. The implementation of that work as a pure database solution is
not straightforward, since the underlying graph data model depends on the deployment of sensors in the
environment, and it is completely di�erent from ours. In addition, not all the details of the technique are
explained in the paper, so it is di�cult to repeat their experiments as a database solution for comparison.
Therefore, the nonHierarchicalCRS method that uses a nonHierarchicalNE method for the network
expansion at the fine-grained level has been implemented. The performance of these methods is evaluated in
the following sections with respect to the solutions proposed in Sections 3 and 4.

6.1. Experimental Settings
Two di�erent system architectures can be applied for query processing. The former considers a server-

based query processing architecture (either centralised or decentralised as discussed in [Afyouni et al., 2013]),
where moving objects cooperate with the system by providing up-to-date location data (and possibly other
information) when needed. Thus, a minimum intervention of a user device is required for query processing by
communicating the location of the user to the system according to a certain location update policy [Wolfson
et al., 1999; Ilarri et al., 2010]. The latter applies a client-based mobile architecture in which query processing
is fully performed at the mobile device and locations of objects of interest are retrieved from the server. The
first scenario implies more communication overhead, while the second scenario requires mobile devices with
advanced processing capabilities. The first approach is adopted in our experimental settings, but nothing
prevents testing those algorithms on a client-based mobile architecture. In the following section, scalability
as well as performance testing are evaluated.

The experiments have been carried out on a MacBook Pro machine with a 2.3 GHz Intel Core i7 CPU and
4GB of RAM DDR3, and which runs Mac OS X 10.8.3. The PostgrSQL version used is 9.1.8 with the default
settings. All tests were run 10 times in a completely independent way, and we verified that the individual
results were consistent. The fine-grained two-storey network used for prototype evaluation consists of 4146
nodes and 13963 edges. The scenario considered for the performance evaluation retains a fine resolution of
the fine-grained network by using a 50 cm distance between horizontal and vertical neighbour nodes. Other
experiments showing the impact of di�erent cell sizes are not illustrated due to space constraints. A coarser
resolution provide better performance results, but with less accurate representation of space and objects’
movements. Query performances increase dramatically with an increase of the cell size and particularly for
queries performed at the room level (up to 60 times faster than the results shown with 50 cm cell size).

Due to the lack of real indoor moving object data, a synthetic dataset of around 1000 moving objects have
been generated to evaluate how the prototype would behave in realistic scenarios. We use the Brinkho�’s
network-based generator [Brinkho�, 2002], which is suitable for all kinds of spatial networks. It is a generic

24

Imad Afyouni

Imad Afyouni

Imad Afyouni

framework that can be adapted to specific scenarios. Indeed, the original purpose of this generator was to
deal with moving objects on road networks. Hence, this generator does not directly deal with 3D network
models, as the third dimension is not taken into account. Consequently, moving object data have been
generated for each floor separately. The fine-grained graph of our model has then been integrated within the
generator and some parameters have been tuned to generate indoor moving objects with realistic movements.
Moreover, a-posteriori adaptations to the data set have been performed in order to take the multi-storey
settings into account, and to transform the location data to the relative coordinate system considered
in our scenario. In particular, we adapted some trajectories to simulate moving objects that move from
one floor to another. Two additional methods have also been developed: i) the inverseTransformation()
function computes an inverse transformation to obtain coordinates in our referential system; and ii) the
computeNearestNode(xCoordinate, yCoordinate) determines the nearest node to a given moving object
position.

The generator takes two input files (i.e., .node and .edge network data files) which correspond to the
nodes and edges of the fine-grained network of the spatial data model. Di�erent configurations have been
adopted to define the mobility patterns of the generated moving objects. The duration of the evaluation
period was set to 1000 timestamps. The waiting period between two successive timestamps was set to 1
second. The entire evaluation period is estimated to be around 15 minutes. Every moving object reports
its motion parameters (i.e., location update, current speed) with a probability of 80% for each timestamp
within the evaluation period. Objects move on the network at di�erent speeds, with a maximum speed limit
equals to 4 km/h. We choose some objects randomly and consider them as reference and target objects for
both path and range queries.

