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Abstract. Higher-order pushdown systems and ground tree rewriting
systems can be seen as extensions of suffix word rewriting systems. Both
classes generate infinite graphs with interesting logical properties. In-
deed, the model-checking problem for monadic second order logic (re-
spectively first order logic with a reachability predicate) is decidable on
such graphs. We unify both models by introducing the notion of stack
trees, trees whose nodes are labelled by higher-order stacks, and define
the corresponding class of higher-order ground tree rewriting systems. We
show that these graphs retain the decidability properties of ground tree
rewriting graphs while generalising the pushdown hierarchy of graphs.

1 Introduction

Since Rabin’s proof of the decidability of monadic second order logic (MSO)
over the full infinite binary tree ∆2 [14], there has been an effort to characterise
increasingly general classes of structures with decidable MSO theories. This can
be achieved for instance using families of graph transformations which preserve
the decidability of MSO - such as the unfolding or the MSO-interpretation and
applying them to graphs of known decidable MSO theories, such as finite graphs
or the graph ∆2.

This approach was followed in [8], where it is shown that the prefix (or suf-
fix) rewriting graphs of recognisable word rewriting systems, which coincide (up
to graph isomorphism) with the transition graphs of pushdown automata (con-
tracting ε-transitions), can be obtained from ∆2 using inverse regular substitu-
tions, a simple class of MSO-compatible transformations. They also coincide with
those obtained by applying MSO interpretations to ∆2 [1]. Alternately unfolding
and applying inverse regular mappings to these graphs yields a strict hierarchy
of classes of trees and graphs with a decidable MSO theory [9, 7] coinciding
with the transition graphs of higher-order pushdown automata and capturing
the solutions of safe higher-order program schemes1, whose MSO decidability
had already been established in [12]. We will henceforth call this the pushdown
hierarchy and the graphs at its n-th level n-pushdown graphs for simplicity.
? This work was partially supported by the French National Research Agency (ANR),

through excellence program BÃľzout (ANR-10-LABX-58)
1 This hierarchy was extended to encompass unsafe schemes and collapsible automata,

which are out of the scope of this paper. See [4, 6, 3] for recent results on the topic.



Also well-known are the automatic and tree-automatic structures (see for
instance [2]), whose vertices are represented by words or trees and whose edges
are characterised using finite automata running over tuples of vertices. The de-
cidability of first-order logic (FO) over these graphs stems from the well-known
closure properties of regular word and tree languages, but it can also be related
to Rabin’s result since tree-automatic graphs are precisely the class of graphs
obtained from ∆2 using finite-set interpretations [10], a generalisation of WMSO
interpretations mapping structures with a decidable MSO theory to structures
with a decidable FO theory. Applying finite-set interpretations to the whole
pushdown hierarchy therefore yields an infinite hierarchy of graphs of decidable
FO theory, which is proven in [10] to be strict.

Since prefix-recognisable graphs can be seen as word rewriting graphs, an-
other variation is to consider similar rewriting systems over trees. This yields
the class of ground tree rewriting graphs, which strictly contains that of real-time
order 1 pushdown graphs. This class is orthogonal to the whole pushdown hierar-
chy since it contains at least one graph of undecidable MSO theory, for instance
the infinite 2-dimensional grid. The transitive closures of ground tree rewriting
systems can be represented using ground tree transducers, whose graphs were
shown in [11] to have decidable FO[ ∗−→] theories by establishing their closure
under iteration and then showing that any such graph is tree-automatic.

The purpose of this work is to propose a common extension to both higher-
order stack operations and ground tree rewriting. We introduce a model of
higher-order ground tree rewriting over trees labelled by higher-order stacks
(henceforth called stack trees), which coincides, at order 1, with ordinary ground
tree rewriting and, over unary trees, with the dynamics of higher-order pushdown
automata. Following ideas from the works cited above, as well as the notion of
recognisable sets and relations over higher-order stacks defined in [5], we intro-
duce the class of ground (order n) stack tree rewriting systems, whose derivation
relations are captured by ground stack tree transducers. Establishing that this
class of relations is closed under iteration and can be finite-set interpreted in
n-pushdown graphs yields the decidability of their FO[ ∗−→] theories.

The remainder of this paper is organised as follows. Section 2 recalls some
of the concepts used in the paper. Section 3 defines stack trees and stack tree
rewriting systems. Section 4 explores a notion of recognisability for binary rela-
tions over stack trees. Section 5 proves the decidability of FO[ ∗−→] model checking
over ground stack tree rewriting graphs. Finally, Section 6 presents some further
perspectives.

2 Definitions and notations

Trees. Given an arbitrary set Σ, an ordered Σ-labelled tree t of arity at most d ∈
N is a partial function from {1, . . . , d}∗ to Σ such that the domain of t, dom(t) is
prefix-closed (if u is in dom(t), then every prefix of u is also in dom(t)) and left-
closed (for all u ∈ {1, . . . , d}∗ and 2 ≤ j ≤ d, t(uj) is defined only if t(ui) is for
every i < j). Node uj is called the j-th child of its parent node u. Additionally,
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the nodes of t are totally ordered by the natural length-lexicographic ordering
≤llex over {1, . . . , d}∗. By abuse of notation, given a symbol a ∈ Σ, we simply
denote by a the tree {ε 7→ a} reduced to a unique a-labelled node. The frontier
of t is the set fr(t) = {u ∈ dom(t) | u1 6∈ dom(t)}. Trees will always be drawn
in such a way that the left-to-right placement of leaves respects ≤lex. The set
of trees labelled by Σ is denoted by T (Σ). In this paper we only consider finite
trees, i.e. trees with finite domains.

Given nodes u and v, we write u v v if u is a prefix of v, i.e. if there exists
w ∈ {1, · · · , d}∗, v = uw. We will say that u is an ancestor of v or is above
v, and symmetrically that v is below u or is its descendant. We call v≤i the
prefix of v of length i. For any u ∈ dom(t), t(u) is called the label of node u
in t and tu = {v 7→ t(uv) | uv ∈ dom(t)} is the sub-tree of t rooted at u.
For any u ∈ dom(t), we call #t(u) the arity of u, i.e. its number of children.
When t is understood, we simply write #(u). Given trees t, s1, . . . , sk and a k-
tuple of positions u = (u1, . . . , uk) ∈ dom(t)k, we denote by t[s1, . . . sk]u the
tree obtained by replacing the sub-tree at each position ui in t by si, i.e. the
tree in which any node v not below any ui is labelled t(v), and any node ui.v
with v ∈ dom(si) is labelled si(v). In the special case where t is a k-context, i.e.
contains leaves u1, . . . , uk labelled by special symbol �, we omit u and simply
write t[s1, . . . , sk] = t[s1, . . . , sk]u.

Directed Graphs. A directed graph G with edge labels in Γ is a pair (VG, EG)
where VG is a set of vertices and EG ⊆ (VG × Γ × VG) is a set of edges. Given
two vertices x and y, we write x γ−→G y if (x, γ, y) ∈ EG, x −→G y if there exists
γ ∈ Γ such that x γ−→G y, and x Γ ′−→G y if there exists γ ∈ Γ ′ such that x γ−→G y.
There is a directed path in G from x to y labelled by w = w1 . . . wk ∈ Γ ∗, written
x

w−→G y, if there are vertices x0, . . . , xk such that x = x0, xk = y and for all
1 ≤ i ≤ k, xi−1

wi−→G xi. We additionally write x ∗−→G y if there exists w such
that x w−→G y , and x +−→G y if there is such a path with |w| ≥ 1. A directed graph
G is connected if there exists an undirected path between any two vertices x and
y, meaning that (x, y) ∈ (−→G ∪ −→−1

G )∗. We omit G from all these notations
when it is clear from the context. A directed graph D is acyclic, or is a DAG, if
there is no x such that x +−→ x. The empty DAG consisting of a single vertex (and
no edge, hence its name) is denoted by �. Given a DAG D, we denote by ID its
set of vertices of in-degree 0, called input vertices, and by OD its set of vertices
of out-degree 0, called output vertices. The DAG is said to be of in-degree |ID|
and of out-degree |OD|. We henceforth only consider finite DAGs.

Rewriting Systems. Let Σ and Γ be finite alphabets. A Γ -labelled ground tree
rewriting system (GTRS) is a finite set R of triples (`, a, r) called rewrite rules,
with ` and r finite Σ-labelled trees and a ∈ Γ a label. The rewriting graph of
R is GR = (V,E), where V = T (Σ) and E = {(c[`], a, c[r]) | (`, a, r) ∈ R}.
The rewriting relation associated to R is −→R = −→GR , its derivation relation
is ∗−→R = ∗−→GR . When restricted to words (or equivalently unary trees), such
systems are usually called suffix (or prefix) word rewriting systems.

3



[[aa]1[bab]1]2

[[aa]1[aaa]1]2 [[aa]1[a]1[b]1]2

[[ab]1]2 [[ba]1[ba]1[b]1]2 [[abb]1[ab]1]2

Fig. 1: A 3-stack-tree.

3 Higher-Order Stack Trees

3.1 Higher-Order Stacks

We briefly recall the notion of higher-order stacks (for details, see for instance
[5]). In order to obtain a more straightforward extension from stacks to stack
trees, we use a slightly tuned yet equivalent definition, whereby the hierarchy
starts at level 0 and uses axs different set of basic operations.

In the remainder, Σ will denote a fixed finite alphabet and n a positive
integer. We first define stacks of order n (or n-stacks). Let Stacks0(Σ) = Σ
denote the set of 0-stacks. For n > 0, the set of n-stacks is Stacksn(Σ) =
(Stacksn−1(Σ))+, the set of non-empty sequences of (n− 1)-stacks. When Σ is
understood, we simply write Stacksn. For s ∈ Stacksn, we write s = [s1, · · · , sk]n,
with k > 0 and n > 0, for an n-stack of size |s| = k whose topmost (n − 1)-
stack is sk. For example, [[[aba]1]2[[aba]1[b]1[aa]1]2]3 is a 3-stack of size 2, whose
topmost 2-stack [[aba]1[b]1[aa]1]2 contains three 1-stacks, etc.

Basic Stack Operations. Given two letters a, b ∈ Σ, we define the partial func-
tion rewa,b : Stacks0 → Stacks0 such that rewa,b(c) = b, if c = a and is not
defined otherwise. We also consider the identity function id : Stacks0 → Stacks0.
For n ≥ 1, the function copyn : Stacksn → Stacksn is defined by copyn(s) =
[s1, · · · , sk, sk]n, for every s = [s1, · · · , sk]n ∈ Stacksn. As it is injective, we
denote by copyn its inverse (which is a partial function).

Each level ` operation θ is extended to any level n > ` stack s = [s1, · · · , sk]n
by letting θ(s) = [s1, · · · , sk−1, θ(sk)]n. The set Opsn of basic operations of level
n is defined as: Ops0 = {rewa,b | a, b ∈ Σ} ∪ {id}, and for n ≥ 1, Opsn =
Opsn−1 ∪ {copyn, copyn}.

3.2 Stack Trees

We introduce the set STn(Σ) = T (Stacksn−1(Σ)) (or simply STn when Σ is un-
derstood) of n-stack-trees. Observe that an n-stack-tree of degree 1 is isomorphic
to an n-stack, and that ST1 = T (Σ). Figure 1 shows an example of a 3-stack
tree. The notion of stack trees therefore subsumes both higher-order stacks and
ordinary trees.
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Basic Stack Tree Operations. We now extend n-stack operations to stack trees.
There are in general several positions where one may perform a given operation
on a tree. We thus first define the localised application of an operation to a
specific position in the tree (given by the index of a leaf in the lexicographic
ordering of leaves), and then derive a definition of stack tree operations as binary
relations, or equivalently as partial functions from stack trees to sets of stack
trees.

Any operation of Opsn−1 is extended to STn as follows: given θ ∈ Opsn−1,
and an integer i ≤ |fr(t)|, θ(i)(t) = t[θ(s)]ui with s = t(ui), where ui is the ith
leaf of the tree, with respect to the lexicographic order. If θ is not applicable to
s, θi(t) is not defined. We define θ(t) = {θ(i)(t) | i ≤ |fr(t)|}, i.e. the set of stack
trees obtained by applying θ to a leaf of t.

The k-fold duplication of a stack tree leaf and its label is denoted by copykn :
STn → 2STn . Its application to the ith leaf of a tree t is: copykn(i)(t) = t∪{uij 7→
t(ui) | j ≤ k}, with i ≤ |fr(t)|. Let copykn(t) = {copykn(i)(t)} be the set of
stack trees obtained by applying copykn to a leaf of t. The inverse operation,
written copykn, is such that t′ = copykn(i)(t) if t = copykn(i)(t′). We also define
copykn(t) = {copykn(i)(t)}. Notice that t′ ∈ copykn(t) if t ∈ copykn(t′).

