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Abstract

This article aims at presenting a general method that enables one to build kinetic energy matrices

in getting rid, for the angular coordinates (internal and Eulerian), of the heaviness of differential

calculus (for expressing kinetic energy operators) and numerical integration (for calculating matrix

elements). Therefore, instead of 3N-3 coordinates, only N-1 radial distances are to be treated as

coordinates. In the present formulation, the system is described by any set of n vectors { ~Ri, i =

1, . . . , n} and the kinetic energy operator is expressed in term of (n-1) angular momenta { ~Li, i =

1, . . . , n − 1} and the total angular momentum ~J . The formalism proposed is general and gives

a remarkably compact expression of the kinetic energy in terms of the angular momenta. This

expression allows one to circumvent the seeming angular singularities.
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I. INTRODUCTION

In previous articles [1–3], hereafter called Ref[1], Ref[2] and Ref[3], the continuous ge-

ometrical representation of a deformable N-atom molecular system and the variational

determination of its dynamical states, by diagonalization of the Hamiltonian matrix in

an appropriate basis, have been studied for a triatomic molecule (Ref[2]) or a molecule

parametrized by Jacobi vectors (Ref[1]). This approach avoids the differential calculus steps

usually required for expressing quantum mechanical kinetic energy operators in terms of

curvilinear internal coordinates. Indeed, many sets of internal coordinates can be considered

[3–20] and the larger the molecule, the more diversified the coordinate sets that all include

3N-6 internal coordinates. Moreover, the rotation of the Body-Fixed frame (BF) (whose

axes rotate in a conventional manner when the atoms move), is measured by three Euler an-

gles in the Space-Fixed frame (SF) [21]. In Ref[1], a set of n Jacobi vectors ( ~Ri, i = 1, . . . , n)

has been used to describe the molecule (n = N − 1). Vector ~Rn has been taken parallel to

the GzBF axis whereas ~Rn−1 is parallel to the (xz)BF plane. The (n-2) other vectors has

been viewed as totally free in BF. It is worth noticing that ~Rn and ~Rn−1 played a specific

role, being linked either totally (~Rn) or partially (~Rn−1) to the definition of the orientation

of BF. Consequently, the BF components of the angular momenta associated with ~Rn and

~Rn−1 do not satisfy the usual properties of angular momenta (commutation relations and

hermiticity) and do not commute with the other angular momenta associated to the vectors

~Ri (i=1,. . . ,(n-2)) and the total angular momentum ~J . This crucial point will be referred

to several times in this work.

In the present article, we generalize the results obtained in Ref[1] by using a set of n

vectors which are not Jacobi vectors and thus could be parametrized by non-orthogonal

coordinates, such as e.g. valence vectors. Our aim is to present a general method that en-

ables, for all angular coordinates (internal and Eulerian), the construction of kinetic energy

matrices without resorting to (i) differential calculus for expressing kinetic energy operators

and (ii) numerical integration to calculate angular matrix element for any selected vectors

{~Ri; i = 1, . . . , n}. Consequently, only n radial distances must be treated numerically as

coordinates instead of 3n coordinates when the angles are explicitly treated.

This work is based on the concept introduced in 1992 in Ref[3], where a general expression
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of the kinetic energy has been given in terms of the BF-components of the angular momenta

associated with the vectors {~Ri; i = 1, . . . , n − 1} used to describe the system. But the

non-hermiticity of the BF-components of the angular momenta associated with ~Rn and

~Rn−1 and the non commutation of them with the other angular momenta has not been fully

appreciated in Ref[3]. Fortunately, we demonstrate in this article that most terms generated

by non-hermiticity and non-commutation cancel each other. Therefore, the quantization

of the kinetic energy for N atoms adds only very few specific terms, compared with the

classical expression of the kinetic energy.

This article also constitutes a generalization of Ref[2] which has been dedicated to a vector

parametrization of three-atom systems by valence coordinates. In the latter work, the quan-

tum expression of the kinetic energy has been established in terms of the angular momenta

associated with two valence vectors only. The quantization has led to one single specific

quantum term, i.e. which has no counterpart in the classical expression of the kinetic energy.

In section 2, we present the quantum mechanical background used to express the kinetic

energy operator in terms of the momentum vectors {~Pi; i = 1, . . . , n} conjugated to the n

vectors {~Ri; i = 1, . . . , n}. In Section 3, the expressions of the projections in BF of vectors

{~Pi; i = 1, . . . , n} are given, along with their adjoints, in terms of the BF components of the

angular momenta {~Li; i = 1, . . . , n − 1} of the (n-1) rotating vectors {~Ri; i = 1, . . . , n − 1}

and the total angular momentum ~J . In Section 4, the results of Sections 2 and 3 are used for

deriving a compact expression of the kinetic energy operator in terms of {~Li; i = 1, . . . , n−1}

and ~J . This expression is compared with its classical counterpart; the main difference arises

from the fact that the frame axes depend on ~Rn and ~Rn−1. In Section 5, we propose a

particular basis set which results in an analytical angular representation of the kinetic en-

ergy operator. Finally, in Section 6, the formalism is applied to the hexa-atomic system

(AB)CD(EF) which has been recently tackled in the litterature[20]. We compare our method

with that initiated by Handy[22] and used by Remple and Watts[20] in order to give a de-

veloped expression of the kinetic energy of (AB)CD(EF) described by valence coordinates.

Some general conclusions and prospective views are also drawn in Section 6.
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II. QUANTUM MECHANICAL BACKGROUND

Let ~R1, ~R2, . . ., ~Rn be the set of vectors chosen for the description of the molecular

system. It is possible to connect these vectors to a set of Jacobi vectors ~r1, ~r2, . . . , ~rn (i.e.

vectors pointing from one atomic group center of mass to another) that describe the system

uniquely. The relation between the two sets is :





















~R1

~R2

. . .

~Rn





















= A





















~r1

~r2

. . .

~rn





















(1)

where A is a non singular constant matrix [3].

The quantum expression of the kinetic energy operator, T̂, in terms of Jacobi coordinates

is given by [1, 23, 24] :

2T̂ =
n
∑

i=1

~̂pi
†
~̂pi

µi

=
(

~̂p1
†
, ~̂p2

†
, . . . , ~̂pn

†
)

µ−1
(

~̂p1, ~̂p2, . . . , ~̂pn
)t

(2)

where the µ matrix is the diagonal matrix of the reduced masses associated with the Jacobi

vectors and ~pi is the conjugate momentum vector associated with ~ri. Using (Eq.3) that

relates the conjugate vector ~Pi associated with ~Ri to the ~pi vectors :





















~p1

~p2

. . .

~pn





















= At





















~P1

~P2

. . .