6.2. Experimental Results
The following experiments first evaluate the continuous path search while varying the distance parameter

between the reference and the target object. Secondly, a performance evaluation of the continuous range
query processing is performed with respect to the number of objects and the radius parameters.

Continuous path searches. The first set of experiments shows how the continuous path search can be
a�ected by applying a hierarchical or non-hierarchical-based query processing. The estimated distance
between the reference and the target object is varied to demonstrate its impact with respect to both the
average CPU time and the number of nodes expanded (see Figures 7(a) and 7(b), respectively).

 0
 200
 400
 600
 800

 1000

 1500

 2000

 2500

 3000

10<=d<=20

30<=d<=50

50<=d<=80

80<=d<=100

100<=d<=200

M
ea

n
ex

ec
ut

io
n

tim
e

(m
s)

Distance range (m)

HierarchicalCPS
nonHierarchicalCPS

(a)

 0
 200
 400
 600
 800

 1000

 1500

 2000

 2500

10<=d<=20

30<=d<=50

50<=d<=80

80<=d<=100

100<=d<=200

N
um

be
r o

f e
xp

an
de

d
no

de
s

Distance range (m)

HierarchicalCPS
nonHierarchicalCPS

(b)

Figure 7: Varying the distance parameter: Hierarchical vs. non-Hierarchical Continuous Path Search

Figure 7(a) illustrates the mean execution time of a continuous path search with a distance range that
varies from 10 to 200 meters. The same continuous processing techniques were applied for both hierarchical
and non-hierarchical configurations. The results shows that the hierarchical approach keeps constant time
responses when the distance between the reference and the target object increases. On the contrary, a

25

non-hierarchical configuration appears to grow with the distance between the reference object and the target
objects. This is due to the fact that the hierarchical method processes fine-grained searches only at the
reference and target granules, and thus whatever the distance between the two moving objects the time
processing remains constant. We also performed tests with other distance values (not shown for the sake of
clarity) and observed a similar behaviour. On the other hand, a relatively large distance between the two
moving objects implies exploring a big part of the fine-grained network until reaching the target. This is
clearly reported in Figure 7(b). As illustrated, a path search between two moving objects whose distance is
between 100 and 200 meters, requires expanding around 200 nodes when applying the hierarchical approach,
and around 2400 nodes with a non-hierarchical configuration. This demonstrates that the hierarchical and
incremental path search algorithm is scalable to large indoor spaces (e.g., several multi-storey buildings in a
campus) with constant time responses.

Continuous range queries. For the continuous range query algorithm, some parameters such as the
range and the number of moving objects can be varied. This aims to show the scalability of the system and
the algorithm behaviour over time. A performance comparison between two di�erent scenarios based on
either a hierarchical or a non-hierarchical network expansion mechanism is also considered. The next set of
experiments studies the impact of varying the radius of a range query while setting the number of moving
objects to 50 (see Figures 8(a) and 8(b)).

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500
 8000

10 20 30 50 100 200 300

M
ea

n
ex

ec
ut

io
n

tim
e

(m
s)

Radius (m) (number of moving objects = 50)

HierarchicalCRS
nonHierarchicalCRS

(a)

 0
 200
 400
 600
 800

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

10 20 30 50 100 200 300

N
um

be
r o

f e
xp

an
de

d
no

de
s

Radius (m) (number of moving objects = 50)

HierarchicalCRS
nonHierarchicalCRS

(b)

Figure 8: Varying the radius: Hierarchical vs. non-Hierarchical Continuous Range Search

The hierarchical network mechanism takes advantage of the exit hierarchy to explore the search scope
without having to expand all the nodes in range at the fine-grained level. This means that this mechanism is
dependent on the number and the locations of the target objects in the search scope. Wherever a candidate
object requires a fine-grained search, the algorithm will explore the granule containing that object to decide
whether it is is really within the range. Other granules in the search scope are not going to be expanded
while no candidate objects enter those granules. On the other hand, a non-hierarchical network expansion is
completely dependent on the search space. It expands all nodes within the range without taking into account
the number and locations of the candidate objects. Notice that for the hierarchical approach a constant
time is obtained after reaching a certain radius. This means that once the corresponding granules have been
explored no extra-computation is required.