For simplicity, we will henceforth only consider the case where stack trees
have arity at most 2 and k ≤ 2, but all results go through in the general case.
We denote by TOpsn = Opsn−1 ∪ {copykn, copykn | k ≤ 2} the set of basic
operations over STn.

3.3 Stack Tree Rewriting

As already mentioned, ST1 is the set of trees labelled by Σ. In contrast with
basic stack tree operations, a tree rewrite rule (`, r) expresses the replacement
of an arbitrarily large ground subtree ` of some tree s = c[`] into r, yielding
the tree c[r]. Contrary to the case of order 1 stacks (which are simply words),
composing basic stack tree operations does not allow us to directly express such
an operation, because there is no guarantee that two successive operations will
be applied to the same part of a tree. We thus need to find a way to consider
compositions of basic operations acting on a single sub-tree. In our notations, the
effect of a ground tree rewrite rule could thus be seen as the localised application
of a sequence of rew and copy2

1 operations followed by a sequence of rew and
copy2

1 operations. The relative positions where these operations must be applied
could be represented as a pair of trees with edge labels in Ops0.

From level 2 on, this is no longer possible. Indeed a localised sequence of
operations may be used to perform introspection on the stack labelling a node
without destroying it, by first performing a copy2 operation followed by a se-
quence of level 1 operations and a copy2 operation. It is thus impossible to di-
rectly represent such a transformation using pairs of trees labelled by stack tree
operations. We therefore adopt a presentation of compound operations as DAGs,
which allows us to specify the relative application positions of successive basic
operations. However, not every DAG represents a valid compound operation, so
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[bbb]1

[bbb]1 [aabb]1

(a) Stack tree t

.

.

.

. .

. .

copy1

rewb,c

1 2

rewc,a copy1

(b) Operation D

[bbb]1

[bc]1 [aabb]1

[ba]1 [bcc]1

(c) D(1)(t)

[bbb]1

[bbb]1 [aac]1

[aaa]1 [aacc]1

(d) D(2)(t)

Fig. 2: The application of an operation D to a stack tree t.

.

.
θ

(a) Dθ

.

.
1

(b) Dcopy1
n

.

.
1̄

(c) Dcopy1
n

.

. .
1 2

(d) Dcopy2
n

. .

.
1̄ 2̄

(e) Dcopy2
n

Fig. 3: DAGs of the basic n-stack tree operations (here θ ranges over Opsn−1).

we first need to define a suitable subclass of DAGs and associated concatenation
operation. An example of the model we aim to define can be found in Fig. 2.

Concatenation of DAGs. Given two DAGs D and D′ with OD = {b1, . . . , b`}
and ID′ = {a′1, . . . , a′k′} and two indices i and j with 1 ≤ i ≤ ` and 1 ≤ j ≤ k′,
we denote by D ·i,j D′ the unique DAG D′′ obtained by merging the (i+m)-th
output vertex of D with the (j + m)-th input vertex of D′ for all m ≥ 0 such
that both bi+m and a′j+m exist. Formally, letting d = min(`− i, k′−j)+1 denote
the number of merged vertices, we have D′′ = mergef (D]D′) where mergef (D)
is the DAG whose set of vertices is f(VD) and set of edges is {(f(x), γ, f(x′)) |
(x, γ, x′) ∈ ED}, and f(x) = bi+m if x = a′j+m for some 0 ≤ m ≤ d, and
f(x) = x otherwise. We call D′′ the (i, j)-concatenation of D and D′. Note that
the (i, j)-concatenation of two connected DAGs remains connected.

Compound Operations We represent compound operations as DAGs. We will
refer in particular to the set of DAGs Dn = {Dθ | θ ∈ TOpsn} associated
with basic operations, which are depicted in Fig. 3. Compound operations are
inductively defined below, as depicted in Fig. 4.

Definition 1. A DAG D is a compound operation (or simply an operation) if
one of the following holds:

1. D = �;
2. D = (D1 ·1,1 Dθ) ·1,1 D2, with |OD1 | = |ID2 | = 1 and θ ∈ Opsn−1 ∪
{copy1

n, copy1
n};

3. D = ((D1 ·1,1 Dcopy2
n
) ·2,1 D3) ·1,1 D2, with |OD1 | = |ID2 | = |ID3 | = 1;
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D1

.

.

D2

θ

(2.)

.

. .

D2 D3

D1

1 2

(3.)

. .

.

D3

D1 D2

1̄ 2̄

(4.)

. .

.

. .

.

D4

D2 D3

D1

1̄ 2̄

1 2

(5.)

Fig. 4: Possible decompositions of a compound operation, numbered according
to the items in Definition 1.

4. D = (D1 ·1,1 (D2 ·1,2 Dcopy2
n
)) ·1,1 D3 with |OD1 | = |OD2 | = |ID3 | = 1;

5. D = ((((D1 ·1,1 Dcopy2
n
) ·2,1 D3) ·1,1 D2) ·1,1 Dcopy2

n
) ·1,1 D4, with |OD1 | =

|ID2 | = |OD2 | = |ID3 | = |OD3 | = |ID4 | = 1 ;

where D1, D2, D3 and D4 are compound operations.

Additionally, the vertices of D are ordered inductively in such a way that
every vertex of Di in the above definition is smaller than the vertices of Di+1,
the order over � being the empty one. This induces in particular an order over
the input vertices of D, and one over its output vertices.

Definition 2. Given a compound operation D, we define D(i)(t), its localised
application starting at the i-th leaf of a stack tree t, as follows:

1. If D = �, then D(i)(t) = t.
2. If D = (D1 ·1,1 Dθ) ·1,1 D2 with θ ∈ Opsn−1 ∪ {copy1

n, copy1
n},

then D(i)(t) = D2(i)(θ(i)(D1(i)(t))).
3. If D = ((D1 ·1,1 Dcopy2

n
) ·2,1 D3) ·1,1 D2,

then D(i)(t) = D2(i)(D3(i+1)(copy2
n(i)(D1(i)(t)))).

4. If D = ((D1 ·1,1 (D2 ·2,1 Dcopy2
n
)) ·1,1 D3,

then D(i)(t) = D3(i)(copy2
n(i)( D2(i+1)(D1(i)(t)))).

5. If D = ((((D1 ·1,1 Dcopy2
n
) ·2,1 D3) ·1,1 D2) ·1,1 Dcopy2

n
) ·1,1 D4,

then D(i)(t) = D4(i)(copy2
n(i)(D3(i+1)(D2(i)(copy2

n(i)(D1(i)(t)))))).

Remark 1. An operation may admit several different decompositions with re-
spect to Def. 1. However, its application is well-defined, as one can show this
process is locally confluent.

Given two stack trees t, t′ and an operation D, we say that t′ ∈ D(t) if there
is a position i such that t′ = D(i)(t). Figure 2 shows an example. We call RD the
relation induced by D: for any stack trees t, t′, RD(t, t′) if and only if t′ ∈ D(t).
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Finally, given a k-tuple of operations D̄ = (D1, . . . , Dk) of respective in-degrees
d1, . . . , dk and a k-tuple of indices i = (i1, . . . , ik) with ij+1 ≥ ij + dj for all
1 ≤ j < k, we denote by D̄(i)(t) the parallel application D1(i1)(. . . Dk(ik)(t) . . .)
of D1, . . . , Dk to t, D̄(t) the set of all such applications and RD̄ the induced
relation.

Since the (i, j)-concatenation of two operations as defined above is not nec-
essarily a licit operation, we need to restrict ourselves to results which are well-
formed according to Def. 1. Given D and D′, we let D · D′ = {D ·i,j D′ |
D ·i,j D′ is an operation}. Given n > 1, we define2Dn =

⋃
i<nD

i ·Dn−i, and let
D∗ =

⋃
n≥0D

n denote the set of iterations of D. These notations are naturally
extended to sets of operations.

Proposition 1. D∗n is precisely the set of all well-formed compound operations.

Proof. Recall that Dn denotes the set of DAGs associated with basic operations.
By definition of iteration, any DAG in D∗n is an operation. Conversely, by Def.
1, any operation can be decomposed into a concatenation of DAGs of Dn. ut

Ground Stack Tree Rewriting Systems. By analogy with order 1 trees, given
some finite alphabet of labels Γ , we call any finite subset of labelled operations
in D∗n × Γ a labelled ground stack-tree rewriting system (GSTRS). We straight-
forwardly extend the notions of rewriting graph and derivation relation to these
systems. Note that for n = 1, this class coincides with ordinary ground tree
rewriting systems. Moreover, one can easily show that the rewriting graphs of
ground stack-tree rewriting systems over unary n-stack trees (trees containing
only unary operations, i.e. no edge labelled by 2 or 2̄) are isomorphic to the con-
figuration graphs of order n pushdown automata performing a finite sequence of
operations at each transition.

4 Operation Automata

In this section, in order to provide finite descriptions of possibly infinite sets of
operations, in particular the derivation relations of GSTRS, we extend the notion
of ground tree transducers (or GTT) of [11] to ground tree rewriting systems.

A GTT T is given by a tuple
(
(Ai, Bi)

)
1≤i≤k of pairs of finite tree automata.

A pair of trees (s, t) is accepted by T if s = c[s1, . . . sm] and t = c[t1, . . . , tm] for
some m-context c, where for all 1 ≤ j ≤ m, sj ∈ L(Ai) and tj ∈ L(Bi) for some
1 ≤ i ≤ k. It is also shown that, given a relation R recognised by a GTT, there
exists another GTT recognising its reflexive and transitive closure R∗.

Directly extending this idea to ground stack tree rewriting systems is not
straightforward: contrary to the case of trees, a given compound operation may
be applicable to many different subtrees. Indeed, the only subtree to which a
ground tree rewriting rule (s, t) can be applied is the tree s. On stack trees,
2 This unusual definition is necessary because · is not associative. For example,

(Dcopy2
n
·2,1 Dcopy2

n
) ·1,1 Dcopy2

n
is in (Dcopy2

n
)2 ·Dcopy2

n
but not in Dcopy2

n
· (Dcopy2

n
)2.
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this is no longer true, as depicted in Fig. 2: an operation does not entirely
describe the labels of nodes of subtrees it can be applied to (as in the case of
trees), and can therefore be applied to infinitely many different subtrees. We
will thus express relations by describing sets of compound operations over stack
trees. Following [5] where recognisable sets of higher-order stacks are defined, we
introduce operation automata and recognisable sets of operations.

Definition 3. An automaton over D∗n is a tuple A = (Q,Σ, I, F,∆), where

– Q is a finite set of states,
– Σ is a finite stack alphabet,
– I ⊆ Q is a set of initial states,
– F ⊆ Q is a set of final states,
– ∆ ⊆

(
Q× (Opsn−1 ∪ {copy1

n, copy1
n})×Q

)
∪ ((Q×Q)×Q) ∪ (Q× (Q×Q)) is a set of transitions.

An operation D is accepted by A if there is a labelling of its vertices by
states of Q such that all input vertices are labelled by initial states, all output
vertices by final states, and this labelling is consistent with ∆, in the sense
that for all x, y and z respectively labelled by states p, q and r, and for all
θ ∈ Opsn−1 ∪ {copy1

n, copy1
n},

x
θ−→ y =⇒ (p, θ, q) ∈ ∆,

x
1−→ y ∧ x 2−→ z =⇒ (p, (q, r)) ∈ ∆,

x
1̄−→ z ∧ y 2̄−→ z =⇒ ((p, q), r) ∈ ∆.

We denote by Op(A) the set of operations recognised by A. Rec denotes the
class of sets of operations recognised by operation automata. A pair of stack
trees (t, t′) is in the relation R(A) defined by A if for some k ≥ 1 there is a
k-tuple of operations D̄ = (D1, · · · , Dk) in Op(A)k such that t′ ∈ D̄(t). At order
1, we have already seen that stack trees are simply trees, and that ground stack
tree rewriting systems coincide with ground tree rewriting systems. Similarly,
we also have the following:

Proposition 2. The classes of relations recognised by order 1 operation au-
tomataand by ground tree transducers coincide.

At higher orders, the class Rec and the corresponding binary relations retains
several of the good closure properties of ground tree transductions.

Proposition 3. Rec is closed under union, intersection and iterated concate-
nation. The class of relations defined by operation automata is closed under
composition and iterated composition.

The construction of automata recognising the union and intersection of two
recognisable sets, the iterated concatenation of a recognisable set, or the compo-
sition of two automata-definable relations, can be found in the appendix. Given
automaton A, the relation defined by the automaton accepting Op(A)∗ isR(A)∗.

9



Normalised automata. Operations may perform “unnecessary” actions on a given
stack tree, for instance duplicating a leaf with a copy2

n operation and later de-
stroying both copies with copy2

n. Such operations which leave the input tree
unchanged are referred to as loops. There are thus in general infinitely many op-
erations representing the same relation over stack trees. It is therefore desirable
to look for a canonical representative (a canonical operation) for each considered
relation. The intuitive idea is to simplify operations by removing occurrences of
successive mutually inverse basic operations. This process is a very classical tool
in the literature of pushdown automata and related models, and was applied to
higher-order stacks in [5]. Our notion of reduced operations is an adaptation of
this work.