~Pn





















(3)

Eq.2 can be rewritten in terms of the conjugate momentum vectors ~Pi (i=1, . . ., n) :

2T̂ =
n
∑

i,j=1

~̂Pi

†
Mi,j

~̂Pj =

(

~̂P1

†
, ~̂P2

†
, . . . , ~̂Pn

†
)

M
(

~̂P1, ~̂P2, . . . , ~̂Pn

)t

(4)

where the symmetric mass-dependent constant matrix M is given by :

M = Aµ−1At (5)

In Section 6, we will illustrate how the A and M matrices can be easily obtained for a

given system. In Section 3, we will express the kinetic energy operator in terms of the total
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angular momentum ~J and the angular momenta ~Li (i=1, . . ., n-1) associated with ~Ri (i=1,

. . ., n-1) and given by :

~J =
n
∑

i=1

~Li =
n
∑

i=1

~Ri × ~Pi (6)

The conjugate momentum ~Pi can be expressed in terms of the angular momentum ~Li :

~Pi = P r
i ~ei −

~ei × ~Li

Ri

(7)

where ~ei denotes the unit vector along ~Ri.
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III. CONJUGATE MOMENTUM VECTOR IN THE BODY FIXED FRAME

First of all, the GzBF axis chosen corresponds either to a symmetry axis of the system

or to an axis that plays a specific role in the modelization of the system. Vector ~Rn is, by

definition, parallel to this axis. Consequently, the orientation of ~Rn is crucial and directly

related to the physical property of the molecule. For instance, in the study of NH3 treated

in Ref. [25], ~Rn=3 links the nitrogen atom to the barycenter of the three hydrogen atoms.

Such a choice is adapted to the symmetry of the equilibrium geometry and minimizes the

effect of the Coriolis couplings. ~Rn is characterized by its spherical coordinates (Rn,θ
SF
n ,

φSF
n ) in SF. Consequently, the two first Euler rotations Dz(α) and Dy(β) used to define

the GzBF axis correspond to Dy(θ
SF
n ) and Dz(φ

SF
n ). The frame obtained after these two

rotations is called E2. A last rotation Dz(γ) around GzE2 is defined such that ~Rn−1 lies

parallel to the (xBFGzBF , xBF > 0) half plane. This last rotation has no intrinsic physical

meaning.

The aim of this paper is to express the kinetic energy operator in terms of the BF

components of n angular momenta, namely the total angular momentum ~J and the (n-1)

angular momenta ~Li (i = 1, ..., n− 1) associated to the freely rotating vectors ~Ri (i=1,...,n-

2) and to ~Rn−1, which is partially linked to BF frame. Consequently, the last angular

momentum ~Ln is redundant and ~J −
∑n−1

i=1
~Li substituted for it. It is worth mentioning that

LBF
nz is equal to zero because ~Rn lies parallel to the GzBF axis.

Because of their different properties or expressions, one should distinguish three types of

angular momenta :

• The total angular momentum ~̂J

The BF components of ~̂J are self-adjoint and satisfy the abnormal commutation

relations. Their expressions are given elsewhere (for instance, Refs.26 and 27 or Eqs.19-

20 of Ref[1].

• The angular momenta ~̂Li (i=1,...,n-2) associated to the freely rotating vectors ~Ri

(i=1,...,n-2).

These vectors are independent of the definition of either SF, E2 or BF. Consequently,

they are characterized by the usual formulae given in Ref[1] for instance (Eq. 34-36).
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Their SF, E2 and BF components obey the normal commutation relations[28].

• The angular momentum ~̂Ln−1 associated to ~Rn−1

The y-BF component of ~̂Ln−1 is not hermitian because BF depends on the orientation

of ~Rn−1. We have established in Ref.[1] that :

L̂(n−1)±BF = L̂(n−1)xBF ± iL̂(n−1)yBF = − cot θn−1[ĴzBF −
n−2
∑

i=1

L̂izBF ]± h̄∂θn−1 (8)

L̂(n−1)zBF = ĴzBF −
n−2
∑

i=1

L̂izBF (9)

(L̂(n−1)±BF )† = L̂(n−1)±BF ± h̄ cot θn−1 ; (L̂(n−1)zBF )† = L̂(n−1)zBF (10)

Using these equations, the BF components of ~L†
n can be expressed as:

(~̂Ln)
†
= ~̂Ln +













0

ih̄ cot θn−1

0













(11)

From now on, we are going to express the operators ~̂P
†

i et ~̂P i in terms of the angular

momenta ~̂Li (i=1, . . ., n-1) and their projections P̂ r
i (Eq.7). This formula will be necessary

to establish in Section 4 the kinetic energy in terms of the BF components of the angular

momenta ~̂Li (i=1, . . . , n-1) and ~̂J .

It is worth mentioning that a Euclidian normalization is used [24, 29], i.e. the elementary

volume is :

dτ = R2
n sin βdRndαdβR

2
n−1 sin θ

BF
n−1dRn−1dγdθ

BF
n−1

n−2
∏

i=1

R2
i sin θ

BF
i dRidφ

BF
i dθBF

i (12)

In that case, the operators (P̂ r
i )

† and P̂ r
i are given by P̂ r

i = −ih̄∂Ri
and :

(P̂ r
i )

† = P̂ r
i −

2ih̄

Ri

(13)

Using Eq.7, the BF components of the self-adjoint operators ~̂Pi (i=1,. . ., n-2) and the oper-

ator ~̂P n−1 are given by :

~̂Pi = ( ~̂Pi)
†
=













P̂ r
i sin θ

BF
i cosφBF

i + 1
Ri

(

− sin θBF
i sinφBF

i L̂izBF + cos θBF
i L̂iyBF

)

P̂ r
i sin θ

BF
i sinφBF

i + 1
Ri

(

− cos θBF
i L̂ixBF + sin θBF

i cosφBF
i L̂izBF

)

P̂ r
i cos θ

BF
i + 1

Ri

(

− sin θBF
i cosφBF

i L̂iyBF + sin θBF
i sinφBF

i L̂ixBF

)













(14)
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Because of the non-hermiticity of the y-BF component of ~̂Ln−1 (Eq. 10), all the BF

components of ~̂P n−1 are not self-adjoint.

