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The elastic response for microlayered functionally graded media

J. Jedrysiak*', E. Wierzbicki**?, and Cz. Wozniak***3

! Department of Structural Mechanics, LédZ University of Technology, Al. Politechniki 6, 93-590 LédZ, Poland
%3 Institute of Mathematics and Computer Sciences, Czgstochowa University of Technology, 42 200 Czestochowa, Poland

In this note microlayered composites having continuously varying macroscopic properties are considered. Such composites
are referred to as the functionally graded laminates (FGL). The aim of this contribution is to derive a new averaged model de-
scribing the elastic response of the FGL, using the modified tolerance averaging technique, developed for periodic composites
and structures by Wozniak and Wierzbicki (2000).

Following [3], materials, having properties continuously varying with position, are called functionally graded materials
(FGM). Our considerations are related to composites with a laminated microstructure, which on the macro level have contin-
uously varying properties, c¢f. Fig. 1. These composites will be called funcrionally graded laminates (FGL).

Different methods proposed to analyse functionally graded composites were shown in [3], but most of them neglect the
effect of the microsiructure size.

‘ ! i | 4

)

)

X sup A(z}<<H

Fig. 1 Anexample of a functionally graded laminated layer: a) on the micro level, b) on the macro level.

The aim of this contribution is to derive two averaged models describing the elastic response of the FGL, emploving the
concepts introduced in the tolerance averaging technique for periodic composites and structures, [5]. Using these concepts
and introducing some additional assumptions model equations with slowly-varying continuous coefficients will be derived.
A similar approach was also proposed to FGL plates in [1], FGL shells in [4], FGL with microdefects in [2]. Moreover, an
application of a new averaged model to vibrations of a FGL layer (cf. Fig. 1) will be presented.

Let us consider a plane problem of the layer in the orthogonal Cartesian coordinate system Ox1xs. Denote x=x;, 7=xz. The
layer has the thickness H. It is made of two linear-elastic materials distributed in laminas with varying thicknesses, which are
perfectly bonded. The distribution of lamina thicknesses is extrapolated by a smooth cell distribution function A(z), which is
assumed to be slowly varying. Moreover, every lamina consists of two sub-laminas, made of isotropic, homogeneous materials
with mass densilies - ', p? and tensors of elastic meduli - C1, €2, Tt is also assumed that the volume fraction distribution is
described by functions ¢1(z), ©*(z), such that ¢ (z)+¢?(z)=1. In the modelling procedure of the modified tolerance averaging
technique, some concepts and assumptions are employed, which were formulated for periodic composites in [5]. They are:
a slowly varying function, a local periodic function, an oscillating function or an averaging operafion, which is defined by

{(Fi()=[Az)] 1 fj‘;’%?g f(z+y)dy for any integrable function £(z).

The main kinematic assumption is that the displacement field of the FGL w=w(x,z,r), xc[0,H], can be expected in the
form: wix,z,f)=u(x,z,l)+g(z)v(x,z,0), where u are averaged parts of displacements w, being slowly varying functions of z; g
is the known shape fluctuation function, being a local periodic, oscillating function; v are new kinematic unknowns, being
slowly varying functions of z. The product gv describes the fluctuation part of displacements w, The averaged displacements
u and the additional unknowns v will be called macrodisplacements and fluctualion amplitudes, respectively.

After some manipulations, employing the tolerance averaging technique, [5], we arrive at the model equations:

(o}l — 8o - ({C) : Vu) — 8y - ((C) : V) — B - (v - {Bag - CY) — &1 - ({Bag - C) - v) =0 i
(p(@)*)V +(Dag - C - bag) - v — (C(g)?) : 101V + Vu: {Bag - C) =0

The derived differential equations describe the effect of the microsiruciure size (underlined terms) on the overall dynamic
behaviour of the FGL. The model described by equations (1) will be called the microstuctural model of the FGL. More-
over, all coefficients of equations (1) are slowly varying functions of z. Boundary conditions have to be formulated for the
macrodisplacements u on all boundaries and for the fluctuation amplitudes v only on the boundaries intersecting the laminas.
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It can be observed that neglecting the underlined terms in equations (1) the following equations are derived:
(p)i—V-((C): Vu) =V (v-(dag-C)),  (029-C-0ag) v =-Vu:(dg-C) 2

The model described by equations (2) neglects the effect of the microstructure size on the overall dynamic behaviour of the
FGL and will be called the macrostructural model of the FGL.

Let us consider vibrations of the layer shown in Fig. 1, with the thickness H, loaded on the upper boundary by p(z,f) and
rested on an undeformable base. The layer has a length L along the z-axis. It is non-periodically reinforced along the z-axis.

The aim of the example is to determine a distribution function of materials in the FGL layer loaded on the upper boundary,
under the assumption that the macrodeflections u are independent of z. The problem will be solved in the framework of the
macrostructural model.

Neglecting the component uy of the macrodisplacements and setting on the boundaries z=+L /2 that Jou1=0, we as-
sume wuy(x, z,t)=u(z,t). The function u will be called the macrodeflection. Assuming the loadings on the upper bound-
ary p(z,t)=Qoq(z) exp(iwt) and the macrodeflection u(z,t)=U(z) exp(iwt), and denoting k=C1111, 6=r%/K', B=p?/p",
n(2)=X(2)/1, x=k1 -6 +6n(2)], s=p*[1 — § + dn(2)], equations (2) can be written in the form describing macrovibrations

0101U +sx 1w?U =0 3

with the boundary conditions: 01U (0)=—Qq(z)n(z)/x, U(H)=0. Assuming §=0 and ¢(z)=[1 — ¢ + In(z)]/n(z), the
macrodisplacement u; is really independent of z. Denoting é= /L, Q?=w?H?¢/x, ()/=0¢, $(§)=r' (HQ) U (£H) equa-
tion (3) can be written in the non-dimensional form

¢// 4 QQQS =0 (4)
with the boundary conditions: ¢’(0)=—1, ¢(1)=0. Solutions to equation (4) take the following form:
1) for the stationary problem (£22=0) HE) =16,
2) for the non-stationary problems (% > 0) (€)=~ [tan Q cos(QE) — sin(Q€)],
3) solutions do not exist (resonance macrovibrations) for QQ=W2(% +n)2.
Diagrams of the first and the second solutions are shown in Fig. 2.
[9]
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Fig.2 Plots of solutions for the 1) and the 2) case.

Summarising, some remarks can be formulated:

- The new modelling approach proposed to describe the FGL, based on the concepts of the tolerance averaging technique
formulated for periodic structures, leads to averaged models - the microstructural and the macrostructural of the FGL.

- The microstructural model makes it possible to investigate the effect of the microstructure size on the dynamic behaviour
of the FGL, in the contrast to the macrostructural model.

- It has been shown that if the loading and the function of properties of the FGL layer are assumed in the same form the
macrodeflection « is independent of z.
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