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Quantum rate calculations for the H1O2→HO1O combustion reaction, as well as for the reverse
reaction, are reported. Using the DMBE IV potential energy surface, the cumulative reaction
probability N0(E) has been directly computed for total angular momentumJ50, by means of the
Seideman, Manthe and Miller Lanczos-based absorbing boundary condition method@J. Chem. Phys.
96, 4412~1992!; 99, 3411~1993!#. Special attention has been paid to the definition of the molecular
basis set, and to the sensitivity of the results to the absorbing potentials used in the asymptotic
regions. TheN0(E) results show very good overall agreement with the coupled channel calculations
of Packet al. @J. Chem. Phys.102, 5998~1995!#, although the highly oscillatory behavior just above
threshold renders such a comparison difficult in that energy range. The behavior of theJÞ0
cumulative reaction probability has been estimated from calculations using theJz-conserving
approximation forJ values in the range 10–70. This allowed us to define which reference geometry
should be used in theJ-shifting approximation, in order to compute the cumulative reaction
probability NJ(E) for any J value. By imposing conservation of the total energy within this
approximation, the rate constants are shown to display better agreement with the experimental
results. © 1998 American Institute of Physics.@S0021-9606~98!02609-9#
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I. INTRODUCTION

The HO2 molecular system has received a great dea
theoretical interest recently, both as the intermediate c
plex for the combustion reaction1–12

H1O2
OH1O, ~1!

and as a realistic prototype for unimolecular dissociation13–18

[HO2] *→H H1O2 ~I!

OH1O ~II !.

These two aspects are closely related as the Cumulative
action Probability~CRP! N(E) shows numerous resonanc
structures extending far above the reaction threshold4,5,9

Those resonances can be expected to govern the unimo
lar decomposition above the second threshold for disso
tion ~II !. Such a behavior was found by Dobbynet al.14,17

above the first threshold~I!, with widths varying over five
orders of magnitude.

In a preliminary study,5 we presented quantum mechan
cal calculations of the rate constantk(T), using Seidemann
and Miller’s formulation19,20

k~T!5@2p\QR~T!#21E
2`

1`

dEe2E/kTN~E!, ~2!

which relies on a direct evaluation of the CRPN(E). In
3480021-9606/98/108(9)/3489/9/$15.00
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order to computeN(E), the Manthe and Miller21 expression

N~E!5Tr@ P̂~E!#[(
k

pk~E! ~3!

was used, where the reaction probability operatorP̂ is

P̂~E!54ê r
1/2Ĝ~E!†êpĜ~E!ê r

1/2. ~4!

Here Ĝ(E)5(E1 i ê2Ĥ)21 is the Green’s function as de
fined by Seideman and Miller,19 whereĤ is the Hamiltonian
operator andê[ê r1 êp an absorbing potential which en
forces outgoing wave boundary conditions,ê r( êp) being the
part of the absorbing potential in the reactant~product! re-
gion. Manthe and Miller showed that a convenient way
evaluate the trace ofP̂(E) in Eq. ~3! is to determine its
eigenvalues$pk(E)%, the eigenreaction probabilities, whos
values all lie between 0 and 1. The eigenvalues ofP̂ were
computed by the Lanczos procedure described in Ref.
Thus if there aren nonzero eigenvalues$pk% which contrib-
ute to the sum in Eq.~3!, then;n Lanczos iterations~plus
maybe one or two! are required. This formulation was ap
plied to the calculation ofN(E) for total angular momentum
J50, the higherJ values~up to J5150) being handled via
the J-shifting approximation.

Recently, Germann and Miller12 extended this study to
the case where both reaction and recombinat
OH1O→HO2 are possible. In this formulation, the rate co
stants for reaction and recombination were respectively c
puted in terms of the flux correlation functions
9 © 1998 American Institute of Physics
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kp←r~T!5@Qr~T!#21E
0

`

dte2vtCrp~ t !, ~5!

krecomb~T!5@Qr~T!#21E
0

`

dt~e2vt21!~Crr ~ t !