There are two main hurdles to overcome. First, as already mentioned, a
compound operation D can perform introspection on the label of a leaf without
destroying it. If D can be applied to a given stack tree t, such a sequence of
operations does not change the resulting stack tree s. It does however forbid
the application of D to other stack trees by inspecting their node labels, hence
removing this part of the computation would lead to an operation with a possibly
strictly larger domain. To adress this problem, and following [5], we use test
operations ranging over regular sets of (n − 1)-stacks, which will allow us to
handle non-destructive node-label introspection.

A second difficulty appears when an operation destroys a subtree and then
reconstructs it identically, for instance a copy2

n operation followed by copy2
n.

Trying to remove such a pattern would lead to a disconnected DAG, which
does not describe a compound operation in our sense. We thus need to leave
such occurrences intact. We can nevertheless bound the number of times a given
position of the input stack tree is affected by the application of an operation
by considering two phases: a destructive phase during which only copyin and
order n − 1 basic operations (possibly including tests) are performed on the
input stack-tree, and a constructive phase only consisting of copyin and order
n− 1 basic operations. Similarly to the way ground tree rewriting is performed
at order 1.

Formally, a test TL over Stacksn is the restriction of the identity operation
to L ∈ Rec(Stacksn)3. In other words, given s ∈ Stacksn, TL(s) = s if s ∈
L, otherwise, it is undefined. We denote by Tn the set of test operations over
Stacksn. We enrich our basic operations over STn with Tn−1. We also extend
compound operations with edges labelled by tests. We denote by DTn the set of
basic operations with tests. We can now define the notion of reduced operation
analogously to that of reduced instructions with tests in [5].

Definition 4. For i ∈ {0, · · · , n}, we define the set of words Redi over Opsn ∪
Tn ∪ {1, 2, 1̄, 2̄} as:

– Red0 = {ε, T, rewa,b, rewa,b · T, T · rewa,b, rewa,b · T · rewc,d
| a, b, c, d ∈ Σ,T ∈ Tn},

3 Regular sets of n-stacks are obtained by considering regular sets of sequences of
operations of Opsn applied to a given stack s0. More details can be found in [5].
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– For 0 < i < n, Redi = (Redi−1 · copyi)∗ · Redi−1 · (copyi · Redi−1)∗,
– Redn = (Redn−1 · {1̄, 2̄})∗ · Redn−1 · ({1, 2} · Redn−1)∗.

Definition 5. An operation with tests D is reduced if for every x, y ∈ VD, if
x

w−→ y, then w ∈ Redn.

Observe that, in the decomposition of a reduced operation D, case 5 of the
inductive definition of compound operations (Def. 1) should never occur, as
otherwise, there would be a path on which 1 appears before 1̄, which contradicts
the definition of reduced operation.

An automaton A is said to be normalised if it only accepts reduced oper-
ations, and distinguished if there is no transition ending in an initial state or
starting in a final state. The following proposition shows that any operation
automaton can be normalised and distinguished.

Proposition 4. For every automaton A, there exists a distinguished normalised
automaton with tests Ar such that R(A) = R(Ar).

The idea of the construction is to transform A in several steps, each modi-
fying the set of accepted operations but not the recognised relation. The proof
relies on the closure properties of regular sets of (n− 1)-stacks and an analysis
of the structure of A. We show in particular, using a saturation technique, that
the set of states of A can be partitioned into destructive states (which label the
destructive phase of the operation, which does not contain the copyin operation)
and the constructive states (which label the constructive phase, where no copyin
occurs). These sets are further divided into test states, which are reached af-
ter a test has been performed (and only then) and which are the source of no
test-labelled transition, and the others. This transformation can be performed
without altering the accepted relation over stack trees.

5 Rewriting Graphs of Stack Trees

In this section, we study the properties of ground stack tree rewriting graphs. Our
goal is to show that the graph of any Γ -labelled GSTRS has a decidable FO[ ∗−→]
theory. We first state that there exists a distinguished and reduced automaton
A recognising the derivation relation ∗−→R of R, and then show, following [10],
that there exists a finite-set interpretation of ∗−→R and every a−→R for (D, a) ∈ R
from a graph with decidable WMSO-theory.

Theorem 1. Given a Γ -labelled GSTRS R, GR has a decidable FO[ ∗−→] theory.

To prove this theorem, we show that the graph HR = (V,E) with V = STn
and E = ( ∗−→R) ∪

⋃
a∈Γ ( a−→R) obtained by adding the relation ∗−→R to GR has a

decidable FO theory. To do so, we show that HR is finite-set interpretable inside
a structure with a decidable WMSO-theory, and conclude using Corollary 2.5
of [10]. Thus from Section 5.2 of the same article, it follows that the rewriting
graphs of GSTRS are in the tree-automatic hierarchy.
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Given a Γ -labelled GSTRS R over STn, we choose to interpret HR inside the
order n Treegraph ∆n over alphabet Σ∪{1, 2}. Each vertex of this graph is an n-
stack, and there is an edge s θ−→ s′ if and only if s′ = θ(s) with θ ∈ Opsn∪Tn. This
graph belongs to the n-th level of the pushdown hierarchy and has a decidable
WMSO theory4.

Given a stack tree t and a position u ∈ dom(t), we denote by Code(t, u) the
n-stack [pushw0(t(ε)),pushw1(t(u≤1)), · · · ,pushw|u|−1

(t(u≤|u|−1)), t(u)]n, where
pushw(s) is obtained by adding the word w at the top of the top-most 1-stack
in s, and wi = #(u≤i)ui+1. This stack Code(t, u) is the encoding of the node at
position u in t. Informally, it is obtained by storing in an n-stack the sequence
of (n − 1)-stacks labelling nodes from the root of t to position u, and adding
at the top of each (n − 1)-stack the number of children of the corresponding
node of t and the next direction taken to reach node u. Any stack tree t is then
encoded by the finite set of n-stacks Xt = {Code(t, u) | u ∈ fr(t)}, i.e. the set
of encodings of its leaves. Observe that this coding is injective.

Example 1. The coding of the stack tree t depicted in Fig. 1 is:
Xt = { [[[aa]1[bab21]1]2[[aa]1[aaa11]1]2[[ab]1]2]3,

[[[aa]1[bab22]1]2[[aa]1[a]1[b21]1]2[[ba]1[ba]1[b]1]2]3,
[[[aa]1[bab22]1]2[[aa]1[a]1[b22]1]2[[abb]1[ab]1]2]3}

We now represent any relation S between two stack trees as a WMSO-formula
with two free second-order variables, which holds in ∆n over sets Xs and Xt if
and only if (s, t) ∈ S.

Proposition 5. Given a Γ -labelled GSTRS R, there exist WMSO-formulæ δ, Ψa
and φ such that:

– ∆n
Σ∪{1,2} |= δ(X) if and only if ∃t ∈ STn, X = Xt,

– ∆n
Σ∪{1,2} |= Ψa(Xs, Xt) if and only if t ∈ D(s) for some (D, a) ∈ R,

– ∆n
Σ∪{1,2} |= φ(Xs, Xt) if and only if s ∗−→R t.

First note that the intuitive idea behind this interpretation is to only work
on those vertices of ∆n which are the encoding of some node in a stack-tree.
Formula δ will distinguish, amongst all possible finite sets of vertices, those
which correspond to the set of encodings of all leaves of a stack-tree. Formulæ
Ψa and φ then respectively check the relationship through a−→R (resp. ∗−→R) of a
pair of stack-trees. We give here a quick sketch of the formulæ and a glimpse of
their proof of correction. More details can be found in appendix C.

Let us first detail formula δ, which is of the form

δ(X) = OnlyLeaves(X) ∧ TreeDom(X) ∧UniqueLabel(X).

OnlyLeaves(X) holds if every element of X codes for a leaf. TreeDom(X) holds
if the induced domain is the domain of a tree and the arity of each node is
4 It is in fact a generator of this class of graphs via WMSO-interpretations (see [7] for

additional details).
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consistent with the elements of X. UniqueLabel(X) holds if for every position u
in the induced domain, all elements which include u agree on its label.

From here on, variables X and Y will respectively stand for the encoding of
some input stack tree s and output stack-tree t. For each a ∈ Γ , Ψa(X,Y ) is
the disjunction of a family of formulæ ΨD(X,Y ) for each (D, a) ∈ R. Each ΨD
is defined by induction over D, simulating each basic operations in D, ensuring
that they are applied according to their respective positions, and to a single
closed subtree of s (which simply corresponds to a subset of X), yielding t.

Let us now turn to formula φ. Since the set of DAGs in R is finite, it is
recognisable by an operation automaton. Since Rec is closed under iteration (Cf.
Sec. 4), one may build a distinguished normalised automaton accepting ∗−→R.
What we thus really show is that given such an automaton A, there exists a
formula φ such that φ(X,Y ) holds if and only if t ∈ D̄(s) for some vector
D̄ = D1, . . . Dk of DAGs accepted by A. Formula φ is of the form

φ(X,Y ) = ∃Z, Init(X,Y,Z) ∧Diff(Z) ∧ Trans(Z).

Following a common pattern in automata theory, this formula expresses the
existence of an accepting run of A over some tuple of reduced DAGs D̄, and
states that the operation corresponding to D̄, when applied to s, yields t. Here,
Z = Zq1 , · · · , Zq|QA| defines a labelling of a subset of ∆n

Σ∪{1,2} with the states
of the automaton, each element Zq of Z representing the set of nodes labelled
by a given control state q. Sub-formula Init checks that only the elements of
X (representing the leaves of s) are labelled by initial states, and only those
in Y (leaves of t) are labelled by final states. Trans ensures that the whole
labelling respects the transition rules of A. For each component D of D̄, and
since every basic operation constituting D is applied locally and has an effect
on a subtree of height and width at most 2, this amounts to a local consistency
check between at most three vertices, encoding two nodes of a stack tree and
their parent node. The relative positions where basic operations are applied is
checked using the sets in Z, which represent the flow of control states at each step
of the transformation of s into t. Finally, Diff ensures that no stack is labelled
by two states belonging to the same part (destructive, constructive, testing or
non-testing) of the automaton, thus making sure we simulate a unique run of
A. This is necessary to ensure that no spurious run is generated, and is only
possible because A is normalised.

6 Perspectives

There are several open questions arising from this work. The first one is the
strictness of the hierarchy, and the question of finding simple examples of graphs
separating each of its levels with the corresponding levels of the pushdown and
tree-automatic hierarchies. A second interesting question concerns the trace lan-
guages of stack tree rewriting graphs. It is known that the trace languages of
higher-order pushdown automata are the indexed languages [8], that the class
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of languages recognised by automatic structures are the context-sensitive lan-
guages [15] and that those recognised by tree-automatic structures form the class
Etime [13]. However there is to our knowledge no characterisation of the lan-
guages recognised by ground tree rewriting systems. It is not hard to define a
2-stack-tree rewriting graph whose path language between two specific vertices
is {u� u | u ∈ Σ∗}, which we believe cannot be recognised using tree rewriting
systems or higher-order pushdown automata5. Finally, the model of stack trees
can be readily extended to trees labelled by trees. Future work will include the
question of extending our notion of rewriting and Theorem 1 to this model.
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10. Thomas Colcombet and Christof Löding. Transforming structures by set interpre-
tations. Logical Methods in Computer Science (LMCS), 3(2), 2007.

11. Max Dauchet and Sophie Tison. The theory of ground rewrite systems is decidable.
In LICS, pages 242–248. IEEE Computer Society, 1990.

12. Teodor Knapik, Damian Niwinski, and Pawe l Urzyczyn. Higher-order pushdown
trees are easy. In FoSSaCS, volume 2303, pages 205–222. Springer, 2002.

13. Antoine Meyer. Traces of term-automatic graphs. ITA, 42(3):615–630, 2008.
14. Michael O. Rabin. Decidability of second-order theories and automata on infinite

trees. BULLETIN of the American Mathematical Society, 74:1025–1029, July 1968.
15. Chloe Rispal. The synchronized graphs trace the context-sensitive languages.

Electr. Notes Theor. Comput. Sci., 68(6):55–70, 2002.

5
� denotes the shuffle product. For every u, v ∈ Σ∗ and a, b ∈ Σ, u� ε = ε� u = u,
au� bv = a(u� bv) ∪ b(au� v)

14



A Properties of Operation Automata

In this section, we show that Rec is closed under union, intersection, iteration
and contains the finite sets of operations.