( ~̂P n−1)
†
= ~en−1P̂

r†
n−1 +

~̂L
†

n−1 × ~en−1

Rn−1

(15)

A straightforward calculation provides the expression of ( ~̂P n−1)
†
in terms of ~̂P n−1 :

( ~̂P n−1)
†
= ~̂P n−1 +













−ih̄
Rn−1 sin θBF

n−1

0

0













(16)

just in making use of the following commutators :

[L̂(n−1)xBF , cos θBF
n−1] = 0 ; [L̂(n−1)xBF , sin θBF

n−1] = 0 (17)

[L̂(n−1)yBF , cos θBF
n−1] = ih̄ sin θBF

n−1 ; [L̂(n−1)yBF , sin θBF
n−1] = −ih̄ cos θBF

n−1 (18)

[L̂(n−1)zBF , cos θBF
n−1] = 0 ; [L̂(n−1)zBF , sin θBF

n−1] = 0 (19)

Finally, the ~̂P n vector is obtained by substituting ~̂Ln by its expression in terms of the

other angular momenta :

~̂Pn =













1
Rn

(ĴyBF −
∑n−1

i=1 L̂iyBF )

1
Rn

(−ĴxBF +
∑n−1

i=1 L̂ixBF )

P̂ r
n













(20)

This equation, along with Eq(8-10), leads to the expression of the BF-components of ~̂Pn

†

:

~̂Pn

†
= ~̂Pn +













ih̄ cot θBF
n−1

Rn

0

−2ih̄
Rn













(21)

Therefore, all the expressions of the BF-components of ~̂P i and ~̂P
†

i (i=1,. . . , n) are avail-

able. We are now able to propose a compact expression of the kinetic energy operator in

terms of the BF components of ~̂J and ~̂Li (i=1,...,n-1).
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IV. QUANTUM EXPRESSION OF THE KINETIC ENERGY IN TERMS OF AU-

GULAR MOMENTA

First of all, the ~̂P
†

i vectors are substituted in the expression of the kinetic energy operator

(Eq.4) by their expressions (Eqs.14,16,21) which leads to:

2T̂ =
n
∑

i,j=1

Mi,j
~̂P i. ~̂P j (22)

+
n
∑

i=1

(

−Mi,n−1
ih̄P̂ixBF

Rn−1 sin θBF
n−1

+Mi,n

(

ih̄ cot θBF
n−1P̂ixBF

Rn

−
2ih̄P̂izBF

Rn

))

(23)

The first term (Eq.22) can be indentified with the expression of the kinetic energy in

classical mechanics (which will be called the ”classical” kinetic energy), except for the BF

components of ~̂P n−1 and ~̂P n which do not commute with the BF components of vectors ~̂P i

. Consequently, the commutators [ ~̂P i, ~̂P j] = ~̂P i. ~̂P j- ~̂P j. ~̂P i must be taken into account when

deriving the kinetic energy. The result is :

2T̂ =
n
∑

i=1

Mi,i( ~̂P i)
2

−
ih̄Mn−1,n−1

Rn−1 sin θBF
n−1

P̂(n−1)xBF +
ih̄Mn,n

Rn

(cot θBF
n−1P̂nxBF − 2P̂nzBF ) (24)

+ 2
n−1
∑

i=1

n−1
∑

j>i,j=1

Mi,j
~̂P i. ~̂P j + 2

n−2
∑

i=1

Mi,n
~̂P i. ~̂P n + 2Mn,n−1

~̂P n. ~̂P n−1 (25)

+
n−2
∑

i=1

Mi,n−1

(

−
ih̄P̂ixBF

Rn−1 sin θBF
n−1

+ [ ~̂P n−1, ~̂P i]

)

(26)

+
n−2
∑

i=1

Mi,n

(

ih̄ cot θBF
n−1P̂ixBF

Rn

−
2ih̄P̂izBF

Rn

+ [ ~̂P n, ~̂P i]

)

(27)

+ Mn−1,n





ih̄ cot θBF
n−1P̂(n−1)xBF

Rn

−
2ih̄P̂(n−1)zBF

Rn

−
ih̄P̂nxBF

Rn−1 sin θBF
n−1

+ [ ~̂P n−1, ~̂P n]



 (28)

Therefore, the fact that the operators ~̂P (n−1)yBF and ~̂P nyBF are non hermitian and that

some commutators [ ~̂P i, ~̂P j] are not equal to zero, generate the last two terms in Eq.24 and

Eqs.25-28. We shall not examine Eq.24 because it has been explicitly treated in Ref[1],

dedicated to the description of a molecule by Jacobi vectors. We have established that

Eq.24 can be rewritten in the following form :
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n
∑

i=1

Mi,i( ~̂P i)
2

−
ih̄Mn−1,n−1

Rn−1 sin θBF
n−1

P̂(n−1)xBF +
ih̄Mn,n

Rn

(cot θBF
n−1P̂nxBF − 2P̂nzBF ) =

n
∑

i=1

Mi,i

(

(P̂ r
i )

2 −
2ih̄P̂ r

i

Ri

)

+
n−1
∑

i=1

(

Mn,n

R2
n

+
Mi,i

R2
i

)

~̂L
†

i .
~̂Li

+
n−2
∑

i=1

n−1
∑

j>i,j=1





Mn,n
~̂Li.~̂Lj

R2
n



+
Mn,n

(

~̂J . ~̂J − 2
∑n−1

i=1
~̂J .

~̂Li

)

R2
n

(29)

We have shown that the order of the operators in the products that contain ~̂Ln−1 is not

immaterial: placing the BF components of ~̂Ln−1 on the right hand side of all products

is particularly useful for simplifying the expression of the kinetic energy operator and its

representation in the angular basis set. Therefore, it is worth noticing that the substitution

of the ( ~̂P i)
2

by their expression (Eq.7) in the classical formula
∑n

i=1 Mi,i( ~̂P i)
2

leads exactly

to the quantum expression Eq(29), except for ~̂L
†

i .
~̂Li which must be substituted for (~̂Li)

2

.

This is no longer true for i = n− 1 and n.

Next, the quantization of the terms generated by the off-diagonal masses is undertaken.

Consequently, terms 25 to 28 have to be calculated. The results are summarized below :

(i) Term 25 corresponds to the classical expression of the kinetic energy generated by the

off-diagonal masses. Vector ~̂P n−1 must be placed on the right of all scalar products where

it appears.

(ii) Term 26 comes from the non-hermitian character of ~̂P n−1 and the non-commutation

of ~̂P i with ~̂P n−1. By means of the commutators given in Appendix 1, it can be shown that

this term is equal to zero, which implies that :

~̂P
†

i
~̂P n−1 + ~̂P

†

n−1
~̂P i = 2 ~̂P i. ~̂P n−1 (30)

Here again, the order of the operators in the scalar product is strictly fixed.

(iii) Term 27 comes from the non-hermitian character of ~̂P n and the non-commutation

of ~̂P i with ~̂P n. With the help of the commutators given in Appendix 1, it can similarly be

shown that this term is equal to zero, i.e. :

~̂P
†

i
~̂P n + ~̂P

†

n
~̂P i = 2 ~̂P i. ~̂P n (31)

11



(iv) Term 28 comes from the non-hermitian character of ~̂P n and ~̂P n−1, and the non-

commutation of ~̂P n−1 with ~̂P n. Using Appendix 1, it can be shown that :

(28) =
2ih̄Mn−1,n

Rn

{

−P̂ r
n−1 cos θ

BF
n−1 +

(1 + sin2(θBF
n−1))

~̂L(n−1)yBF

sin θBF
n−1

}

(32)

The fact that Term 28 is not equal to zero means that non-hermiticity and non-

commutation of the two operators generates purely quantum terms.

It should be emphasized that the calculations leading to results in Eqs.(30,31,32) are long

and tedious and that the order of the operators in the scalar product is strictly fixed, i.e. is

not immaterial.