2Crp~ t !!, ~6!

wherev is the collision frequency, and the correlations fun
tions are defined from the flux operatorsF̂r and F̂p

Crr ~ t !5tr @e2bĤ/2F̂re
2bĤ/2eiĤ t/\F̂re

2 iĤ t/\#, ~7!

Crp~ t !5tr @e2bĤ/2F̂re
2bĤ/2eiĤ t/\F̂pe2 iĤ t/\#. ~8!

Due to the numerical complexity of the system, only theJ
50 rate constant was exactly computed, the contribut
from higherJ values being accounted for by theJ-shifting
approximation. The results suggested that dampening of
forward and reverse reaction rates due to collisional rec
bination should become significant for pressures aro
1000 atm.

In the present work, using the Seidemann-Manthe-Mi
formulation ~Eqs. ~2!–~4!!, we reconsider our previous ca
culations of the rate constantk(T) with special emphasis on
the following points:

~1! as the OH1O system displays long range forces, t
reaction threshold is very sensitive to the actual defi
tion of the basis set associated to the reaction coordin
A larger grid was used in order to improve as far
possible the CRP behavior at threshold;

~2! the sensitivity of the CRP to the complex absorbing p
tentials e r and ep ~Eq. ~4!! used in the asymptotic re
gions has been checked, and quasi-independence
been achieved;

~3! the J-shifting approximation,22 which allows one to es-
timate theJ dependence of the CRP from aJ50 calcu-
lation, has been revisited. This approximation relies
defining a unique reference geometry at which the re
tion is supposed to take place. As a consequen
asymptotic closed channels can contribute to the
constant. We propose a modified version of this appro
mation which enforces conservation of the total ener

The outline of this paper is as follows. In Sec. II, we fir
describe the HO2 molecular system, and present theJ50
calculations of the CRPN(E). Section III explores the be
havior of N(E) for non zeroJ values through the use of th
Jz conserving approximation, and compares it to t
J-shifting results. In Sec. IV, we present the rate const
results as computed within theJ-shifting approximation, and
show how the modified version leads to better agreem
with experimental results. Finally, Sec. V concludes.

II. J 50 CALCULATIONS

A. Description of the system

The HO2 molecular system is described in terms of t
(RO–O,rH,O2

) Jacobi coordinates. The resultingJ50 Body
Fixed ~BF! HamiltonianH0 reads as
-
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H052
\2

2mH,O2

]2

]r 2
2

\2

2mO2

]2

]R2
2\2H 1

2mH,O2
r 2

1
1

2mO2
R2 J 1

sinu

]

]u
sin u

]

]u
1V~r ,R,u!. ~9!

The potential used is the DMBE IV energy surface of Vara
daset al.1,2 This system shows a deep well~.2.4 eV! rela-
tive to the H1O2 entrance valley, the H1O2→O1OH reac-
tion displaying an endothermicity of 0.714 eV~including
zero-point energies!.

In order to represent the Hamiltonian operator of Eq.~9!,
we start from the followingprimary direct product basis se
$ur n&uPl &uRq&%, where

• $ur n&,n51,Nr% and$uRq&,q51,NR% are sine based dis
crete variable representation~DVR!,23–25

• the$Pl (cosu),l 51,2Nl 21% Legendre basis set is re
stricted to odd functions because the ground state of the
O–H system is odd upon the interchange of the two oxyg
atoms,

Two different (r ,R)-grid definitions ~reduced and ex-
tended!, as given in Table I, have been used in the calcu
tions.

Although very convenient, this primitive basis set is ve
large, and is associated to a broad spectral range w
would limit its applicability in the subsequentL2 method
under use. It is contracted in the following two steps:

~1! First, the$uRq&,q51,NR% DVR is contracted by mean
of the HEG method26–28 in the following way. One de-
fines an effective Ve f f(R) potential as Ve f f(R)
5minr ,uV(r ,R,u). The R operator is then diagonalize
in the truncated basis set built from the eigenfunctions
theTR1Ve f f(R) one dimensional Hamiltonian. The ne
$uRp&% DVR constitutes an adaptative grid with respe
to the local de Broglie wavelength, as shown at the b
tom of Fig. 1.