Proposition 6. Given two automata A1 and A2, there exists an automaton A
such that Op(A) = Op(A1) ∩Op(A2)

Proof. We will construct an automaton which witness Prop 6. First, we ensure
that the two automata are complete by adding a sink state if some transitions do
not exist. We construct then the automaton A which is the product automaton
of A1 and A2:

Q = QA1 ×QA2

I = IA1 × IA2

F = FA1 × FA2

∆ = {((q1, q2), θ, (q′1, q′2)) | (q1, θ, q
′
1) ∈ ∆A1 ∧ (q2, θ, q

′
2) ∈ ∆A2}

∪ {(((q1, q2), (q′1, q′2)), (q′′1 , q′′2 )) | ((q1, q
′
1), q′′1 ) ∈ ∆A1 ∧ ((q2, q

′
2), q′′2 ) ∈ ∆A2}

∪ {((q1, q2), ((q′1, q′2), (q′′1 , q′′2 ))) | (q1, (q′1, q′′1 )) ∈ ∆A1 ∧ (q2, (q′2, q′′2 )) ∈ ∆A2}
If an operation admits a valid labelling in A1 and in A2, then the labelling

which labels each states by the two states it has in its labelling in A1 and A2
is valid. If an operation admits a valid labelling in A, then, restricting it to the
states of A1 (resp A2), we have a valid labelling in A1 (resp A2). ut

Proposition 7. Given two automata A1 and A2, there exists an automaton A
such that Op(A) = Op(A1) ∪Op(A2)

Proof. We take the disjoint union of A1 and A2:
Q = QA1 ]QA2

I = IA1 ] IA2

F = FA1 ] FA2

∆ = ∆A1 ]∆A2

If an operation admits a valid labelling in A1 (resp A2), it is also a valid
labelling in A. If an operation admits a valid labelling in A, as A is a disjoint
union of A1 and A2, it can only be labelled by states of A1 or of A2 (by defini-
tion, there is no transition between states of A1 and states of A2) and then the
labelling is valid in A1 or in A2. ut

Proposition 8. Given an automaton A, there exists A′ which recognises Op(A)∗.

Proof. We construct A′.
Q = QA ] {q}
I = IA ∪ {q}
F = FA ∪ {q}
The set of transition ∆ contains the transitions of A together with multiple

copies of each transition ending with a state in FA, modified to end in a state
belonging to IA
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∆ = ∆A

∪ {(q1, θ, qi) | qi ∈ IA,∃qf ∈ FA, (q1, θ, qf ) ∈ ∆A}
∪ {((q1, q2), qi) | qi ∈ IA,∃qf ∈ FA, ((q1, q2), qf ) ∈ ∆A}
∪ {(q1, (q2, qi)) | qi ∈ IA,∃qf ∈ FA, (q1, (q2, qf )) ∈ ∆A}
∪ {(q1, (qi, q2)) | qi ∈ IA,∃qf ∈ FA, (q1, (qf , q2)) ∈ ∆A}
∪ {(q1, (qi, q′i)) | qi, q′i ∈ IA,∃qf , q′f ∈ FA, (q1, (qf , q′f )) ∈ ∆A}

For every k ∈ N, if D ∈ (Op(A)k), it has a valid labelling in A′: The operation
� has a valid labelling because q is initial and final. So it is true for (Op(A)0) If it
is true for (Op(A)k), we take an operation G in (Op(A)k+1) and decompose it in
D of Op(A) and F of Op(A)k (or symmetrically, D ∈ Op(A)k and F ∈ Op(A)k),
such that G ∈ D ·F . The labelling which is the union of some valid labellings for
D and F and labels the identified nodes with the labelling of F (initial states)
is valid in A.

If an operation admits a valid labelling in A′, we can separate several parts
of the operation, separating on the added transitions, and we obtain a collection
of operations of Op(A). Then we have a graph in Op(A)k for a given k. Then
Op(A′) =

⋃
k≥0 Op(A)k, then A′ recognises Op(A)∗. ut

Proposition 9. Given an operation D, there exists an automaton A such that
Op(A) = {D}.

Proof. If D = (V,E), we take:
Q = V
I is the set of incoming vertices
F is the set of output vertices
∆ = {(q, θ, q′) | (q, θ, q′) ∈ E}
∪ {(q, (q′, q′′)) | (q, 1, q′) ∈ E ∧ (q, 2, q′′) ∈ E}
∪ {((q, q′), q′′) | (q, 1, q′′) ∈ E ∧ (q′, 2, q′′) ∈ E}

The recognised connected part is D by construction. ut

B Normalised Automata

Definition 6. An automaton is normalised if all its recognised operations are
reduced.

Theorem 2. Given an operation automaton with tests, there exists a distin-
guished normalised operation automaton with tests which accepts the same lan-
guage.

Proof. The first thing to remark is that if we don’t have any tree transitions, we
have a higher-order stack automaton as in [5] and that the notions of normalised
automaton coincide. The idea is thus to separate the automaton in two parts,
one containing only tree transitions and the other stack transitions, to normalise
each part separately and then to remove the useless transitions used to separate
the automaton.
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Fig. 5: Step 1: The splitting of a state q

Step 1: In this transformation, we will use a new special basic operation: id
such that its associated operation Did is the following DAG: VDid = {x, y} and
EDid = {(x, id, y)}. For every stack tree t and any integer i ≤ |fr(t)|, id(i)(t) = t.
We will use this operation to separate our DAGs in several parts linked with id
operations, and will remove them at the end of the transformation. We suppose
that we start with an automaton without such id transitions.

We begin by splitting the set of control states of the automaton into three
parts. We create three copies of Q:

– Qs which are the sources and targets of all the stack transitions, target of id
transitions from Qt1 and source of id-transitions to Qt2 .

– Qt1 which are the targets of all the tree transitions and the sources of id-
transitions to Qs.

– Qt2 which are the sources of all the tree transitions and the targets of id-
transitions from Qs.

The idea of what we want to obtain is depicted in Fig. 5.
Formally, we replace the automaton A = (Q, I, F,∆) by A1 = (Q′, I ′, F ′, ∆′)

with:
Q′ = {qt1 , qt2 , qs | q ∈ Q}
I ′ = {qs | q ∈ I}
F ′ = {qs | q ∈ F}
∆ = {(qs, θ, q′s) | (q, θ, q′) ∈ ∆}
∪ {(qt2 , (q′t1 , q

′′
t1)) | (q, (q′, q′′)) ∈ ∆}

∪ {((qt2 , q′t2), q′′t1) | ((q, q′), q′′) ∈ ∆}
∪ {(qt2 , copy1

n, q
′
t1) | (q, copy1

n, q
′) ∈ ∆}

∪ {(qt2 , copy1
n, q
′
t1) | (q, copy1

n, q
′) ∈ ∆}

∪ {(qt1 , id, qs), (qs, id, qt2) | q ∈ Q}
where for every q ∈ Q, qt1 , qt2 , qs are fresh states.

Lemma 1. A and A1 recognise the same relation.

Proof. To prove this lemma, we prove that for every operation D recognised by
A, there is an operation D′ recognised by A1 such that RD = RD′ , and vice
versa.

17



Let us take D recognised by A. We prove, by induction on the structure of
D that we can construct D′ such that RD = RD′ and for every labelling ρD of
D consistent with ∆, with ID labelled by q and OD by q′, there exists ρ′D a
labelling of D′ consistent with ∆′ such that ID′ is labelled by qs and OD′ by q′

s.
If D = �, we take D′ = �. We have RD = RD′ . For every labelling ρD which

labels the unique node of D by q, we take ρD′ which labels the unique node of
D′ by qs. These labellings are consistent by ∆ and ∆′, by vacuity.

Suppose now that we have F and F ′ such that for every labelling ρF we
can define a labelling ρF ′ satisfying the previous condition. Let us consider the
following cases:

– D = (F ·1,1Dθ) ·1,1G, for θ ∈ {copy1
n, copy1

n}. We call x the output node of F
and y the input node of G. We have VD = VF ∪VG and ED = EF ∪EG∪{x

θ−→
y}.
By induction hypothesis, we consider F ′ andG′, and constructD′ = (((F ′·1,1
Did) ·1,1 Dθ) ·1,1 Did) ·1,1 G′, with VD′ = VF ′ ∪ VG′ ∪ {x′1, x′2} and ED′ =
EF ′ ∪ EG′ ∪ {x′

id−→ x′1, x
′
1
θ−→ x′2, x

′
2

id−→ y′}, where x′ is the output node of
F ′ and y′ the input node of G′.
We take ρD a labelling of D and ρF (resp. ρG) its restriction to F (resp. G).
We have ρD(x) = q and ρD(y) = q′. By induction hypothesis, we consider
ρF ′ (resp. ρG′) the corresponding labelling of F ′ (resp. G′), with ρF ′(x′) = qs
(resp. ρG′(y′) = q′s). Then, we construct ρD′ = ρF ′ ∪ ρG′ ∪ {x′1 → qt2 , x

′
2 →

q′t1}.
As ρD is consistent with ∆, (q, θ, q′) is in ∆, then by construction (qt2 , θ, q′t1)
is in ∆′. We have also (qs, id, qt2) and (q′t1 , id, q

′
s) are in ∆′. Then, ρ′D is

consistent with ∆′.
To prove that RD = RD′ , we just have to remark that, from the definition
of application of operation, we have for every stack tree t and integer i, we
have D′(i)(t) = G′(i)(id(i)(θ(i)(id(i)(F ′(i)(t))))) = G(i)(θ(i)(F(i)(t))) = D(i)(t).
The other cases being similar, we just give D′ and ρD′ and leave the details
to the reader.

– D = (F ·1,1Dθ) ·1,1G, for θ ∈ Opsn−1∪Tn−1. We call x the output node of F
and y the input node of G. We have VD = VF ∪VG and ED = EF ∪EG∪{x

θ−→
y}.
By induction hypothesis, we consider F ′ and G′, and construct D′ = (F ′ ·1,1
θ) ·1,1 G′, with VD′ = VF ′ ∪ VG′ and ED′ = EF ′ ∪EG′ ∪ {x′

θ−→ y′}, where x′
is the output node of F ′ and y′ the input node of G′.
We take ρD a labelling of D and ρF (resp. ρG) its restriction to F (resp. G).
We have ρD(x) = q and ρD(y) = q′. By induction hypothesis, we consider
ρF ′ (resp. ρG′) the corresponding labelling of F ′ (resp. G′), with ρF ′(x′) = qs
(resp. ρG′(y′) = q′s). Then, we construct ρD′ = ρF ′ ∪ ρG′ .

– D = ((F ·1,1 Dcopy2
n
) ·2,1 H) ·1,1 G. We call x the output node of F , y the

input node of G and z the input node of H. We have VD = VF ∪ VG ∪ VH
and ED = EF ∪ EG ∪ EH ∪ {x

1−→ y, x
2−→ z}.
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By induction hypothesis, we consider F ′, G′ and H ′, and construct D′ =
(((((F ·1,1Did)Dcopy2

n
) ·2,1Did) ·2,1H) ·1,1Did) ·1,1G, with VD′ = VF ′ ∪VG′ ∪

VH′ ∪ {x′1, x′2, x′3} and ED′ = EF ′ ∪ EG′ ∪ EH′{x′
id−→ x′1, x

′
1

1−→ x′2, x
′
1

2−→
x′3, x

′
2

id−→ y′, x′3
id−→ z′}, where x′ is the output node of F ′, y′ the input node

of G′ and z′ the input node of H ′.
We take ρD a labelling of D and ρF (resp. ρG, ρH) its restriction to F (resp.
G, H). We have ρD(x) = q, ρD(y) = q′ and ρD(z) = q′′. By induction
hypothesis, we consider ρF ′ (resp. ρG′ ,ρH′) the corresponding labelling of F ′
(resp. G′,H ′), with ρF ′(x′) = qs (resp. ρG′(y′) = q′s, ρH′(z′) = q′′s ). Then, we
construct ρD′ = ρF ′ ∪ ρG′ ∪ ρH′ ∪ {x′1 → qt2 , x

′
2 → q′t1 , x

′
3 → q′′t1}.

– D = (F ·1,1 (G ·1,2 Dcopy2
n
)) ·1,1 H. We call x the output node of F , y the

output node of G and z the input node of H. We have VD = VF ∪ VG ∪ VH
and ED = EF ∪ EG ∪ EH ∪ {x

1̄−→ z, y
2̄−→ z}.

By induction hypothesis, we consider F ′, G′ and H ′, and construct D′ =
(((F ·1,1 Did) ·1,1 ((G ·1,1 Did) ·1,2 Dcopy2

n
)) ·1,1 Did) ·1,1 H, with VD′ = VF ′ ∪

VG′∪VH′∪{x′1, x′2, x′3} and ED′ = EF ′∪EG′∪EH′{x′
id−→ x′1, y

′ id−→ x′2, x
′
1

1̄−→
x′3, x

′
2

2̄−→ x′3, x
′
3

id−→ z′}, where x′ is the output node of F ′, y′ the input node
of G′ and z′ the input node of H ′.
We take ρD a labelling of D and ρF (resp. ρG, ρH) its restriction to F (resp.
G, H). We have ρD(x) = q, ρD(y) = q′ and ρD(z) = q′′. By induction
hypothesis, we consider ρF ′ (resp. ρG′ , ρH′) the corresponding labelling of
F ′ (resp. G′, H ′), with ρF ′(x′) = qs (resp. ρG′(y′) = q′s, ρH′(z′) = q′′s ). Then,
we construct ρD′ = ρF ′ ∪ ρG′ ∪ ρH′ ∪ {x′1 → qt2 , x

′
2 → q′t2 , x

′
3 → q′′t1}.