Moreover, testing for both configurations shows gains with respect to the number of nodes expanded
during the whole process. Again, the total number of expanded nodes reaches a maximum for the hierarchical
approach once the corresponding granules have been explored. On the contrary, the non-hierarchical approach
reaches the maximum number of nodes of the network being considered in those experiments (i.e., it explores
all the network).

The next set of experiments presents the performance evaluation and scalability of the two configurations
with respect to the number of moving objects (see Figures 9(a) and 9(b)). In these experiments the radius

26

parameter is set to 50 meters, while the number of moving objects varies between 1 and 1000. The results
shows significant improvement when applying the hierarchical processing, and an acceptable execution time
even with 1000 moving objects. We should remind that this query returns, on each timestamp and for
each moving object in range, the optimal path to the reference object. Consistently with the first result,
Figure 9(b) shows that, whatever the number of moving objects specified by the user, the non-hierarchical
configuration explores all the nodes within the specified radius. On the contrary, even with 1000 moving
objects, the hierarchical approach is able to answer the query with a much smaller number of expanded
nodes.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000
 14000

10 50 100 200 500 1000

M
ea

n
ex

ec
ut

io
n

tim
e

(m
s)

Number of moving objects (radius = 50)

HierarchicalCRS
nonHierarchicalCRS

(a)

 0
 200
 400
 600
 800

 1000

 1500

 2000

 2500

 3000

 3500

 4000

10 50 100
200

500
1000

N
um

be
r o

f e
xp

an
de

d
no

de
s

Number of moving objects (radius = 50)

HierarchicalCRS
nonHierarchicalCRS

(b)

Figure 9: Varying the number of moving objects: Hierarchical vs. non-Hierarchical Continuous Range Search

6.3. System Scalability
PostgreSQL supports full parallelism at the client-side, so that applications can open multiple database

connections and manage them asynchronously, or via threads. Multi-thread Java programs with a connection
pooling mechanism have been developed in order to simulate a multi-user environment, and to show the
e�ect of concurrent continuous queries on the performance of the system (in this scenario, a single multi-core
PostgreSQL server). We investigate the average response time of a continuous query per user. The response
time considered in these tests is the average time interval between issuing a continuous query and getting the
response from the system at a given timestamp when the search is successfully completed.

Figure 10 illustrates the average response time for a continuous path query at a given timestamp for a
given user. The number of concurrent users querying the system in real-time varies from 1 to 200. Simulation
results suggest that, with 30 to 50 concurrent accesses, the average response time varies between 1 and 1.5
seconds. Even with 100 to 200 concurrent path queries, the time for a query answer remains acceptable, and
the number of concurrent queries has a linear impact on the performance (it should be noted that the X-axis
in the figure is not linear).

The results of the experiments that consider concurrent range queries are illustrated in Figures 11(a)
and 11(b). As may be expected, a range query results in heavy processing costs, which have been noted
by previous tests (Figures 9(a) and 9(b)). Therefore, the simulation shows a reduced number of concurrent
accesses that varies from 1 to 50.

Two types of experiments have been performed. On the one hand, Figure 11(a) illustrates the average
response time while varying the number of concurrent users, and with two di�erent thresholds: 30 and 50
meters. Simulation results show a good performance of the average query answer with up to 30 concurrent
users, and an acceptable time response with up to 50 users. On the other hand, Figure 11(b) shows the
performance evaluation of a concurrent range query with di�erent numbers of moving objects: 20, 40 and 60.
The system shows a good scalability with up to 50 concurrent users when the number of objects specified is
low. With a bigger number of moving objects, the system can report good response times with up to 30
users.