The following equation establishes the relationship between the ”classical” expression of

the kinetic energy and its ”quantum” counterpart :

2T̂quant = 2T̂class +
ih̄Mn−1,n−1

Rn−1 sin θn−1

P̂(n−1)xBF +
ih̄Mn,n

Rn

(cot θn−1P̂nxBF − 2P̂nzBF ) (33)

+
2ih̄Mn−1,n

Rn

{

−P̂ r
n−1 cos θ

BF
n−1 +

(1 + sin2(θBF
n−1))L̂(n−1)yBF

sin θBF
n−1Rn−1

}

(34)

2T̂class =
n
∑

i=1

Mi,i( ~̂P i)
2

+ 2
n−1
∑

i=1

n
∑

j>i,j=1

Mi,j
~̂P i. ~̂P j + 2

n−2
∑

i=1

Mi,n
~̂P i. ~̂P n

+ 2Mn−1,n
~̂P n. ~̂P n−1 (35)

Consequently, the quantum expression contains only two additional terms generated by

the diagonal masses (Mn,n et Mn−1,n−1) and two other terms coming from the off-diagonal

Mn,n−1 mass.

Another long and tedious calculation that takes into account the non-commutation of the

operators, leads to the following expression of the kinetic energy for an N-atom molecule in

terms of BF components of angular momenta and the BF-angles θBF
i and φBF

i noted θi and

φi (φ
BF
n−1 = 0, θBF

n = 0):

T̂J=
n
∑

i=1

Mi,i

(

(P̂ r
i )

2

2
−

ih̄P̂ r
i

Ri

)
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+
n
∑

i,j=1;i<j

Mi,j

{

sin(θi) sin(θj) cos(φi − φj) + cos(θi) cos(θj)

}

P̂ r
i P̂

r
j

+
n−1
∑

i,j=1;i 6=j

Mi,j sin(θi) sin(θj) sin(φi − φj)

(

P̂ r
i L̂jz

Rj

)

+
n−1
∑

i,j=1;i 6=j

P̂ r
i sin(θi)

(

Mi,j cos(θj)

Rj

−
Mi,n

Rn

)





e−iφiL̂+
j − eiφiL̂−

j

2i





−
n−1
∑

i=1

Mi,n

Rn

P̂ r
i sin(θi)

(

e−iφiL̂+
i − eiφiL̂−

i

2i

)

−
n
∑

i,j=1;i 6=j

Mi,j

Ri

P̂ r
j cos(θj) sin(θi)

(

e−iφiL̂+
i − eiφiL̂−

i

2i

)

+
n−1
∑

i,j=1;i<j

{

Mi,j

RiRj

(

cos(θi) cos(θj) +
1

2
e−iφi sin(θi)e

iφj sin(θj)
)

−
Mi,n

RiRn

cos(θi)−
Mj,n

RjRn

cos(θj) +
Mn,n

2R2
n

}





L̂+
i L̂

−
j

2





+
n−1
∑

i,j=1;i<j

{

Mi,j

RiRj

(

cos(θi) cos(θj) +
1

2
eiφi sin(θi)e

−iφj sin(θj)
)

−
Mi,n

RiRn

cos(θi)−
Mj,n

RjRn

cos(θj) +
Mn,n

2R2
n

}





L̂−
i L̂

+
j

2





−
n−1
∑

i,j=1;i<j

Mi,j

4RiRj

sin(θi) sin(θj)
(

e−i(φi+φj)L̂+
i L̂

+
j + ei(φi+φj)L̂−

i L̂
−
j

)

+
n−1
∑

i=1

{

Mn,n

2R2
n

+
Mi,i

2R2
i

−
Mi,n cos(θi)

RiRn

}

~̂L
†

i
~̂Li

+
n−1
∑

i,j=1;i<j

{

Mi,j

RiRj

sin(θi) sin(θj) cos(φi − φj) +
Mn,n

2R2
n

}

L̂izL̂jz

+
n−1
∑

i,j=1;i<j

sin(θj)

(

−
Mi,j

RiRj

cos(θi) +
Mj,n

RjRn

)(

e−iφj L̂+
i + eiφj L̂−

i

2

)

L̂jz

+
n−1
∑

i,j=1;i<j

sin(θi)

(

−
Mi,j

RiRj

cos(θj) +
Mi,n

RiRn

)





e−iφiL̂izL̂
+
j + eiφiL̂izL̂

−
j

2





+
n−1
∑

i=1

Mi,n

Rn

P r
i sin(θi)

(

e−iφi Ĵ+ − eiφi Ĵ−

2i

)

+
n−1
∑

i=1

−Mi,n sin(θi)

RiRn

(

e−iφi Ĵ+ + eiφi Ĵ−

2

)

L̂iz

+

{

Mi,n cos(θi)

RiRn

−
Mn,n

R2
n

}(

Ĵ+L̂−
i + Ĵ−L̂+

i

2

)

13



−
n−1
∑

i=1

(

Mn,nĴzL̂iz

R2
n

)

+
Mn,n

~̂J
2

2R2
n

+
n−1
∑

i=1

h̄Mi,n

RiRn

sin(θi)

(

e−iφiL̂+
i − eiφiL̂−

i

2

)

(36)

The advantage of this equation compared to some developed expression previously proposed

by other authors in the case of polyatomics is to be as compact and general as possible.

This later point will be discussed in Section 6. The physical meaning of each terms is

clear because of the presence of the angular momenta. Therefore, if we compare this equa-

tion to those obtained by substituting, in the classical expression T̂ = 1
2

∑n
i,j=1

~̂P iMi,j
~̂P j,

vectors ~̂P i for their expression (Eq.7), there is only one purely quantum term, namely
∑n−1

i=1
h̄Mi,n

RiRn
sin(θBF

i )
(

e−iφi L̂+
i
−eiφi L̂−

i

2

)

, under the condition that the BF-components of ~̂Ln−1

are appropriately placed on the right of each product.

In a previous work dedicated to triatomic molecules [2], the quantization of the classical

expression of the kinetic energy provided an additional term, ih̄M1,2

R1R2
sin(θBF

1 )L̂1y, which cor-

responds to the extra-term obtained in the general formula if n=2 (φBF
2 = 0). M1,2, R1, R2

and θBF
1 were noted in this article M, r, R and α, respectively. Therefore, the quantum and

classical expressions are very similar only if the non-commutating operators are placed in

the different products in a prescribed order.
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V. ANGULAR BASIS FUNCTIONS : INTEGRATION OVER ANGULAR COOR-

DINATES, MATRIX REPRESENTATION

We now focus our attention on the action of the kinetic operator on an angular basis

set that describes the various rotations of the molecule, parametrized by three Euler angles

(α = θSFn , β = φSF
n , γ = φE2

n−1) and the spherical angles of the vectors ~Ri (i = 1, ..., n − 1)

viewed in BF (θBF
i , φBF

i ).