– D = (((((F ·1,1Dcopy2
n
) ·2,1H) ·1,1G) ·1,1Dcopy2

n
) ·1,1K. We call x the output

node of F , y1 the input node of G and y2 its output node, z1 the input
node of H and z2 its output node and w the input node of K. We have
VD = VF ∪ VG ∪ VH ∪ VK and ED = EF ∪ EG ∪ EH ∪ EK ∪ {x

1−→ y1, x
2−→

z1, y2
1̄−→ t, z2

2̄−→ t}.
By induction hypothesis, we consider F ′, G′, H ′ and K ′, and construct D′ =
((((((F ′ ·1,1Did) ·1,1Dcopy2

n
) ·2,1 (Did ·1,1H ′)) ·1,1 (Did ·1,1G′)) ·1,1Dcopy2

n
) ·1,1

Did) ·1,1 K ′, with VD′ = VF ′ ∪ VG′ ∪ VH′ ∪ VK′ ∪ {x′1, x′2, x′3, x′4, x′5, x′6} and
ED′ = EF ′ ∪ EG′ ∪ EH′ ∪ EK′{x′

id−→ x′1, x
′
1

1−→ x′2, x
′
1

2−→ x′3, x
′
2

id−→ y′1, x
′
3

id−→
z′1, y

′
2

id−→ x′4, z
′
2

id−→ x′5, x
′
4

1̄−→ x′6, x
′
5

2̄−→ x′6, x
′
6

id−→ t′}, where x′ is the output
node of F ′, y′1 the input node of G′, y′2 its output node, z′1 the input node
of H ′, z′2 its output node and t′ the input node of K ′.
We take ρD a labelling of DD and ρF (resp. ρG, ρH , ρK) its restriction to F
(resp. G, H, K). We have ρD(x) = q, ρD(y1) = q′, ρD(z1) = q′′, ρD(y2) = r′,
ρD(z2) = r′′ and ρD(t) = r′′ . By induction hypothesis, we consider ρF ′ (resp.
ρG′ , ρH′ , ρK′) the corresponding labelling of F ′ (resp. G′, H ′, K ′), with
ρF ′(x′) = qs (resp. ρG′(y′1) = q′s, ρH′(z′1) = q′′s , ρG′(y′2) = r′s, ρH′(z′2) = r′′s ,
ρK′(t′) = r′′s ). Then, we construct ρD′ = ρF ′ ∪ ρG′ ∪ ρH′ ∪ {x′1 → qt2 , x

′
2 →

q′t1 , x
′
3 → q′′t1 , x

′
4 → rt2 , x

′
5 → r′t2 , x

′
6 → r′′t1}.
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To do the other direction, we take D′ recognised by A1 and show that we can
construct D recognised by A with RD = RD′ by an induction on the structure
of D′ similar to the previous one (for each id transition, we do not modify the
constructed DAG and for all other transition, we add them to the DAG). All the
arguments are similar to the previous proof, so we let the reader detail it. ut

We start by normalising the tree part of the automaton. To do so, we just have
to prevent the automaton to recognise DAGs which contain ((Dcopy2

n
·1,1 F1) ·2,1

F2) ·1,1 Dcopy2
n
, or (Dcopy1

n
·1,1 F ) ·1,1 Dcopy1

n
as a subDAG. Such a subDAG will

be called a bubble. However, we do not want to modify the recognised relation.
We will do it in two steps: first we allow the automaton to replace the bubbles
with equivalent tests (after remarking that a bubble can only be a test) in any
recognised DAG (step 2), and then by ensuring that there won’t be any copyin
transition below the first copyjn transition (step 3).

Step 2: Let A1 = (Q, I, F,∆) be the automaton obtained after step 1. Given two
states q1, q2, we denote by LAq1,q2

the set {s ∈ Stacksn−1 | ∃D ∈ D(A1), D(1)(s) =
s} where Aq1,q2 is a copy of A1 in which we take q1 as the unique initial state and
q2 as the unique final state. In other words, LAq1,q2

is the set of (n − 1)-stacks
such that the trees with one node labelled by this stack remains unchanged by
an operation recognised by Aq1,q2 . We define A2 = (Q, I, F,∆′) with

∆′ = ∆
∪ {(qs, TLA

rs,r
′
s
∩LA

ss,s
′
s

, q′s) | (qt2 , (rt1 , st1)), ((r′t2 , s
′
t2), q′t1) ∈ ∆}

∪ {(qs, TLrs,s′s , q
′
s | (qt2 , copy1

n, rt1), (r′t2 , copy1
n, q
′
t1) ∈ ∆}

The idea of the construction is depicted in Fig. 6.
We give the following lemma for the binary bubble. The case of the unary

bubble is very similar and thus if left to the reader.

Lemma 2. Let C1 = (QC1 , {iC1}, {fC1}, ∆C1) and C2 = (QC2 , {iC2}, {fC2}, ∆C2)
be two automata recognising DAGs without tree operations. The two automata
B1 = (Q1, I, F,∆1) and B2 = (Q2, I, F,∆2), with I = {q1}, F = {q2}, Q1 =
{q1, q2}, ∆1 = {(q1, TLC1∩LC2

, q2)}, Q2 = {q1, q2} ∪ QC1 ∪ QC2 and ∆2 =
{(q1, (iC1 , iC2)), ((fC1 , fC2), q2)} ∪∆C1 ∪∆C2 recognise the same relation.

Proof. An operation D recognised by B2 is of the form D = Dcopy2
n
·1,1 (F1 ·1,1

(F2 ·2,2 Dcopy2
n
)), where F1 is recognised by C1 and F2 by C2. We have:

D(i)(t) = copy2
n(i)(F1(i)(F2(i+1)(copy2

n(i)(t))))

= copy2
n(i)(F1(i)(F2(i+1)(t ∪ {ui1 7→ t(ui), ui2 7→ t(ui)})))

= copy2
n(i)(t ∪ {ui1 7→ F1(t(ui)), ui2 7→ F2(t(ui))}).

So this operation is defined if and only if F1(t(ui)) = F2(t(ui)) = t(ui). In this
case, Di(t) = t. Thus, B2 accepts only operations which are tests, and these
tests are the intersection of the tests recognised by C1 and C2. So the relation
recognised by B2 is exactly the relation recognised by TLC1∩LC2

, which is the
only operation recognised by B1. ut
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We have the following corollary as a direct consequence of this lemma.

Corollary 1. A1 and A2 recognises the same relation.

Indeed, all the new operations recognised do not modify the relation recog-
nised by the automaton as each test was already present in the DAGs containing
a bubble.

qt2

rt1 st1

r′t2 s′t2

q′t1

qs

q′s

1 2

C1 C2

1̄ 2̄

id

TLC1∩LC2

id

Fig. 6: Step 2: The added test transition to shortcut the bubble is depicted
with a dotted line

Step 3: Suppose that A2 = (Q, I, F,∆) is the automaton obtained after step 2.
We now want to really forbid these bubbles. To do so, we split the control states
automaton in two parts: We create 2 copies of Q:

– Qd which are target of no copydn transition,
– Qc which are source of no copydn transition.

We construct A3 = (Q′, I ′, F ′, ∆′) with:
Q′ = {qd, qc | q ∈ Q}
I ′ = {qd, qc | q ∈ I}
F ′ = {qd, qc | q ∈ F}
∆′ = {(qd, θ, q′d), (qc, θ, q′c) | (q, θ, q′) ∈ ∆, θ ∈ Opsn−1 ∪ Tn−1 ∪ {id}}
∪ {((qd, q′d), q′′d ) | ((q, q′), q′′) ∈ ∆}
∪ {(qd, copy1

n, q
′
d) | (q, copy1

n, q
′) ∈ ∆}

∪ {(qc, (q′c, q′′c )), (qd, (q′c, q′′c )) | (q, (q′, q′′)) ∈ ∆}
∪ {(qc, copy1

n, q
′
c), (qd, copy1

n, q
′
c) | (q, copy1

n, q
′) ∈ ∆}
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Lemma 3. A2 and A3 recognise the same relation

Proof. A3 recognises the operations recognised by A2 which contain no bubble.
Indeed, every labelling of such an operation in A2 can be modified to be a
labelling in A3 (left to the reader). Conversely, each operation recognised by A3
is recognised by A2.

Let us take D recognised by A2 which contains at least one bubble. Suppose
that D contains a bubble F and that D = D[F ]x where D is a DAG with one
bubble less and we obtain D by replacing the node x by F in D. From step 2,
there exist four states of A2, rs, r′s, ss, s′s such that G = D[TLA

rs,r
′
s
∩LA

ss,s
′
s

]x is
recognised by A2. Then RD ⊆ RG, and G has one less bubble than D.

Iterating this process, we obtain an operation D′ without any bubble such
that RD ⊆ RD′ and D′ is recognised by A2. As it contains no bubble, it is also
recognised by A3.

Then every relation recognised by an operation with bubbles is already in-
cluded in the relation recognised by an operation without bubbles. Then A2 and
A3 recognise the same relation. ut

We call the destructive part the restriction A3,d of A3 to Qd and the con-
structive part its restriction A3,c to Qc.

Step 4: We consider an automaton A3 obtained after the previous step. Observe
that in the two previous steps, we did not modify the separation between Qt1 ,
Qt2 and Qs. We call A3,s the restriction of A3 to Qs.

We now want to normalise A3,s. As this part of the automaton only contains
transitions labelled by operations of Opsn−1 ∪ Tn−1, we can consider it as an
automaton over higher-order stack operations. So we will use the process of
normalisation over higher-order stack operations defined in [5]. For each pair
(qs, q′s) of states in Qs, we construct the normalised automaton Aqs,q′s of A′
where A′ is a copy of A3,s where IA′ = {qs} and FA′ = {q′s}. We suppose
that these automata are distinguished, i.e. that states of IAqs,q′s are target of
no transitions and states of FAqs,q′s are source of no transitions. We moreover
suppose that it is not possible to do two test transitions in a row (this is not a
strong supposition because such a sequence would not be normalised, but it is
worth noticing it).

We replaceA3,s with the union of all theAqs,q′s : we defineA4 = (Q′, I ′, F ′, ∆′):
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Q′ = Qt1 ∪Qt2 ∪
⋃
qs,q′s

QAqs,q′s
I ′ =

⋃
qs∈I,q′s∈Qs

IAqs,q′s
F ′ =

⋃
qs∈Qs,q′s∈F

FAqs,q′s
∆′ = {K ∈ ∆ | K = (q, (q′, q′′)) ∨K = ((q, q′), q′′) ∨K = (q, copy1

n, q
′)

∨K = (q, copy1
n, q
′)}

∪
⋃
qs,q′s∈Qs

∆Aqs,q′s
∪ {(qt1 , id, i) | (qt1 , id, q′s) ∈ ∆, i ∈

⋃
q′′s ∈Q

IAq′s,q′′s
}

∪ {(f, id, qt2) | (q′s, id, qt2) ∈ ∆, f ∈
⋃
q′′s ∈Q

FAq′′s ,q′s
}

∪ {(qt1 , id, f) | (qt1 , id, q′s) ∈ ∆, f ∈
⋃
q′′s ∈Q

FAq′′s ,q′s
}

∪ {(i, id, qt2) | (q′s, id, qt2) ∈ ∆, i ∈
⋃
q′′s ∈Q

IAq′s,q′′s
}

Lemma 4. A3 and A4 recognise the same relation.

Proof. For every operation D recognised by A3, we can construct D′ by replacing
each sequence of Opsn−1 ∪ Tn−1 operations by their reduced sequence, which is
recognised by A4 and define the same relation. The details are left to the reader.

Conversely, for every D′ recognised by A4, we can construct D recognised
by A3 which define the same relation, by replacing every reduced sequence of
Opsn−1 ∪ Tn−1 operations by a sequence of Opsn−1 ∪ Tn−1 operations defining
the same relation such that D is recognised by A3. We leave the details to the
reader. ut

qt1

iAqs,q′s

iAqs,q′′s

fAqs,q′s

fAqs,q′′s

q′t2

q′′t2

id

id

Aqs,q′s

Aqs,q′′s

id

id

Fig. 7: Step 4: The splitting of the stack part of the automaton

Step 5: We now have a normalised automaton, except that we have id transitions.
We remove them by a classical saturation mechanism. Observe that in all the
previous steps, we never modified the separation between Qt1 , Qs and Qt2 , so
that all id transitions are from Qt1 to Qs and from Qs to Qt2 . We take A4 =
(Q, I, F,∆) obtained after the previous step. We construct A5 = (Q′, I ′, F ′, ∆′)
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with Q′ = Qs, I ′ = I, F ′ = F and

∆′ = ∆ \ {(q, id, q′) ∈ ∆}
∪ {(qs, copy1

n, q
′
s) | ∃q′′t2 , q

′′′
t1 , (q

′′
t2 , copy1

n, q
′′′
t1 ), (q′′′t1 , id, q

′
s), (qs, id, q′′t2) ∈ ∆}

∪ {(qs, copy1
n, q
′
s) | ∃q′′t2 , q

′′′
t1 , (q

′′
t2 , copy1

n, q
′′′
t1 ), (q′′′t1 , id, q

′
s), (qs, id, q′′t2) ∈ ∆}

∪ {(qs, (q′s, q′′s )) | ∃q1, q2, q3, (q1, (q2, q3)), (qs, id, q1), (q2, id, q′s), (q3, id, q′′s ) ∈ ∆}
∪ {((qs, q′s), q′′s ) | ∃q1, q2, q3, ((q1, q2), q3), (qs, id, q1), (q′s, id, q2), (q3, id, q′′s ) ∈ ∆}

Lemma 5. A4 and A5 recognise the same relation.