27

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

1 5 10 20 30 50 100
200

M
ea

n
ex

ec
ut

io
n

tim
e

pe
r u

se
r (

m
s)

Number of concurrent users

HierarchicalCPS

Figure 10: Varying the number of concurrent access: Hierarchical Continuous Path Search

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500
 8000
 8500
 9000
 9500

 10000

1 5 10 20 30 50

M
ea

n
ex

ec
ut

io
n

tim
e

pe
r u

se
r (

m
s)

Number of concurrent users (number of moving objects = 50)

HierarchicalCRS (30m,50obj)
HierarchicalCRS (50m,50obj)

(a)

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000
 6500
 7000
 7500
 8000
 8500
 9000
 9500

 10000

1 5 10 20 30 50

M
ea

n
ex

ec
ut

io
n

tim
e

pe
r u

se
r (

m
s)

Number of concurrent users (Radius = 50)

HierarchicalCRS (50m,20obj)
HierarchicalCRS (50m,40obj)
HierarchicalCRS (50m,60obj)

(b)

Figure 11: Varying the number of concurrent access: Hierarchical Continuous Range Search

6.4. Summary of the Experiments
With respect to the above experimental results, the execution of the algorithm developed for continuous

path search appears as satisfactory regarding execution time and scales well with the number of expanded
nodes. It has been shown to be scalable enough to large indoor spaces thanks to the hierarchical-based query
processing. Moreover, the continuous range query processing approach provides satisfactory scalability with
respect to the radius parameter, and acceptable performance in processing range queries when the number of
moving objects increases. Regarding the experimental results for the continuous range search, all moving
objects involved are assumed to be of interest to the corresponding query. Actually, only objects of a certain
type (the ones involved in the query) have a direct impact on the performance of the query processing, so
this generates a worst-case situation. A pre-filtering of objects based on static properties (e.g., people in my
friend list) has a similar e�ect, as this reduces the number of objects to consider as a potential candidate (i.e.,
moving objects not in the friend list are immediately discarded). Consequently, and for example, the largest
mean execution times shown in Figure 11(b), when applied to a friend-finder application, would imply a
range of 50 meters and 60 persons in the list of friends that should be at the same time in the same indoor
environment. Nevertheless, the total number of moving objects, independently of their type, has also a slight
impact on the performance of the server due to the need to manage their location updates.

Furthermore, the whole system has been tested for scalability with the respect to the number of concurrent
continuous queries. The system shows satisfactory scalability for concurrent path queries, and acceptable
response times for concurrent range queries. Consequently, a general analysis and assessment of the algorithms
suggest that our approach can be used for real-time services. Moreover, in some scenarios where the number of
concurrent users becomes high, the performance can be increased by adopting a distributed data management

28

approach such as the one described in [Afyouni et al., 2013].

7. Conclusions

This paper introduces several algorithms for the management and processing of continuous location-
dependent queries in indoor environments. Those algorithms are designed on top of a hierarchical data
model that takes into account other contextual dimensions besides the location of the involved entities (e.g.,
time, user profiles that may imply restricted permissions to access certain areas, etc.). Two algorithms
for continuous location-dependent queries over moving objects are introduced, implemented, and their
performance evaluated. The former represents an incremental and hierarchical path search that can be
executed at di�erent levels of granularity, and applied on static and/or mobile data. The latter performs
continuous range searches by applying a hierarchical network expansion mechanism and an incremental
Euclidean restriction approach. These algorithms form the basis for an extensible query language grammar
supporting continuous location-dependent searches.

The whole approach has been fully implemented as a pure database solution based on the PostgreSQL
DBMS. Experiments have been conducted to investigate the scalability and performance with respect to
the intrinsic properties of the proposed solutions. Results show that our proposal achieves a satisfactory
performance, and it is e�cient enough to be used in a real scenario. Experimental results show a mean
execution time of around 0.2 second for continuous path searches, even in cases where the distance is quite
large for an indoor scenario, and reasonable response times for continuous range searches. Furthermore,
the whole system has been tested for scalability with respect to the number of concurrent users issuing a
continuous query. The results show that the system is fairly scalable and adapted to a multi-user environment.

Future work is oriented towards: (1) introducing a policy based on lazy updates to reduce extra
computations based on location granules; (2) integrating an extended context model that incorporates
users’ activities as well as content generated by other social entities into the location-dependent query
processing; and (3) potentially supporting a Data Stream Management System (DSMS), such as TelegraphCQ
[Chandrasekaran et al., 2003], for the processing of continuous queries over spatial data streams.