Moreover, in the absence of external field, SF is isotropic, i.e. the orientation of zSF is

arbitrary, so that any observable must be α-independent [30]. The overall rotation of the

molecule can thus be described by the following basis set [31–33]:

< (α), β, γ | J, 0,Ω >= Y Ω
J (β, γ)(−1)Ω (37)

The current element of the working angular function basis for the BF spherical angles of

vectors ~Ri (i = 1, ..., n− 1) is given by :

< (α), β, γ, θBF
n−1, φ

BF
1 , θBF

1 , . . . , φBF
n−2, θ

BF
n−2 | Ω, ℓn−1, ℓ1,Ω1, . . . , ℓn−2,Ωn−2 >J=

Y Ω
J (β, γ)(−1)ΩP

Ω−Ω1−...−Ωn−2

ℓn−1
(cos(θBF

n−1))Y
Ω1
ℓ1

(θBF
1 , φBF

1 ) . . . Y
Ωn−2

ℓn−2
(θBF

n−2, φ
BF
n−2) (38)

where PΩ
ℓ (cos(θ)) is a normalized associated Legendre function times (−1)Ω and Y Ω

ℓ (θ, φ)

is a spherical harmonics Y Ω
ℓ (θ, φ) = PΩ

ℓ (cos(θ))
1√
2π
exp(iΩφ).

The current element of this working angular basis set is, hereafter, denoted by {< angles |

. . . >J}.

The action of the kinetic energy operator on the angular basis functions requires the use

of the basic formulae given in Appendix 2 for the angular momenta ~Li (i = 1, ..., n − 2)

as well as the specific formula established in Ref[1] (Eq. 73.a), given below for L̂(n−1)±BF ,

L̂(n−1)zBF :

L̂(n−1)±BF {< angles | . . . >J} = h̄c±(ℓn−1,Ωn−1) < (α), β, γ | J, 0,Ω >

P
Ω−(

∑n−2

i=1
Ωi)±1

ℓn−1
(cos(θBF

n−1)) < φBF
1 , θBF

1 , . . . , φBF
n−2, θ

BF
n−2 | ℓ1,Ω1, . . . , ℓn−2,Ωn−2 > (39)

L̂(n−1)zBF {< angles | . . . >J} = ih̄(Ω−
n−2
∑

i=1

Ωi){< angles | . . . >J} (40)
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Actually, no real difficulties are generated by the fact that the operators ~̂Ln−1 and ~̂Li(i =

1, ..., n− 2) do not satisfy similar relationships. In order to illustrate this important point,

the following calculation shows how one of the more complicated terms of the kinetic energy,
(

Mi,n−1

4RiRn−1
sin(θBF

i ) sin(θBF
n−1)e

−iφiL̂+
i L̂

+
n−1

)

(i=1,...,n-2) acts upon the angular basis function:

sin(θBF
i ) sin(θBF

n−1)e
−iφiL̂+

i L̂
+
n−1{< angles | . . . >J}

= c+(ℓn−1,Ωn−1) sin(θ
BF
i ) sin(θBF

n−1)e
−iφiL̂+

i < (α), β, γ | J, 0,Ω >

P
Ω−(

∑n−2

i=1
Ωi)+1

ℓ(n−1)
(cos(θBF

n−1)) < φBF
1 , θBF

1 , . . . , φBF
n−2, θ

BF
n−2 | ℓ1,Ω1, . . . , ℓn−2,Ωn−2 >

= c+(ℓn−1,Ωn−1)c+(ℓi,Ωi) sin(θ
BF
i ) sin(θBF

n−1)e
−iφi < (α), β, γ | J, 0,Ω >

P
Ω−(

∑n−2

i=1
Ωi)+1

ℓ(n−1)
(cos(θBF

n−1)) < φBF
1 , θBF

1 , . . . , φBF
n−2, θ

BF
n−2 | ℓ1,Ω1, . . . , ℓi,Ωi + 1, . . . >

= c+(ℓn−1,Ωn−1)c+(ℓi,Ωi) < (α), β, γ | J, 0,Ω > sin(θBF
n−1)P

Ω−(
∑n−2

i=1
Ωi)+1

ℓ(n−1)
(cos(θBF

n−1))
{

B−
+(ℓi,Ωi + 1) < φBF

1 , θBF
1 , . . . , φBF

n−2, θ
BF
n−2 | ℓ1,Ω1, . . . , ℓi + 1,Ωi, . . . >

+ B−
−(ℓi,Ωi + 1) < φBF

1 , θBF
1 , . . . , φBF

n−2, θ
BF
n−2 | ℓ1,Ω1, . . . , ℓi − 1,Ωi, . . . >

}

= c+(ℓn−1,Ωn−1)c+(ℓi,Ωi)
{

B−
+(ℓi,Ωi + 1)B−

+(ℓn−1,Ωn−1 + 1) < . . . | . . . , ℓn−1 + 1,Ωn−1, . . . , ℓi + 1,Ωi, . . . >J

+ B−
+(ℓi,Ωi + 1)B−

−(ℓn−1,Ωn−1 + 1) < . . . | . . . , ℓn−1 − 1,Ωn−1, . . . , ℓi + 1,Ωi, . . . >J

+ B−
−(ℓi,Ωi + 1)B+

+(ℓn−1,Ωn−1 + 1) < . . . | . . . , ℓn−1 + 1,Ωn−1, . . . , ℓi − 1,Ωi, . . . >J

+ B−
−(ℓi,Ωi + 1)B+

−(ℓn−1,Ωn−1 + 1) < . . . | . . . , ℓn−1 − 1,Ωn−1, . . . , ℓi − 1,Ωi, . . . >J

}

(41)

In the latter expressions, the notation introduced in Appendix 2 has been used.

We now calculate T̂J , the matrix representing the kinetic energy operator in the angular

basis set {< angles | . . . >J}. The integration is over the angles only, (i.e. the matrix

elements are expressed in terms of J, Ω, M, ℓi, Ωi (i = 1, . . . , n − 2)), and ℓn−1 on the

one hand, Ri and P̂ r
i (i = 1, . . . , n) on the other hand. J and M=0 are fixed,i.e. T̂J is

a diagonal block of T̂ at constant J. In the basis {< angles | . . . >J}, using an approach

similar to that used for Eq.(52), it is rather easy but long to establish the matrix elements

< . . .Ω′
i, ℓ

′
i, . . . ,Ω

′
j , ℓ

′
j . . . | T̂

J | . . .Ωi, ℓi, . . . ,Ωj , ℓj . . . > which are non zero. Inspection of

equation (36) reveals that the non-zero matrix elements fulfil the folloving conditions:
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• ∆Ω = Ω− Ω′ = 0,±1

• ∆Ωi = Ωi − Ω′
i = 0,±1 (∀i = 1, 2, . . . , n− 2)

• ∆Ω = ∆Ωi +∆Ωj (∀i 6= j = 1, 2, . . . , n− 2)