Proof. We prove it by an induction on the structure of relations similar to the
one of step 1, so we leave it to the reader. ut

Step 6: We now split the control states set into two parts:

– QT , the states which are target of all and only test transitions and source of
no test transition,

– QC , the states which are source of all test transitions and target of no test
transition.

Given automaton A5 = (Q, I, F,∆) obtained from the previous step, we define
A6 = (Q′, I ′, F ′, ∆′) with

Q′ = {qT , qC | q ∈ Q},
I ′ = {qC | q ∈ I},
F ′ = {qT , qC | q ∈ F},
∆′ = {(qC , θ, q′C), (qT , θ, q′C) | (q, θ, q′) ∈ ∆, θ ∈ Opsn−1 ∪ Tn−1{copy1

n, copy1
n}}

∪ {((qC , q′C), q′′C), ((qC , q′T ), q′′C), ((qT , q′C), q′′C), ((qT , q′T ), q′′C) | ((q, q′), q′′) ∈ ∆}
∪ {(qC , (q′C , q′′C)), (qT , (q′C , q′′C)) | (q, (q′, q′′)) ∈ ∆}
∪ {(qC , TL, q′T ) | (q, TL, q′) ∈ ∆}.

Lemma 6. A5 and A6 recognise the same relation.

Proof. As, from step 4 it is not possible to have two successive test transitions,
the set of recognised operations is the same in both automata, only the labelling
is modified. The details are left to the reader. ut

Finally, we suppose that an automaton obtained by these steps is distin-
guished, i.e. initial states are target of no transition and final states are source
of no transition. If not, we can distinguish it by a classical transformation (as
in the case of word automata). We now have a normalised automaton with tests
A6 obtained after the application of the six steps which recognises the same
relation as the initial automaton A. In subsequent constructions, we will be con-
sidering the subsets of states QT , QC , Qd, Qc as defined in steps 6 and 3, and
Qu,d = Qu ∩Qd with u ∈ {T,C} and d ∈ {d, c}. ut
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C Finite set interpretation

In this section, we formally define a finite set interpretation IR from ∆n
Σ∪{1,2}

to the rewriting graph of a GSTRS R. In the whole section, we consider a
distinguished normalised automaton with tests A = (Q, I, F,∆) recognising R∗,
constructed according to the process of the previous section.

Let us first formally define a possible presentation of the graph ∆n
Σ∪{1,2}.

Vertices of this graph are n-stacks over alphabet Σ∪{1, 2}, and there is an edge
(x, θ, y) in ∆n

Σ∪{1,2} if θ ∈ Opsn(Σ ∪ {1, 2}) ∪ Tn and y = θ(x).
Since we are building an unlabelled graph, our interpretation consists of these

formulæ:

– δ(X) which describes which subsets of Stacksn(Σ ∪ {1, 2}) are in the graph,
– ΨD(Xs, Xt) which is true if RD(s, t), for D ∈ R,
– φ(Xs, Xt) which is true if R(A)(s, t).

C.1 Notations and Technical Formulæ

We will use the pushd and popd operations to simplify the notations. They have
the usual definition (as can be encountered in [5]), but notice that we can define
them easily with our operations: pushd(x) = y if there exists z ∈ V, a ∈ Σ∪{1, 2}
such that x copy1−−−→ z

rewa,d−−−−→ y, and popd(x) = y if x = pushd(y). Observe that
pushd(x) and popd(x) are well defined as there can only be one a such that the
definition holds: the a which is the topmost letter of x. We extend this notations
to push and pop words to simplify notations.

We first define some formulæ over ∆n
Σ∪{1,2} which will be used to construct

the set of stacks used to represent stack trees over ∆n
Σ∪{1,2}.

Given θ ∈ Opsn−1(Σ) ∪ Tn−1, we define ψθ such that, given two n-stacks
x, y, ψθ(x, y) = x

θ−→ y. ψcopyin,d(x, y) = ∃a ∈ Σ, z1, z2, z3, z4, z5, z6, z7, z8 ∈

V, x
copy1−−−→ z1

rewa,i−−−−→ z2
copy1−−−→ z3

rewi,d−−−−→ z4
copyn−−−−→ z5

rewd,i−−−−→ z6
copy1−−−→ z7

rewi,a−−−−→
z8

copy1−−−→ y.
ψθ(x, y) is true if y is obtained by applying θ to x. ψcopyin,d(x, y) is true if y is

obtained by adding i and d to the topmost 1-stack of x, duplicating its topmost
(n− 1)-stack and then removing d and i from its topmost 1-stack.

We now give a technical formula which ensures that a given stack y is obtained
from a stack x using only the previous formulæ: Reach(x, y)

Reach(x, y) = ∀X, ((x ∈ X ∧ ∀z, z′, (z ∈ X ∧ (
∨

θ∈Opsn−1∪Tn−1

ψθ(z, z′)

∨
∨

i∈{1,2}

∨
d≤i

ψcopyin,d(z, z
′)))⇒ z′ ∈ X)⇒ y ∈ X)

This formula is true if for every set of n-stacks X, if x is in X and X is closed
by the relations defined ψθ and ψcopyin,d, then y is in X.
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Lemma 7. For all n-stacks x = [x1, · · · , xm]n and y = [y1, · · · , ym′ ]n,
Reach(x, y)

holds if and only if y = [x1, · · · , xm−1,pushimdm(ym),pushim+1dm+1(ym+1), · · · ,
pushim′−1dm′−1

(ym′−1), ym′ ]n where for all m ≤ j < m′, ij ∈ {1, 2}, dj ≤ ij and
for all m ≤ j ≤ m′, there exists a sequence of operations ρj ∈ (Opsn−1(Σ) ∪
Tn−1)∗ such that ρj(xm, yj).

Corollary 2. For every n-stack x and a ∈ Σ, Reach([a]n, x) holds if and only
if there exist a stack tree t and a node u such that x = Code(t, u).

Proof. Suppose that there exist a stack tree t and a node u such that x =
Code(t, u). Then x = [push#(ε)u1(t(ε)),push#(u≤1)u2(t(u≤1)), · · · ,

push#(u≤|u|−1)u|u| (t(u≤|u|−1)), t(u)]n. As
for every i, t(u≤i) is in Stacksn−1(Σ), there exists a ρi in (Opsn−1(Σ) ∪ Tn−1)∗
such that ρi([a]n, t(u≤i)). Then by the previous lemma, Reach([a]n, x) is true.

Conversely, suppose that Reach([a]n, x) is true. By Lemma 7, we therefore
have x = [pushi0d0(x0),pushi1d1(x1), · · · ,pushim−1dm−1(xm−1), xm]n, where for
every j there exists a ρj ∈ (Opsn−1(Σ) ∪ Tn−1)∗ such that xj = ρj([a]n). Then,
for every j, xj ∈ Stacksn−1(Σ).

We take a tree domain U such that d0 · · · dm−1 ∈ U . We define a tree t
of domain U such that for every j, t(d0 · · · dj) = xj+1, t(ε) = x0, every node
d0 · · · dj has ij+1 sons, the node ε has i0 sons, and for every u ∈ U which is not
a d0 · · · dj , t(u) = [a]n. Then we have x = Code(t, d0 · · · dm−1). ut

C.2 The formula δ

We now define δ(X) = OnlyLeaves(X)) ∧ TreeDom(X) ∧UniqueLabel(X) with

OnlyLeaves(X) = ∀x, x ∈ X ⇒ Reach([a]n, x)
TreeDom(X) = ∀x, y, z((x ∈ X ∧ ψcopy2

n,2(y, z) ∧ Reach(z, x))⇒
∃r, z′(r ∈ X ∧ ψcopy2

n,1(y, z′) ∧ Reach(z′, r)))∧
((x ∈ X ∧ ψcopy2

n,1(y, z) ∧ Reach(z, x))⇒
∃r, z′(r ∈ X ∧ ψcopy2

n,2(y, z′) ∧ Reach(z′, r)))
UniqueLabel(X) = ∀x, y, (x 6= y ∧ x ∈ X ∧ y ∈ X)⇒

(∃z, z′, z′′, ψcopy2
n,1(z, z′) ∧ ψcopy2

n,2(z, z′′)∧
((Reach(z′, x) ∧ Reach(z′′, y)) ∨ (Reach(z′′, x) ∧ Reach(z′, y))))

where a is a fixed letter of Σ.
Formula OnlyLeaves ensures that an element x in X encodes a node in some

stack tree. TreeDom ensures that the prefix closure of the set of words d0 · · · dm−1
such that

[pushi0d0(x0)),pushi1d1(x1), · · · ,pushim−1dm−1(xm−1), xm]n ∈ X
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is a valid domain of a tree, and that the set of words i0 · · · im−1 is included in
this set (in other words, that the arity announced by the ij is respected). an
Finally UniqueLabel ensures that for any two elements

x = [pushi0d0(x0)),pushi1d1(x1), · · · ,pushim−1dm−1(xm−1), xm]n
and y = [pushi′0d′0(y0)),pushi′1d′1(y1), · · · ,pushi′

m−1d
′
m′−1

(ym′−1), ym′ ]n

of X, there exists an index 1 ≤ j ≤ min(m,m′) such that for every k < j,
xk = yk, ik = i′k and dk = d′k, xj = yj , ij = i′j and dj 6= d′j , i.e. for any two
elements, the (n − 1)-stacks labelling common ancestors are equal, and x and
y cannot encode the same leaf (as d0 · · · dm−1 6= d′0 · · · d′m′−1). Moreover, it also
prevents x to code a node on the path from the root to the node coded by y.

Lemma 8. ∀X ⊆ Stacksn(Σ ∪ {1, 2}), δ(X) ⇐⇒ ∃t ∈ STn, X = Xt

where X ranges only over finite sets of Stacksn(Σ ∪ {1, 2}).

Proof. We first show that for every n-stack tree t, δ(Xt) holds over ∆n
Σ∪{1,2}. By

definition, for every x ∈ Xt, ∃u ∈ fr(t), x = Code(t, u), and then Reach([a]n, x)
holds (by Corollary 2). Thus OnlyLeaves holds.

Let us take x ∈ Xt such that x = Code(t, u) with u = u0 · · ·ui2ui+2 · · ·u|u|.
As t is a tree, u0 · · ·ui2 ∈ dom(t) and so is u0 · · ·ui1. Then, there exists v ∈ fr(t)
such that ∀j ≤ i, vj = uj , vi+1 = 1, and Code(t, v) ∈ Xt. Let us now take x ∈ Xt

such that x = Code(t, u) with u = u0 · · ·ui1ui+2 · · ·u|u| and #(u0 · · ·ui1) = 2,
then u0 · · ·ui2 is in dom(t) and there exists v ∈ fr(t) such that ∀j ≤ i, vj = uj ,
vi+1 = 2 and Code(t, v) ∈ Xt. Thus TreeDom holds.

Let x and y in Xt such that x 6= y, x = Code(t, u) and y = Code(t, v), and
let i be the smallest index such that ui 6= vi. Suppose that ui = 1 and vi = 2
(the other case is symmetric). We call z = Code(t, u0 · · ·ui−1), and take z′ and
z′′ such that ψcopy2

n,1(z, z′) and ψcopy2
n,2(z, z′′). We have then Reach(z′, x) and

Reach(z′′, y). And thus UniqueLabel holds. Therefore, for every stack tree t,
δ(Xt) holds.