Acknowledgements
This research was partially supported by a Short Term Scientific Mission performed by the first author

at the University of Zaragoza and funded by the COST Action IC0903 on "Knowledge Discovery from
Moving Objects" (MOVE project). We would also like to acknowledge the support of the CICYT project
TIN2010-21387-C02-02 and DGA-FSE.

References

Afyouni, I., Ilarri, S., Ray, C., Claramunt, C.. Context-aware modelling of continuous location-dependent queries in indoor
environments. Journal of Ambient Intelligence and Smart Environments 2013;5(1):65–88.

Afyouni, I., Ray, C., Claramunt, C.. A fine-grained context-dependent model for indoor spaces. In: Proceedings of the 2nd
ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness. ACM; 2010. p. 33–38.

Afyouni, I., Ray, C., Claramunt, C.. Spatial models for indoor and context-aware navigation systems: A survey. Journal of
Spatial Information Science 2012a;4(1):85–123.

Afyouni, I., Ray, C., Ilarri, S., Claramunt, C.. Algorithms for continuous location-dependent and context-aware queries in
indoor environments. In: Proceedings of the 20th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. ACM; 2012b. p. 329–338.

Baldauf, M., Dustdar, S., Rosenberg, F.. A survey on context-aware systems. International Journal of Ad Hoc and Ubiquitous
Computing 2007;2(4):263–277.

Becker, C., Durr, F.. On location models for ubiquitous computing. Personal and Ubiquitous Computing 2005;9(1):20–31.
Botea, A., Muller, M., Schae�er, J.. Near optimal hierarchical path-finding. Journal of Game Development 2004;1(1):7–28.
Brinkho�, T.. A framework for generating network-based moving objects. GeoInformatica 2002;6(2):153–180.
Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M., Hellerstein, J., Hong, W., Krishnamurthy, S., Madden,

S., Reiss, F., Shah, M.. TelegraphCQ: Continuous dataflow processing. In: Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data. ACM; 2003. p. 668–668.

Deng, K., Zhou, X., Shen, H., Sadiq, S., Li, X.. Instance optimal query processing in spatial networks. The VLDB Journal
2009;18(3):675–693.

29

Gu, Y., Lo, A., Niemegeers, I.. A survey of indoor positioning systems for wireless personal networks. IEEE Communications
Surveys & Tutorials 2009;11(1):13–32.

Ilarri, S., Bobed, C., Mena, E.. An approach to process continuous location-dependent queries on moving objects with support
for location granules. Journal of Systems and Software 2011;84(8):1327–1350.

Ilarri, S., Mena, E., Illarramendi, A.. Location-dependent queries in mobile contexts: Distributed processing using mobile
agents. IEEE Transactions on Mobile Computing 2006;5(8):1029–1043.

Ilarri, S., Mena, E., Illarramendi, A.. Location-dependent query processing: Where we are and where we are heading. ACM
Computing Surveys 2010;42(3):1–73.

IndoorAtlas, L.. Ambient magnetic field-based indoor location technology: Bringing the compass to the next level. IndoorAtlas
Ltd.; 2012.

Jensen, C., Lu, H., Yang, B.. Graph model based indoor tracking. In: Proceedings of the 10th IEEE International Conference
on Mobile Data Management (MDM). IEEE; 2009. p. 122–131.

Lee, C., Wu, Y., Chen, A.. Continuous evaluation of fastest path queries on road networks. In: Proceedings of the 10th
International Conference on Advances in Spatial and Temporal Databases. Springer; 2007. p. 20–37.