• ∆ℓi = ℓi − ℓ′i = 0,±1 (∀i = 1, 2, . . . , n− 1)

Consequently, the non-zero matrix elements< . . .Ω′
i, ℓ

′
i, . . . ,Ω

′
j , ℓ

′
j . . . | T̂

J | . . .Ωi, ℓi, . . . ,Ωj , ℓj . . . >

with i < j are given by the following formulae in which only the modified quantum numbers

are mentioned. Therefore, ǫi representes either + or -, c+(J,Ω) = h̄2
√

J(J + 1)− Ω(Ω + 1)

and c−(J,Ω) = h̄2
√

J(J + 1)− Ω(Ω− 1):

(i): Diagonal Terms of T̂J

< . . .Ωi, ℓi, . . . ,Ωj , ℓj . . . | T̂
J | . . .Ωi, ℓi, . . . ,Ωj , ℓj . . . >=

n
∑

i=1

Mi,i

(

(P̂ r
i )

2

2
−

ih̄P̂ r
i

Ri

)

+
n−1
∑

i=1

h̄2ℓi(ℓi + 1)

(

Mn,n

2R2
n

+
Mi,i

2R2
i

)

+
n−1
∑

i,j=1;i<j

Mn,nh̄
2ΩiΩj

2R2
n

−
n−1
∑

i=1

Mn,nh̄
2ΩΩi

R2
n

+
Mn,nh̄

2J(J + 1)

2R2
n

Let us note that Ωn−1 = Ω−
n−2
∑

i=1

Ωi (42)

(ii): Non diagonal terms for ∆Ω = 0, ∆Ωi = 0; ∆ℓi = ±1

< . . .Ωi, ℓi + (ǫi1) . . . | T̂
J | . . .Ωi, ℓi, . . . >=

{

−
Mi,nP̂

r
n

2iRi

−
Mi,nP̂

r
i

2iRn

+
h̄Mi,n

2RiRn

}

{

c+(ℓi,Ωi)B
−
ǫi
(ℓi,Ωi + 1)− c−(ℓi,Ωi)B

+
ǫi
(ℓi,Ωi − 1)

}

+

{

Mi,nP̂
r
i P̂

r
n −

Mi,n

RiRn

h̄2ℓi(ℓi + 1)

}

Bo
ǫi
(ℓi,Ωi) (43)

(iii): Non diagonal terms for ∆Ω = ±1, ∆Ωi = ±1; ∆ℓi = 1 or − 1
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< Ω± 1, . . .Ωi ± 1, ℓi + (ǫi1) . . . | T̂
J | . . .Ωi, ℓi, . . . >=

{

∓
Mi,nP̂

r
i

2iRn

−
Mi,nΩi

2RiRn

}

c±(J,Ω)B
±
ǫi
(ℓi,Ωi)

+
Mi,n

2RiRn

Bo
ǫi
(ℓi,Ωi ± 1)c±(ℓi,Ωi)c±(J,Ω) (44)

(iv): Non diagonal terms for ∆Ω = ±1, ∆Ωi = ±1; ∆ℓi = 0

< Ω± 1, . . .Ωi ± 1, ℓi . . . | T̂
J | . . .Ωi, ℓi, . . . >= −

Mn,n

2R2
n

c±(ℓi,Ωi)c±(J,Ω) (45)

(v): Non diagonal terms for ∆Ω = 0, ∆Ωi = −∆Ωj = ±1; ∆ℓi = ∆ℓj = 0

< . . .Ωi ± 1, ℓi, . . . ,Ωj ∓ 1, ℓj . . . | T̂
J | . . .Ωi, ℓi, . . . ,Ωj , ℓj . . . >=

c±(ℓi,Ωi)c∓(ℓj,Ωj)
Mn,n

4R2
n

(46)

(vi): Non diagonal terms for ∆Ω = 0, ∆Ωi = ∆Ωj = 0; ∆ℓi = ±1;∆ℓj = 1 or −1

< . . .Ωi, ℓi + (ǫi1), . . . ,Ωj , ℓj + (ǫj1) . . . | T̂
J | . . .Ωi, ℓi, . . . ,Ωj , ℓj . . . >=

MijP̂
r
i P̂

r
j B

o
ǫi
(ℓi,Ωi)B

o
ǫj
(ℓj,Ωj)−

MijP̂
r
j

2iRi

c+(ℓi,Ωi)B
−
ǫi
(ℓi,Ωi + 1)Bo

ǫj
(ℓj,Ωj)

−
MijP̂

r
i

2iRj

c+(ℓj,Ωj)B
−
ǫj
(ℓj,Ωj + 1)Bo

ǫi
(ℓi,Ωi)

+
MijP̂

r
j

2iRi

c−(ℓi,Ωi)B
o
ǫj
(ℓj,Ωj)B

+
ǫi
(ℓi,Ωi − 1)

+
MijP̂

r
i

2iRj

c−(ℓj,Ωj)B
+
ǫj
(ℓj,Ωj − 1)Bo

ǫi
(ℓi,Ωi)

+
Mij

4RiRj

B−
ǫi
(ℓi,Ωi + 1)B+

ǫj
(ℓj,Ωj − 1)c+(ℓi,Ωi)c−(ℓj,Ωj)

+
Mij

4RiRj

B+
ǫi
(ℓi,Ωi − 1)B−

ǫj
(ℓj,Ωj + 1)c−(ℓi,Ωi)c+(ℓj,Ωj)

−
Mij

4RiRj

B−
ǫi
(ℓi,Ωi + 1)B−

ǫj
(ℓj,Ωj + 1)c+(ℓi,Ωi)c+(ℓj,Ωj)

−
Mij

4RiRj

B+
ǫi
(ℓi,Ωi − 1)B+

ǫj
(ℓj,Ωj − 1)c−(ℓi,Ωi)c−(ℓj,Ωj) (47)

(vii): Non diagonal terms for ∆Ω = 0, ∆Ωi = −∆Ωj = ±1; ∆ℓi = ±1; ∆ℓj = 0
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< . . .Ωi ± 1, ℓi + (ǫi1), . . . ,Ωj ∓ 1, ℓj . . . | T̂
J | . . .Ωi, ℓi, . . . ,Ωj , ℓj . . . >=

±
P̂ r
i Mi,n

2iRn

B±
ǫi
(ℓi,Ωi)c∓(ℓj,Ωj)− (

Mi,n

2RiRn

c±(ℓi,Ωi)c∓(ℓj,Ωj)B
o
ǫi
(ℓi,Ωi ± 1)

+
Mi,n

2RiRn

h̄Ωic∓(ℓj,Ωj)B
±
ǫi
(ℓi,Ωi)) (48)

(viii): Non diagonal terms for ∆Ω = 0, ∆Ωi = −∆Ωj = ±1; ∆ℓi = 0; ∆ℓj = ±1

< . . .Ωi ± 1, ℓi, . . . ,Ωj ∓ 1, ℓj + (ǫj1) . . . | T̂
J | . . .Ωi, ℓi, . . . ,Ωj , ℓj . . . >=