Let us now show that for every X ⊆ Stacksn(Σ ∪ {1, 2}) such that δ(X)
holds, there exists t ∈ STn, such that X = Xt. As OnlyLeaves holds, for every
x ∈ X,

x = [pushi0u0(x0),pushi1u1(x1), · · · ,pushik−1uk−1
(xk−1), xk]n−1

with, for all j, xj ∈ Stacksn−1, ij ∈ {1, 2} and uj ≤ ij . In the following, we denote
by ux the word u0 · · ·uk−1 for a given x, and by U = {u | ∃x ∈ X,u v ux}. U is
closed under prefixes. As TreeDom holds, for all u, if u2 is in U , then u1 is in U
as well. Therefore U is the domain of a tree. Moreover, if there is a x such that
u1 v ux and i|u| = 2, then TreeDom ensures that there is y such that u2 v uy

and thus u2 ∈ U . As UniqueLabel holds, for every x and y two distinct elements
of X, there exists j such that for all k < j we have uxk = uyk, and uxj 6= uyj . Then,
for all k ≤ j, we have xk = yk and ik = i′k. Thus, for every u ∈ U , we can define
σu such that for every x such that u v ux, x|u| = σu, and the number of sons of
each node is consistent with the coding.
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Consider the tree t of domain U such that for all u ∈ U , t(u) = σu. We have
X = Xt, which concludes the proof. ut

C.3 The formula ΨD associated with an operation

We now take an operation D which we suppose to be reduced, for the sake of
simplicity (but we could do so for a non reduced operation, and for any operation,
there exists a reduced operation with tests defining the same relation, from the
two previous appendices). We define inductively ψD as follow:

– Ψ�(X,Y ) = (X = Y )
– Ψ(F ·1,1Dθ)·1,1G(X,Y ) = ∃, z, z′, Z,X ′, Y ′, z ∈ Z ∧X\X ′ = Y \Y ′ = Z\{z} ∧
ψθ(z, z′) ∧ ΨF (X,Z) ∧ ΨG(Z ∪ {z′}\{z}, Y ), for θ ∈ Opsn−1 ∪ Tn

– Ψ(F ·1,1Dcopy1
n

)·1,1G(X,Y ) = ∃z, z′, Z,X ′, Y ′, z ∈ Z∧X\X ′ = Y \Y ′ = Z\{z}∧
ψcopy1

n,1(z, z′) ∧ ΨF (X,Z) ∧ ΨG(Z ∪ {z′}\{z}, Y )
– Ψ(F ·1,1Dcopy1

n
)·1,1G(X,Y ) = ∃z, z′, Z,X ′, Y ′, z ∈ Z∧X\X ′ = Y \Y ′ = Z\{z}∧

ψcopy1
n,1(z′, z) ∧ ΨF (X,Z) ∧ ΨG(Z ∪ {z′}\{z}, Y )

– Ψ((F ·1,1Dcopy2
n

)·1,2H)·1,1G(X,Y ) = ∃z, z′, z′′, Z, Z ′, X ′, Y ′, z ∈ Z ∧ X\X ′ =
Y \Y ′ = Z\{z}∧ψcopy1

n,2(z, z′)∧ψcopy2
n,2(z, z′′)∧ΨF (X,Z)∧ΨG(Z∪{z′, z′′}\

{z}, Z ′) ∧ z′′ ∈ Z ′ ∧ z′ /∈ Z ′ ∧ ΨH(Z ′, Y )
– Ψ(F ·1,1(G·1,2Dcopy1

n
))·1,1H(X,Y ) = ∃z, z′, z′′, Z, Z ′, X ′, Y ′, z ∈ Z ∧ z′ ∈ Z ∧ z ∈

Z ′∧ z′ /∈ Z ′∧X\X ′ = Y \Y ′ = Z\{z, z′}∧ψcopy2
n,1(z′′, z)∧ψcopy2

n,2(z′′, z′)∧
ΨF (X,Z ′) ∧ ΨG(Z ′, Z) ∧ ΨG(Z ∪ {z′′}\{z, z′}, Y )

As D is a finite DAG, every ψD is a finite formula, and is thus a monadic
formula.

This formula is true if its two arguments are related by RD.

Proposition 10. Given two stack trees s, t and an operation D, t ∈ D(t) if and
only if ΨD(Xs, Xt) is true.

Proof. We show it by induction on the structure of D:

– If D = �, ΨD(Xs, Xt) if and only if Xs = Xt, which is true if and only if
s = t.

– D = (F ·1,1 Dθ) ·1,1 G, with θ ∈ Opsn−1 ∪ Tn. Suppose t ∈ D(s), there
exists i such that t = D(i)(t). By definition, t = G(i)(θ(i)(F(i)(s))). We
call r = F(i)(s). By induction hypothesis, we have ΨF (Xs, Xr). By defi-
nition, we have, for all j < i, Code(s, uj) = Code(r, uj), and for all j > i,
Code(s, uj+|IF |−1) = Code(r, uj), thus Xs\{Code(s, uj) | i ≤ j ≤ |IF |−1} =
Xr\{Code(r, ui)}. We call r′ = θ(i)(r). We have Xr′ = Xr\{Code(r, ui)} ∪
{θ(Code(r, ui))}. And by definition, we have ψθ(Code(r, ui), θ(Code(r, ui))).
We have t = G(i)(r′), thus, by induction hypothesis, ΨG(Xr′ , Xt) is true.
Moreover, by definition, Xt\{Code(t, uj) | i ≤ j ≤ |OG| − 1} = Xr′\
{Code(r′, ui)} = Xr\{Code(r, ui)}. Thus, ΨD(Xs, Xt) is true, with Z = Xr,
z = Code(r, ui), z′ = Code(r′, ui), X ′ = {Code(s, uj) | i ≤ j ≤ |ID|−1} and
Y ′ = {Code(t, uj) | i ≤ j ≤ |OD| − 1}.
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Suppose that ΨD(Xs, Xt) is true. We call r the tree such that Xr = Z. By
induction hypothesis, we have r ∈ F (s). Moreover, we have z = Code(r, ui)
such that Xr\{z} = Xs\X ′. Thus, by definition, r = F(i)(s), and X ′ =
{Code(s, uj) | i ≤ |IF | − 1}. We have z′ = θ(z), as ψθ(z, z′) is true. We call
r′ = θ(i)(r), and we have Xr′ = Xr\{z} ∪ {z′}. As we have ΨG(Xr′ , Y ), by
induction, we have t ∈ G(r′). As we moreover have Y \Y ′ = Z\{z}, we thus
have t = G(i)(r′). Thus, we have t = G(i)(θ(i)(F(i)(s))) = D(i)(s).

The other cases are similar and left to the reader.

C.4 The formula φ associated with an automaton

Let us now explain φ(X,Y ), which can be written as ∃Zq1 , · · · , Zq|Q| , φ′(X,Y,Z)
with φ′(X,Y,Z) = Init(X,Y,Z)∧Diff(Z)∧Trans(Z). We detail each of the three
subformulas Init, Diff and Trans below:

Init(X,Y,Z) = (
⋃
qi∈I

Zqi) ⊆ X ∧ (
⋃
qi∈F

Zqi) ⊆ Y ∧X \ (
⋃
qi∈I

Zqi) = Y \ (
⋃
qi∈F

Zqi)

This formula is here to ensure that only leaves of X are labelled by initial states,
only leaves of Y are labelled by final states and outside of their labelled leaves,
X and Y are equal (i.e. not modified).

Diff(Z) =
( ∧
q,q′∈QT,c

Zq ∩ Zq′ = ∅
)
∧
( ∧
q,q′∈QC,c

Zq ∩ Zq′ = ∅
)

∧
( ∧
q,q′∈QT,d

Zq ∩ Zq′ = ∅
)
∧
( ∧
q,q′∈QC,d

Zq ∩ Zq′ = ∅
)

This formula is here to ensure that a given stack (and thus a given leaf in a tree of
the run) is labelled by at most a state of each subpart ofQ:QT,d, QC,d, QT,c, QC,c.
So if we have a non deterministic choice to do we will only choose one possibility.

Trans(Z) = ∀s,
∧
q∈Q

((s ∈ Zq)⇒ (
∨
K∈∆

TransK(s,Z) ∨ ρq))

where ρq is true if and only if q is a final state, and

Trans(q,copy1
n,q
′)(s,Z) = ∃t, ψcopy1

n,1(s, t) ∧ t ∈ Zq′ ,
Trans(q,copy1

n,q
′)(s,Z) = ∃t, ψcopy1

n,1(t, s) ∧ t ∈ Zq′ ,
Trans(q,θ,q′)(s,Z) = ∃t, ψθ(s, t) ∧ t ∈ Zq′ , for θ ∈ Opsn−1 ∪ Tn−1,

Trans(q,(q′,q′′))(s,Z) = ∃t, t′, ψcopy2
n,1(s, t) ∧ ψcopy2

n,2(s, t′) ∧ t ∈ Zq′ ∧ t′ ∈ Zq′′ ,
Trans((q,q′),q′′)(s,Z) = ∃t, t′, ψcopy2

n,1(t′, s) ∧ ψcopy2
n,2(t′, t) ∧ t ∈ Zq′ ∧ t′ ∈ Zq′′ ,

Trans((q′,q),q′′)(s,Z) = ∃t, t′, ψcopy2
n,1(t′, t) ∧ ψcopy2

n,2(t′, s) ∧ t ∈ Zq′ ∧ t′ ∈ Zq′′ .
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This formula ensures that the labelling respects the rules of the automaton, and
that for every stack labelled by q, if there is a rule starting by q, there is at least
a stack which is the result of the stack by one of those rules. And also that it is
possible for a final state to have no successor.

Proposition 11. Given s, t two stack trees, φ(s, t) if and only if there are
some operations D1, · · · , Dk recognised by A such that t is obtained by apply-
ing D1, · · · , Dk at disjoint positions of s.

Proof. First suppose there exist such D1, · · · , Dk. We construct a labelling of
Stacksn(Σ ∪ {1, 2}) which satisfies φ(Xs, Xt). We take a labelling of the Di by
A. We will label the Stacksn according to this labelling. If we obtain a tree t′
at any step in the run of the application of Di to s, we label Code(t′, u) by the
labelling of the node of Di appended to the leaf at position u of t′. Notice that
this does not depend on the order we apply the Di to s nor the order of the
leaves we choose to apply the operations first.

We suppose that t = Dkik(· · ·D1i1(s) · · · ). Given a node x of an Di, we call
l(x) its labelling.

Formally, we define the labelling inductively: the (D1, i1, s1), · · · , (Dk, ik, sk)
labelling of Stacksn(Σ ∪ {1, 2}) is the following.

– The ∅ labelling is the empty labelling.
– The (D1, i1, s1), · · · , (Dk, ik, sk) labelling is the union of the (D1, i1, s1) la-

belling and the (D2, i2, s2), · · · , (Dk, ik, sk) labelling.
– The (�, i, s) labelling is {Code(s, ui) → l(x)}, where ui is the ith leaf of s

and x is the unique node of �.
– The (F1 ·1,1 Dθ) ·1,1 F2, i, s) labelling is the (F1, i, s), (F2, i, θ(i)(F1(i)(s))) la-

belling.
– The ((((F1 ·1,1 Dcopy2

n
) ·2,1 F3) ·1,1 F2), i, s) labelling is the (F1, i, s),

(F2, i, copy2
n(i)( F1(i)(s))) , (F3, i+ 1, copy2

n(i)(F1(i)(s))) labelling.
– The ((F1 ·1,1 (F2 ·2,1 copy2

n)) ·1,1 F3, i, s) labelling is the (F1, i, s), (F2, i +
|IF1 |, s), (F3, i, copy2

n(i)(F2(i+1)(F1(i)(s)))) labelling.

Observe that this process terminates, as the sum of the edges and the nodes
of all the DAGs strictly diminishes at every step.

We take Z the (D1, i1, s), · · · , (Dk, ik, s) labelling of Stacksn(Σ ∪ {1, 2}).

Lemma 9. The labelling previously defined Z satisfies φ′(Xs, Xt,Z).

Proof. Let us first cite a technical lemma which comes directly from the defini-
tion of the labelling:

Lemma 10. Given a reduced operation D, a labelling of D, ρD, a stack tree t,
a i ∈ N and a j ≤ |ID|, the label of Code(t, ui+j−1) (where ui is the ith leaf of
t) in the (D, i, t) labelling is ρD(xj) (where xj is the jth input node of D).

For the sake of simplicity, let us consider for this proof that D is a reduced
operation (if it is a set of reduced operations, the proof is the same for every
operations).

30



First, let us prove that Init is satisfied. From the previous lemma, all nodes
of Xs are labelled with the labels of input nodes of D (or not labelled), thus
they are labelled by initial states (as we considered an accepting labelling of D).
Furthermore, as the automaton is distinguished, only these one can be labelled
by initial states. Similarly, the nodes of Xt, and only them are labelled by final
states (or not labelled).

We now show that Trans is satisfied. Let us suppose that a Code(t′, ui) is
labelled by a q. By construction of the labelling, it has been obtained by a
(�, i, t′) labelling. If q is final, then we have nothing to verify, as ρq is true. If
not, the node x labelled by q which is the unique node of the � which labelled
Code(t′, ui) by q has at least one son in D. Suppose, for instance that D =
(F1 ·1,1 Dθ) ·1,1 F2 such that x is the output node of F1. We call y the input
node of F2. As D is recognised by A, it is labelled by a q′ such that (q, θ, q′) ∈
∆A. By construction, we take the (F1, i, s), (F2, i, θ(i)(t′)) labelling, with t′ =
F2(i)(s). Thus we have Code(θ(i)(t′), ui) labelled by q′ (from Lemma 10), and
thus Trans(q,θ,q′)(Code(t′, ui),Z) is true, as ψθ(Code(t′, ui),Code(θ(i)(t′), ui) is
true.