~2! The basis set associated to the two other Jacobi coo
nates (r ,u) is defined via the sequential adiabatic redu
tion scheme of Bac˘ić and Light.29,30 At each grid point
Rp , the (r ,u) Hamiltonian is diagonalized, and only th
eigenfunctions$Fm(r ,u;Rp),m51,M p% located below
some threshold are retained. This threshold depend
the total energyE, and we have found that setting

TABLE I. Definition of the two primary bases used in the calculation
These bases have been contracted as defined in Sec. II A.

Interval
Representation

Reduced basis set Dimension

r @0,7# Sine-DVR$ur n&,n51,Nr% Nr570
u @0,p# Odd Legendre polynomials$Pl (u)% Nl 548
R @2,10# Sine-DVR$uRp&% NR5213

Extended basis set
r @0,9# Sine-DVR$ur n&,n51,Nr% Nr590
u @0,p# Odd Legendre polynomials$Pl (u)% Nl 548
R @2,12# Sine-DVR$uRp&% NR5273
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0.3–0.4 eV aboveE leads to converged calculations wi
respect to the basis set definition. For the HO2 system,
usingR as the slow variable makes this scheme parti
larly efficient as the (r ,u) coordinates are associated
the motion of the light H atom relative to the heavy O–
diatomic.

The basis set is finally written as$uFm(Rp)&uRp&% with
a dimension ranging from 6731 to 11581, depending on
threshold used. The corresponding adiabatic states are
played in Fig. 1. One can note, for small separation of
two oxygen atoms, a very high density of states which
associated to the motion of the H atom in ther -box.

B. Green’s function calculation

The basic step in the calculation of the CRPN(E) is the
application of the Green’s functionG(E)5(E1 i e2H)21

on some vectoruu&:

ug&5G~E!uu&. ~10!

Different schemes31–33 have been recently proposed, bas
on an expansion ofG(E) in terms of polynomials ofH. In
this work, we have solved the equivalent linear system

~E1 i e2H!ug&5uu&, ~11!

FIG. 2. Convergence of the Greens’s function calculation, using the co
gate gradient algorithm, as a function of the number of iterations. The e
represents the differenceuu(E1 i e2H)g2uuu in Eq. ~11!.

FIG. 1. Adiabatic energy curves with respect to theRO–O coordinate. These
energies are referred to the zero-point energy of the H1O2 reactants. The
filled circles (d) on theR axis correspond to the HEG grid points.
-
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testing two iterative~Conjugate Gradient, GMRes! and a di-
rect ~LU decomposition! approaches. The calculations r
ported below have been performed using a smaller c
tracted basis set of dimension 4338, as only the efficienc
the inversion scheme was to be tested.

1. Conjugate gradient

The Conjugate Gradient~CG! method34 is based on a
Lanczos scheme which brings the linear system to a tridia
nal form. Its main advantage is the reduced core mem
needed, as only four vectors are required in order to adva
the scheme. We present in Fig. 2 the convergence beha
of the CG resolution of Eq.~11!. This graph displays the
error uu(E1 i e2H)g2uuu as a function of the number o
iterations. It is clear that the scheme very quickly diverge

2. GMRes

The GMRes algorithm35,36consists in a reorthogonalize
version of the conjugate gradient method. As a result, m
core memory is required in order to store the successive
eration vectors. Figure 3 displays the convergence beha
as a function of the number of iterations. In this calculatio
a tridiagonal preconditioning has been used. Although c
verging, the scheme necessitates a very large number o
erations, of the order of the basis set size.

3. LU decomposition

The LU decomposition scheme transforms the init
(E1 i e2H) matrix into the productL= 3U= of two matrices,
L= and U= being respectively of lower and upper triangul
forms. This decomposition is performed only once for
given energyE, the Green’s function being subsequently o
tained by backward substitution.