{

∓
P̂ r
j Mj,n

2iRn

+
Mj,nh̄Ωj

2RjRn

}

c±(ℓi,Ωi)B
∓
ǫj
(ℓj,Ωj)

−
Mj,n

2RjRn

c±(ℓi,Ωi)c∓(ℓj,Ωj)B
o
ǫj
(ℓj,Ωj ∓ 1) (49)

(ix): Non diagonal terms for ∆Ω = 0, ∆Ωi = −∆Ωj = ±1; ∆ℓi = ±1∆ ; ℓj = ±1

< . . .Ωi ± 1, ℓi + (ǫi1), . . . ,Ωj ∓ 1, ℓj + (ǫj1) . . . | T̂
J | . . .Ωi, ℓi, . . . ,Ωj , ℓj . . . >=

Mij

2

{

P̂ r
i P̂

r
j ±

P̂ r
i h̄Ωj

iRj

∓
P̂ r
j h̄Ωi

iRi

+
h̄2ΩiΩj

RiRj

}

B±
ǫi
(ℓi,Ωi)B

∓
ǫj
(ℓj,Ωj)

+
Mij

2Ri

{

∓iP̂ r
j −

h̄Ωj

Rj

}

c±(ℓi,Ωi)B
o
ǫi
(ℓi,Ωi ± 1)B∓

ǫj
(ℓj,Ωj)

+
Mij

2Rj

{

±iP̂ r
i −

h̄Ωi

Ri

}

c∓(ℓj,Ωj)B
o
ǫj
(ℓj,Ωj ∓ 1)B±

ǫi
(ℓi,Ωi)

+
Mij

2RiRj

c±(ℓi,Ωi)c∓(ℓj,Ωj)B
o
ǫi
(ℓi,Ωi ± 1)Bo

ǫj
(ℓj,Ωj ∓ 1) (50)
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VI. EXAMPLE AND DISCUSSION

The configuration of an N-atom molecule can be described by N-1 relative position vectors

after elimination of the center-of-mass motion. Many sets of coordinates commonly used for

describing molecules can be viewed as spherical coordinates for these vectors. The spherical

angles are local, i.e. they are defined for frames which change from one vector to another.

The coordinates actually consist of (i) the N-1 vector lengths, (ii) N-2 planar angles between

pairs of vectors, (iii) N-3 dihedral angles between two vectors around a third one, and

(iv) three Euler angles orienting the BF frame with respect to the SF frame. These 3N-3

coordinates are the local spherical coordinates for the N-1 vectors. This article has aimed

at exploiting this type of parametrization.

The first innovation of the method proposed in this paper is to build a particularly compact

expression of the kinetic energy. Moreover, in this expression, each term possesses its own

physical meaning and is individually hermitian. This approach is absolutely general and

can be applied to any system. In order to show how it is applied in a particular case, we

shall consider the system (AB)CD(EF) (Figure 1) because the determination of its kinetic

energy operator (for J=0) has been the subject of a recently published work[20]. In that

work, Remble and Watts have followed the method initiated by Handy[22] and used valence

coordinates to describe the molecular deformations. They have actually applied, with the

help of Mathematica[34], the chain rule twice and obtained the developed expression of the

kinetic energy containing more than 400 terms, all of them being not individually hermitian.

Let us apply our approach to this system with the same coordinates, i.e. the spherical

coordinates of the valence vectors ~Ri represented in Figure 1. Each vector ~Ri is parametrized

by spherical coordinates Ri, θi and φi, respectively bond lengths, bond angles and torsion

angles. The correspondence between Rempe et al ’s valence coordinates and the spherical

coordinates of ~Ri used in our approach is easily established since ~Rn and ~Rn−1 are
−−→
CD and

−−→
CE.

(x, y, z) Rempe axes —–> (y, x, -z) axes in this paper

θ
Rempe
1 ,θRempe

2 ,θRempe
3 ,θRempe

4 ,θRempe
5 —–> θ1, π − θ2, θ3, π − θ4, θ5

In order to derive a compact expression of the kinetic energy operator with the angular

momentum coupling terms in Eq.36, we have to determine the M matrix (Eq. 5) for
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(AB)CD(EF). We follow the method proposed in Section 2. First a set of 5 Jacobi vec-

tors (~ri, i = 1, ..., 5) has to be defined (Figure 2). The A matrix relating the valence vectors

( ~Ri, i = 1, ..., 5) parametrizing the system to the Jacobi vectors selected (Figure 2) is :


























~R1

~R2

~R3

~R4

~R5



























=



























− mB

mAB
0 − mEF

mABEF
−1 mD

mCD

0 − mE

mEF

mAB

mABEF
−1 − mC

mCD

mA

mAB
0 − mEF

mABEF
−1 mD

mCD

0 mF

mEF

mAB

mABEF
−1 − mC

mCD

0 0 0 0 1





















































~r1

~r2

~r3

~r4

~r5



























(51)

wheremA,mB,mC ,mD,mE andmF are respectively the masses of A, B, C, D, E and F while

mAB = mA+mB, mEF = mE +mF , mCD = mC +mD and mABEF = mA+mB +mE +mF .

Next, from Eq.5, the following M matrix is obtained.

M =



























1
mA

+ 1
mC

0 1
mC

0 1
mC

0 1
mD

+ 1
mF

0 1
mD

− 1
mD

1
mC

0 1
mB

+ 1
mC

0 1
mC

0 1
mD

0 1
mD

+ 1
mE

− 1
mD

1
mC

− 1
mD

1
mC

− 1
mD

1
mC

+ 1
mD



























(52)

Consequently, the expansion including more than 400 terms proposed by Rempe and

Watts can be factorized by using Eq.36, with n=5 and the masses Mij given in Eq.52. The

compact character of the present method is thus clearly illustrated in this particular case.

The second innovation consists in obtaining analytical expressions for the action of all

angular operators in the basis functions in an adequate representation. Simultaneously,

getting rid of the angular singularities is a straightforward matter. The next step for com-

pleting the present formalism is the demonstration of the fact that the treatment of the

angular singularities can been generalized to the radial singularities[25]. This generalization

is required for studying e.g. the inversion motion of the ammonia molecule [25]. To this large

amplitude motion is associated the vector linking the center of mass of H3 to the nitrogen

atom. The vector length is zero when the molecule is planar and the subsequent seeming

radial singularity can also be avoided. Moreover, our approach can be improved by taking

into account the permutation symmetries of the system. A symmetry adapted basis can be

defined. All these improvements have been used for studying the ammonia spectroscopy[25].
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If there are no identical particles, the method introduced can be straightforwardly used.