The other possible cases for decomposing D (D = (((F1 ·1,1Dcopy1
n
)·2,1F3)·1,1

F2 or D = ((F1 ·1,1 (F2 ·2,1 copy2
n)) ·1,1F3) are very similar and are thus left to the

reader. Observe that D may not be decomposable at the node x, in which case
we decompose D and consider the part containing x until we can decompose the
DAG at x, where the argument is the same.

Let us now prove that the labelling satisfies Diff. Given q, q′ ∈ QC,d, suppose
that there is a Code(t′, ui) which is labelled by q and q′. By construction, this
labelling is obtained by a (F1, i, t

′
1), (F2, i, t

′
2) labelling, where F1 and F2 are both

�, and t′1(ui) = t′1(ui). We call x (resp. y) the unique node of F1 (resp. F2). x
is labelled by q and y by q′.

Suppose that D can be decomposed as (G·1,1Dθ)·1,1H (or ((G·1,1Dcopy2
n
)·2,1

K) ·1,1H, or ((G ·1,1 (H ·1,2Dcopy2
n
) ·1,1K) such that y is the output node of G (if

not, decomposeD until you can obtain such a decomposition). Then, suppose you
can decompose G = G1 ·1,1Dθ ·1,1G2 (or ((G1 ·1,1(G3 ·1,2Dcopy2

n
)·1,1G2. As we are

considering states of QC,d, there is no other possible case) such that x is the input
node ofG2. Thus, we have by constructionG2(Code(t′, ui)) = Code(t′, ui). SoG2
defines a relation contained in the identity. As it is a part of D and thus labelled
by states of A, with q and q′ in QC,d, there is no copyjn nor copyjn transitions in
G2. Moreover, as q and q′ are in QC,d, G2 is not a single test transition. Then it
is a sequence of elements of Opsn−1 ∪ Tn−1 defining a relation included into the
identity. As A is normalised, this is impossible, and then Code(t′, ui) cannot be
labelled by both q and q′.

Taking two states in the other subsets of Q yields the same contradiction
with few modifications and are thus left to the reader.

Then, as all its sub-formulæ are true, φ′(Xs, Xt,Z) is true with the described
labelling Z. And then φ(Xs, Xt) is true. ut
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Suppose now that φ(Xs, Xt) is satisfied. We take a minimal labelling Z that
satisfies the formula φ′(Xs, Xt,Z). We construct the following graph D :

VD = {(x, q) | x ∈ Stacksn(Σ ∪ {1, 2}) ∧ x ∈ Zq}
ED = {((x, q), θ, (y, q′)) | (∃θ, (q, θ, q′) ∈ ∆ ∧ ψθ(x, y))}
∪ {((x, q), 1, (y, q′)), ((x, q), 2, (z, q′′)) | (q, (q′, q′′)) ∈ ∆
∧ψcopy2

n,1(x, y) ∧ ψcopy2
n,2(x, z)}

∪ {((x, q), 1̄, (z, q′′)), ((y, q′), 2̄, (z, q′′)) | ((q, q′), q′′) ∈ ∆
∧ψcopy2

n,1(z, x) ∧ ψcopy2
n,2(z, y)}

∪ {((x, q), 1, (y, q′)) | (q, copy1
n, q
′) ∈ ∆ ∧ ψcopy1

n,1(x, y)}
∪ {((x, q), 1̄, (y, q′)) | (q, copy1

n, q
′) ∈ ∆ ∧ ψcopy1

n,1(y, x)}

Lemma 11. D is a disjoint union of operations D1, · · · , Dk.

Proof. Suppose that D is not a DAG, then there exists (x, q) ∈ V such that
(x, q) +−→ (x, q), then there exists a sequence of operations in Ad (for Ac it is
symmetric, and there is no transition from Ac to Ad, thus a cycle cannot have
states of the both parts) which is the identity (and thus it is an sequence of
operations of Opsn−1 ∪ Tn−1). As Ad is normalised, it is not possible to have
such a sequence. Then, there is no cycle in D which is therefore a DAG.

By definition of ED, it is labelled by Opsn−1 ∪ Tn−1 ∪ {1, 1̄, 2, 2̄}.
We choose an Di. Suppose that it is not an operation. Thus, there exists

a node (x, q) of Di such that Di cannot be decomposed at this node (i.e, in
the inducted decomposition, there will be no case which can be applied to cut
either Di or one of its subDAG to obtain (x, q) as the output node of a sub-
DAG obtained (or the input node). Let us consider the following cases for the
neighbourhood of (x, q):

– (x, q) has a unique son (y, q′), which has no other father such that (x, q) 2−→
(y, q′). By definition of Trans, we have that ψcopy2

n,2(x, y), and thus we have
a (q, (q′′, q′)) ∈ ∆ and a z such that ψcopy2

n,1(x, z) which is in Zq′′ . This
contradicts that (x, q) has a unique son in Di. If (x, q) 2̄−→ (y, q′), the case is
similar. For every other θ ∈ Opsn−1 ∪ Tn−1 ∪ {1, 1̄}, we can decompose the
subDAG {(x, q) θ−→ (y, q′)} as (� ·1,1 Dθ) ·1,1 �.

– Suppose that (x, q) has at least three sons (y1, q1), (y2, q2), (y3, q3). There
is no subformula of Trans which impose to label three nodes which can be
obtained from x, so this contradicts the minimality of the labelling.
For a similar reason, (x, q) has at most two fathers.

– Suppose that (x, q) has two sons (y1, q1) and (y2, q2). By definition of Trans
and by minimality, we have that ψcopy2

n,1(x, y1), ψcopy2
n,2(x, y2), and (q, (q1, q2

)) ∈ ∆ (otherwise, the labelling would not be minimal, as it is the only sub-
formula imposing to label two sons of a node). Thus we have (x, q) 1−→ (y1, q1)
and (x, q) 2−→ (y2, q2). By minimality again, (y1, q1) and (y2, q2) have no other
father than (x, q). In this case, the subDAG {(x, q) 1−→ (y1, q1), (x, q) 2−→
(y2, q2)} can be decomposed as ((� ·1,1 Dcopy2

n
) ·2,1 �) ·1,1 �.
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– Suppose that (x, q) has a unique son (y1, q1) which has an other father
(y2, q2). By definition of Trans and by minimality of the labelling, we have
that ψcopy2

n,1(y1, x), ψcopy2
n,2(y1, y2), and ((q, q2), q1) ∈ ∆. Thus we have

(x, q) 1̄−→ (y1, q1) and (y2, q2) 2̄−→ (y1, q1). By minimality again, (y2, q2) has no
other son than (y1, q1). In this case, the subDAG {(x, q) 1̄−→ (y1, q1), (y2, q2) 2̄−→
(y1, q1)} can be decomposed as (� ·1,1 (� ·1,2 Dcopy2

n
)) ·1,1 �.

In all the cases we considered, or the case is impossible, or the DAG is
decomposable at the node (x, q). Thus, the DAG Di is always decomposable
and is thus an operation. ut

Lemma 12. Each Di is recognised by A

Proof. By construction, for every node (x, q), if x ∈ Xs, q is an initial state
(because init is satisfied), and (x, q) is then an input node, as A is distinguished.
And as init is satisfied, only these nodes are labelled by initial states.

Also, for every node (x, q), if x ∈ Xt, q is a final state (because init is satisfied)
and (x, q) is then an output node, as A is distinguished. And as init in satisfied,
only these nodes are labelled by final states.

By construction, the edges are always transitions present in ∆, and then we
label each node (x, q) by q.

As the formula Trans is satisfied, we have that given any node (x, q), either
q is final (and then (x, q) is an output node), or there exists one of the following:

– a node (y, q′) and θ such that ψθ(x, y) and (q, θ, q′) ∈ ∆
– two nodes (y, q′) and (z, q′′) such that ψcopy2

n,1(x, y), ψcopy2
n,2(x, z) and (q, (q′,

q′′)) ∈ ∆
– two nodes (y, q′) and (z, q′′) such that ψcopy2

n,1(z, x), ψcopy2
n,2(z, y) and ((q, q′),

q′′) ∈ ∆

Then, only nodes (x, q) with q final are childless and are those labelled with
final states. As well, only (x, q) with q initial are fatherless.

Then each Di is recognised by A with this labelling. ut

Lemma 13. t is obtained by applying the Di to disjoint positions of s.

Proof. We show by induction that t′ = D(j)(s) if and only if Xt′ = Xs ∪ {x |
(x, q) ∈ OD}\{x | (x, q) ∈ ID}:

– If D = �, it is true, as Xt′ = Xs and t′ = s.
– If D = (F ·1,1 Dθ) ·1,1 G, by induction hypothesis, we consider r such that
r = F(j)(s), we then have Xr = Xs∪{y}\{x | (x, q) ∈ IF }, where (y, q′) is the
only output node of F . By construction, the input node of G, (z, q′′) is such
that ψθ(y, z), and thus we have r′ = θ(j)(r) such that Xr′ = Xr\{y} ∪ {z}.
By induction hypothesis, we have Xt′ = Xr′ ∪ {x | (x, q) ∈ OG}\{z}, as
t′ = G(j)(θ(j)(F(j)(s))) = G(j)(r′). Thus, Xt′ = Xs ∪ {x | (x, q) ∈ OG}\{x |
(x, q) ∈ IF } = Xs ∪ {x | (x, q) ∈ OD}\{x | (x, q) ∈ ID}.
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The other cases are similar and are thus left to the reader. It then suffices to
construct this way successively t1 = D1(i1)(s), t2 = D2(i2)(t1), etc, to obtain t
and prove the lemma. ut

We have proved both directions: for every n-stack trees s and t, there exists
a set of operations Di recognised by A such that t is obtained by applying the
Di to disjoint positions of s if and only if φ(Xs, Xt). ut

We then have a monadic interpretation with finite sets (all sets are finite),
and then, the graph has a decidable FO theory, which concludes the proof.

D Example of a language

We can see a rewriting graph as a language acceptor in a classical way by defining
some initial and final states and labelling the edges. We present here an example
of a language recognised by a stack tree rewriting system. The recognised lan-
guage is {u� u | u ∈ Σ}. Fix an alphabet Σ and two special symbols ↑ and ↓.
We consider ST2(Σ ∪ {↑, ↓}). We now define a rewriting system R, whose rules
are given in Fig. 8.

.

.

.

.

rew↓,a

copy1

rewa,↓

(a) Pa, for every a ∈ Σ

.

. .

. .

1 2

rew↓,↑ rew↓,↑

(b) Dupl

.

.

.

.

rew↑,a

copy1

rewa,↑

(c) Da, for every a ∈ Σ

Fig. 8: The rules of the rewriting system

To recognise a language with this system, we have to fix an initial set of
stack trees and a final set of stack trees. We will have a unique initial tree and
a recognisable set of final trees. They are depicted on Fig. 9.

A word w ∈ R∗ is accepted by this rewriting system if there is a path from
the initial tree to a final tree labelled by w. The trace language recognised is

{Pa1 · · ·Pan ·Dupl · ((Dan · · ·Da1)� (Dan · · ·Da1)) | a1, · · · , an ∈ Σ}.

Let us informally explain why. We start on the initial tree, which has only a leaf
labelled by a stack whose topmost symbol is ↓. So we cannot apply a Da to it.
If we apply a Pa to it, we remain in the same situation, but we added an a to
the stack labelling the unique node. So we can read a sequence Pa1 · · ·Pan . From
this situation, we can also apply a Dupl, which yields a tree with three nodes
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[↓]1

(a) The initial tree.

s

[↑]1 [↑]1

(b) A final tree. s is an
arbitrary 1-stack

Fig. 9: The initial and final trees.

whose two leaves are labelled by [a1 · · · an ↑]1, if we first read Pa1 · · ·Pan . From
this new situation, we can only apply Da rules. If the two leaves are labelled by
[b1 · · · bm ↑]1 and [c1 · · · c` ↑]1, we can apply Dbm or Dc` , yielding the same tree
in which we removed bm or c` from the adequate leaf. We can do this until a final
tree remains. So, on each leaf, we will read Dan · · ·Da1 in this order, but we have
no constraint on the order we will read these two sequences. So we effectively
can read any word in (Dan · · ·Da1)� (Dan · · ·Da1). And this is the only way to
reach a final tree.

To obtain the language we announced at the start, we just have to define
a labelling λ of each operation of R as follows: λ(Dupl) = ε, for every a ∈ Σ,
λ(Pa) = ε and λ(Da) = a, and remark that if w is of the previous form, then
λ(w) = (a1 · · · an)� (a1 · · · an), and we indeed recognise {u� u | u ∈ Σ}.
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