Lee, D., Zhu, M., Hu, H.. When location-based services meet databases. Mobile Information Systems 2005;1(2):81–90.
Liu, H., Darabi, H., Banerjee, P., Liu, J.. Survey of wireless indoor positioning techniques and systems. IEEE Transactions

on Systems Man and Cybernetics Part C Applications and Reviews 2007;37(6):1067–1080.
Matthew, N., Stones, R.. Beginning databases with postgreSQL: From novice to professional. Apress, 2005.
Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.. Query processing in spatial network databases. In: Proceedings of the 29th

International Conference on Very Large Data Bases (VLDB). VLDB Endowment; 2003. p. 802–813.
Raubal, M.. Human wayfinding in unfamiliar buildings: A simulation with a cognizing agent. Cognitive Processing 2001;2(3):363–

388.
Ray, C., Comblet, F., Bonnin, J.M., Le Roux, Y.M.. Wireless and information technologies supporting intelligent location-

based services. In Book: Wireless Technologies in Intelligent Transportation Systems, Chapter 9, M.-T. Zhou, Y. Zhang, L.T.
Yang (eds.); Nova Science Publishers. p. 225–265.

Schiller, J., Voisard, A.. Location-Based Services. San Francisco, CA, USA: Morgan Kaufmann, 2004.
Sun, X., Yeoh, W., Koenig, S.. E�cient incremental search for moving target search. In: Proceedings of the 21st International

Joint Conference on Artifical Intelligence (IJCA). Morgan Kaufmann; 2009. p. 615–620.
Sun, X., Yeoh, W., Koenig, S.. Generalized Fringe-Retrieving A*: Faster moving target search on state lattices. In:

Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems. International Foundation
for Autonomous Agents and Multiagent Systems; AAMAS ’10; 2010a. p. 1081–1088.

Sun, X., Yeoh, W., Koenig, S.. Moving target D* lite. In: Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems. International Foundation for Autonomous Agents and Multiagent Systems; 2010b. p. 67–74.

Terry, D., Goldberg, D., Nichols, D., Oki, B.. Continuous queries over append-only databases. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data. ACM; 1992. p. 321–330.

Wang, H., Zimmermann, R.. Processing of continuous location-based range queries on moving objects in road networks. IEEE
Transactions on Knowledge and Data Engineering 2011;23(7):1065–1078.

Wolfson, O., Sistla, A., Chamberlain, S., Yesha, Y.. Updating and querying databases that track mobile units. Distributed
and parallel databases 1999;7(3):257–387.

Wu, K., Chen, S., Yu, P.. Incremental processing of continual range queries over moving objects. IEEE Transactions on
Knowledge and Data Engineering 2006;18(11):1560–1575.

Xu, J., Guting, R.. Infrastructures for research on multimodal moving objects. In: Proceedings of the 12th IEEE International
Conference on Mobile Data Management (MDM). IEEE; 2011. p. 329–332.

Yang, B., Lu, H., Jensen, C.. Scalable continuous range monitoring of moving objects in symbolic indoor space. In: Proceeding
of the 18th Conference on Information and Knowledge Management (ICIKM). ACM; 2009. p. 671–680.

Yang, B., Lu, H., Jensen, C.. Probabilistic threshold k nearest neighbor queries over moving objects in symbolic indoor space.
In: Proceedings of the 13th International Conference on Extending Database Technology (EDBT). ACM; 2010. p. 335–346.

Yu, S., Spaccapietra, S.. A knowledge infrastructure for intelligent query answering in location-based services. Geoinformatica
2010;14(3):379–404.

Yuan, W., Schneider, M.. Supporting continuous range queries in indoor space. In: Proceedings of the 11th International
Conference on Mobile Data Management (MDM). IEEE; 2010. p. 209–214.

Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.. Location-based spatial queries. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data. ACM; 2003. p. 443–454.

30

	Introduction
	Modelling Approach
	Indoor Space Modelling Approaches
	Preliminaries
	Hierarchical Data Model
	Core Spatial Layer
	Coarser Spatial Layers

	Continuous Processing of Indoor Path Queries
	Background
	Algorithm Principles
	Hierarchical and Incremental Path Search Algorithm

	Continuous Processing of Indoor Range Queries
	Background
	Hierarchical Range Network Expansion
	Incremental Algorithm for Continuous Range Search

	Implementation
	PostgreSQL System Architecture
	Optimization

	Experimental Evaluation
	Experimental Settings
	Experimental Results
	System Scalability
	Summary of the Experiments

	Conclusions