Table II gives the computation times associated to th
two steps, as well as those corresponding to the GMRes
culation, using the same initial vectoruu&. It can be seen that
due to the slow convergence of GMRes, the direct LU d
composition appears much more efficient, as the Gree
function has to be evaluated only 5–20 times at each ene
E by backward substitution.

u-
or

FIG. 3. Same as Fig. 2 for the GMRes algorithm.
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C. Test of the optical potential

The CRP calculations rely on approximating the Gree
function representation by means of optical potentials
cated in the asymptotic regions. We now explore the se
tivity of the CRP results with respect to the definition
these optical potentials. We have used an exponential po
tial,

eexp~q!5C expS 2
a~qmax2q* !

q2q*
D , ~12!

the C and a parameters having been given by Vibok a
Balint-Kurti37 in order to maximize its absorption with re
spect to the extensionL5qmax2q* and to the translationa
energyEcol . In Table III, we present test calculations
N(E) with respect to the initial locationsR* , r * , and the
extensionsLR andLr of the optical potentials. The extende
basis definition has been used, in conjunction with a cut
energy of 1.23 eV for the adiabatic basis set definition~see
Sec. II A!. These results correspond to a total ene
E50.781 eV with respect to the H1O2 ground channel.

In these tests calculations, we successively varied
parameters of the optical potentials in the entrance (r ) and
exit (R) valleys. In both cases, theN(E) value becomes
stationary for the range valueL52 a.u., which will be used
throughout the remaining of this paper.

D. Test of the basis definition

The extended basis~see Table I!, which has been used i
the previous tests, corresponds to a very large size at hi
total energies. The reason is that the cut off value retained
defining the adiabatic states has to be increased with
energy. In another series of tests calculations, presente

TABLE II. Comparison of the GMRes and LU decomposition schemes
the Green’s function calculation~Eq. ~11!. The CPU times are given for a
Cray C90.

Scheme CPU timea Core Memoryb

GMRes 682 18
LU decompositionc 288 38
LU Back transform 0.2 38

aIn seconds on Cray C90.
bIn Megawords.
cNAG Library.

TABLE III. Variation of the N(E) CRP with respect to parameters of th
optical potential parameters. The total energy corresponds toE50.781 eV.
Lengths are given in a.u.

r * Lr R* LR N(E)

6.5 2.5 9.5 2.5 2.386
7.0 2.0 ’’ ’’ 2.407
7.5 1.5 ’’ ’’ 2.336

7.0 2.0 9.0 3.0 2.350
’’ ’’ 9.5 2.5 2.407
’’ ’’ 10.0 2.0 2.412
’’ ’’ 10.5 1.5 2.301
s
-
i-

n-

ff

y

e

er
or
he
in

Table IV, we compare the results coming from the two d
ferent bases for the total energiesE50.705, 0.745, 0.781
0.925 and 1.025 eV.

These results show that the CRP valueN(E) depends
only slightly on the basis definition except at very low e
ergy. In particular, one can note the non zero CRP va
obtained with the reduced basis atE50.705 eV, i.e., below
the actual reaction threshold. The reason for that discrepa
stems from the presence of long range forces along
OH•••O reaction coordinate. The reduced basis definiti
which corresponds to anR-grid range,2,10 does not yet dis-
play a stabilized energy along the O–O coordinate. The
tended basis has thus been used for total energies below
eV.

E. NJ 50„E… results

We present in Fig. 4 the cumulative reaction probabil
NJ50(E) as a function of the collision energy, for the tot

rTABLE IV. Comparison ofN(E) values with respect to the basis definitio
as given in Table I.