The flexibility of our approach is also worth mentioning : any set of vectors can be used. For

instance, for the study of a SN2 reaction (A+CH3B−− > ACH3+B), the combination of

Jacobi and valence vectors ilustrated in Figure 3 is advisable. To achieve the construction

of matrix TJ, radial basis functions are selected. The integrals over the radial coordinates

must be numerically calculated. From that point on, the rest of the work is numerical, and

the numerical effort will clearly impose limits to the size of the systems that can be actually

treated. For systems free in all their deformation degrees of freedom, five particles may be

treated at present. If larger systems are considered, model constraints must be introduced,

such that freezing a part of the system . This subject is, to a large extent, still to be

explored. In all cases, it should be emphasized that it is profitable to have a quantum FBR

in which the kinetic energy matrix is sparse. Combined with a DVR for the potential, the

FBR that we propose constitutes an appropriate framework for future dynamical studies of

more-than-three particle molecules (see Ref[35] and Ref[36] for instance).
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APPENDIX 1

In this appendix, the various commutators that are required for the calculations in this

article are given. They can be easily obtained from the definition of the ~̂Li BF-components.

(i=1, . . ., n-2).

[L̂ix, sinφi] = ih̄ cos2(φi) cot θi ; [L̂ix, cosφi] = −ih̄ cosφi sinφi cot θi (53)

[L̂ix, sin θi] = ih̄ sinφi cos θi ; [L̂ix, cos θi] = −ih̄ sinφi sin θi (54)

[L̂iy, sinφi] = ih̄ sinφi cot θi cosφi ; [L̂iy, cosφi] = −ih̄ sin2(φi) cot θi (55)

[L̂iy, sin θi] = −ih̄ cosφi cos θi ; [L̂iy, cos θi] = ih̄ cosφi sin θi (56)

[L̂iz, sinφi] = −ih̄ cosφi ; [L̂iz, cosφi] = ih̄ sinφi (57)

[L̂iz, sin θi] = [L̂iz, cos θi] = 0 (58)
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APPENDIX 2

This appendix puts together the various formulae required for application of the kinetic

energy operator upon the basis functions given in Equation (41) (see Ref. [33]).

cos(θ)PΩ
ℓ (cosθ) = B0

+(ℓ,Ω)P
Ω
ℓ+1(cosθ) + B0

−(ℓ,Ω)P
Ω
ℓ−1(cosθ) (59)

sin θPΩ
ℓ (cosθ) = B+

+(ℓ,Ω)P
Ω+1
ℓ+1 (cosθ) + B+

−(ℓ,Ω)P
Ω+1
ℓ−1 (cosθ) (60)

sin θPΩ
ℓ (cosθ) = B−

+(ℓ,Ω)P
Ω−1
ℓ+1 (cosθ) + B−

−(ℓ,Ω)P
Ω−1
ℓ−1 (cosθ) (61)

dPΩ
ℓ (cosθ)

dθ
= B+

0 (ℓ,Ω)P
Ω+1
ℓ (cosθ) + B−

0 (ℓ,Ω)P
Ω−1
ℓ (cosθ) (62)

where

B0
+(ℓ,Ω) =

√

√

√

√

(ℓ− Ω + 1)(ℓ+ Ω+ 1)

(2ℓ+ 1)(2ℓ+ 3)
; B0

−(ℓ,Ω) =

√

√

√

√

(ℓ− Ω)(ℓ+ Ω)

(2ℓ− 1)(2ℓ+ 1)
(63)

B+
+(ℓ,Ω) = −

√

√

√

√

(ℓ+ Ω+ 1)(ℓ+ Ω+ 2)

(2ℓ+ 1)(2ℓ+ 3)
;B+

−(ℓ,Ω) =

√

√

√

√

(ℓ− Ω)(ℓ− Ω− 1)

(2ℓ− 1)(2ℓ+ 1)
(64)

B−
+(ℓ,Ω) =

√

√

√

√

(ℓ− Ω + 1)(ℓ− Ω + 2)

(2ℓ+ 1)(2ℓ+ 3)
;B−

−(ℓ,Ω) = −

√

√

√

√

(ℓ+ Ω)(ℓ+ Ω− 1)

(2ℓ− 1)(2ℓ+ 1)
(65)

B+
0 (ℓ,Ω) =

1

2

√

(ℓ+ Ω+ 1)(ℓ− Ω);B−
0 (ℓ,Ω) = −

1

2

√

(ℓ+ Ω)(ℓ− Ω + 1) (66)

The following relationships are obtained for the spherical harmonics :

cos(θ)Y Ω
ℓ (θ, φ) = B0

+(ℓ,Ω)Y
Ω
ℓ+1(θ, φ) +B0

−(ℓ,Ω)Y
Ω
ℓ−1(θ, φ) (67)

exp(iφ) sin(θ)Y Ω
ℓ (θ, φ) = B+

+(ℓ,Ω)Y
Ω+1
ℓ+1 (θ, φ) + B+

−(ℓ,Ω)Y
Ω+1
ℓ−1 (θ, φ) (68)

exp(−iφ) sin(θ)Y Ω
ℓ (θ, φ) = B−

+(ℓ,Ω)Y
Ω−1
ℓ+1 (θ, φ) + B−

−(ℓ,Ω)Y
Ω−1
ℓ−1 (θ, φ) (69)

To specify how the operators L̂BF
i+ , L̂BF

i− , L̂izBF and (L̂2
i )

BF (i=1,...,n-2) act upon the

spherical harmonics, the following classical expressions for the kinetic momenta are used :

L̂BF
i± Y Ωi

ℓi
(θi, φi) = h̄c±i (ℓi,Ωi)Y

Ωi±1
ℓi

(θi, φi)

= h̄
√

ℓi(ℓi + 1)± Ωi(Ωi + 1)Y Ωi±1
ℓi

(θi, φi) (70)

L̂izBFY Ωi

ℓi
(θi, φi) = h̄ΩiY

Ωi

ℓi
(θi, φi)

(L̂2
i )

BFY Ω
ℓi
(θi, φi) = h̄ℓi(ℓi + 1)Y Ωi

ℓi
(θi, φi) (71)

whereas, for the operators ĴBF
+ , ĴBF

− , ĴBF
z , (Ĵ2)BF fulfilling the abnormal relationships,

we have :
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ĴBF
± Y Ω

J (β, γ) = h̄c∓Y
Ω∓1
J (β, γ) = h̄

√

J(J + 1)∓ Ω(Ω + 1)Y Ω∓1
J (β, γ) (72)

L̂izBFY Ω
J (β, γ) = h̄ΩY Ω

J (β, γ) ; (L̂2
i )

BFY Ω
J (β, γ) = h̄2J(J + 1)Y Ω

J (β, γ) (73)
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Figure Captions

Figure 1 : (AB)CD(EF) system paramatrized by 5 Valence vectors

Figure 2 : The 5 Jacobi vectors used in the calculation the matrix M.

Figure 3 : Valence vectors (~R1, ~R2 and ~R3) used to paramatrize CH3 and Jacobi vectors

(~R4 and ~R5) describing the motion of A and B in the course of a SN2 reaction.
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