Total energy~eV! Reduced basis Extended basis

0.705 0.76 1.7(23)
0.745 1.03 1.11
0.781 2.40 2.41
0.925 3.42 3.57
1.025 5.03 4.91

FIG. 4. The cumulative reaction probabilityNJ50(E) as a function of en-
ergyE for total angular momentumJ50: The full curve reports the presen
results, as obtained by Eq.~2!, while the dashed curve corresponds to t
coupled channel calculations of Pack and coworkers~Ref. 9!: ~a! the whole
energy range studied;~b! blow up of the threshold region to show the res
nance structure.
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angular momentum valueJ50, altogether with the coupled
channel calculations of Packet al.9 The highly oscillatory
behavior just above threshold renders the comparison d
cult, but the overall agreement is very good. Figure 5 d
plays the corresponding individual eigenreaction probab
ties $pk(E)% contributing toN(E), as shown in Eq.~2!. All
these curves display resonance structures resulting fro
collision complex caused by the deep well potential. The f
that the reaction probabilities do not rise promptly to un
with increasing energy is also a manifestation of dynam
that violates the basic tenet of transition state theory; i.e.
trajectories—using the language of classical mechanic
which enter the interaction region do not proceed to pr
ucts, but some turn around and become non reactive.

III. JÞ0 APPROXIMATIONS

Using the conservation of angular momentumJ, the
CRPN(E) can be written as

N~E!5(
J

~2J11!NJ~E!. ~13!

From this equation, the individual CRP’sNJ(E) should be
calculated for each value of total angular momentum up
someJmax threshold. As will be shown in the next section,
Jmax value in the range 60–150 has to be considered,
pending on the temperature. The (J11) dependence of the
basis set size precludes any exactNJÞ0 calculation for the
L2 method adopted here. Instead, we have considered
different approximations in order to estimate the J dep
dence of the CRP: theJ-shifting approximation or theJz

conserving formulation.

A. The J -shifting approximation

This approximation is essentially a molecul
version38,39 of the wave number approximation40 of atomic
physics. It relies on the following assumptions:

~1! one neglects the coriolis coupling (K, projection ofJ on
the z BF axis, is a good quantum number! resulting in
the relation

NJ~E!; (
K52J

J

NJK~E!u, ~14!

FIG. 5. Eigenreaction reaction probabilitiespk(E)—i.e., the eigenvalues o

the matrixP̂(E) of Eq. ~3!, as a function of total energy.
fi-
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~2! the reaction takes place around some reference geom
@ABC##, at which the rotational energyEJK

# of the mol-
ecule is not available to overcome the transition sta
The effective energy for the reaction to take place
thereforeE2EJK

# , which leads to the further approxima
tion

NJK
# ~E!;NJ50~E2EJK

# !. ~15!

For the case considered here, the first assumption shoul
verified as the reaction corresponds to the motion of a li
atom with respect to the heavy oxygens. The occurrenc
resonances in this reaction might however limit its applic
bility.

The second assumption is more intricate as it suppos
well defined transition state, where essentially the whole
namics takes place. For a reaction with a deep well,
region is more dilute as it essentially spreads all over
interaction region. Resonances correspond to the system
ing trapped for a long time before dissociating in any of t
two possible channels. In practice, two different ‘‘com
plexes’’ have been used, corresponding respectively to
bottom of theH–O–O well and to the H–O•••O transition
state located in the exit valley. The corresponding geomet
are given in Table V, as well as the associated moment
inertia A, B andC.

We present in Fig. 6 theNJK50
# (E) curves, as defined in

Eq. ~15!, corresponding to these two different complexes,
values ofJ in the range 10–70. The curves obtained fro
using the H•••O–O geometry~not represented here! are al-
most indistinguishable from those corresponding to the
O–O complex. To draw these curves, the rotational ene
EJK

# has been approximated by the symmetric top expres

EJK
# 5B#J~J11!1~A#2B#!K2. ~16!

B. J z-conserving approximation

In this formulation,41 one considers thatK is conserved
during the reaction. As noted previously, the choice of O
as thez BF axis tends to improve this approximation. Its n
effect is to add the centrifugal term$J(J11)
22K2%/(2mO2

r 2) to the Hamiltonian operatorH0 of Eq. ~9!.
These calculations require the same computational effor
those presented in the previous section forJ50.

We present in Fig. 7 theNJK50
(z) (E) curves, obtained

within this approximation, for values ofJ in the range 10–
70. It should be noted that, as only the general behavio
these curves was of interest, only few total energies w
sampled, resulting in apparent smoother curves than theJ
50 counterpart. Comparison of Figs. 6 and 7 shows t

TABLE V. Different complex geometries used in theJ-shifting approxima-
tion. Distances are given in bohrs, and rotational constants in cm21.

Complex RHO ROO HOÔ A B C k

H•••O–O 4.0 2.29 117 6.14 1.13 0.96 20.631
H–O–O 1.85 2.54 104 20.25 1.10 1.04 20.891
H–O•••O 1.82 5.08 40 44.92 0.289 0.288 20.987
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using the H–O•••O transition state geometry in theJ-shifting
approximation leads to a better agreement with theJz con-
serving results. If we consider these latter results as the
description available for such a complex system, they in
cate that theJ-shifting approximation should be used wi
the H–O•••O geometry as the reference one. This conclus
is in direct contradiction with the two previous studies re
ized on this system.5,12 Both of them made use of the H
O–O geometry as it leads to a better agreement with
experimental results. This contradiction is addressed in m
detail in the next section.

FIG. 6. The cumulative reaction probabilitiesNJK50
# (E), as obtained in the

J-shifting approximation~Eq. ~15!! for different values of total angular mo
mentumJ : ~a! H–O–Ogeometry;~b! H–O•••O geometry.

FIG. 7. The cumulative reaction probabilityNJzK50(E) as obtained in theJz

conserving approximation for different values of total angular momentumJ.
st
i-

n
-

e
re

IV. RATE CONSTANT CALCULATIONS

The canonical rate constant~Eq. ~2!! displays the reac-
tant partition functionQR(T) in front of its expression. This
function is given by

QR~T!5Qel .Qv ib .Qrot .Qtrans , ~17!

whereQv ib and Qrot are the standard vibrational and rot
tional partition functions for the diatomicBC (O2 or OH!,
andQtrans5(mA,BCkT/2p\2)3/2 is the translational partition
function ~per unit volume! for relative motion ofA andBC.

The Qel term deserves special attention as it takes i
account the electronic degeneracy of the reactants:42

~1! the ground state reactants H(2S)1O2(3Sg
2) have2,4A9

symmetry. As the HO2 surface considered here is of2A9
symmetry,43 the Qel factor is 6/2.

~2! For the reverse reaction O(3P)1OH(2P), the effective
partition function44

Qel52$@513e2228/T1e2326/T#@212e2205/T#%21 ~18!

was used.

A. Convergence tests

Before presenting the rate constant calculations, we
port some tests with respect to the maximumJ value and the
total energy range required for convergence.

Using theJ-shifting approximation, it is easily shown
that the rate constantk(T) can be expressed as

k~T!5@2p\QR~T!#21Qrot
# ~T!E

2`

`

dEe2E/kTNJ50~E!,

~19!

whereQrot
# (T) is the rotational partition function of the sup

posed complex

Qrot
# ~T!5 (

J50

`

~2J11! (
K52J

J

e2EJK
# /kT. ~20!

Figure 8 displays theJ-convergence of the rotational part
tion function as a function of the temperature, for the H

FIG. 8. Convergence of the rotational partition functionQrot
# (T) as a func-

tion of the maximumJ value entering Eq.~20!, using the H–O•••O geom-
etry as reference.



e

g
on

le
le
ta
of

d

f
ta
e-
as-

e

-
-
ed

ed to
the
ced
s

into
n
en-

y

ion
he

g

cle
cti

l

ven

3495J. Chem. Phys., Vol. 108, No. 9, 1 March 1998 Viel, Leforestier, and Miller
O•••O geometry. This figure shows that very highJ values
are required in the calculations, thereby mandating the us
the J-shifting approximation.

Our second convergence test concerns the upper inte
tion limit, Emax, to be used in the rate constant calculati
~Eq. ~19!!. Figure 9 presents this rate constant for the O
O–H geometry as a function ofEmax, in the temperature
interval 500–2500 K. It shows that the energy range samp
in our calculation, and shown in Fig. 4, allows in princip
for a near convergence of the rate constant. In order to ob
this quantity at high temperatures, we have made use
linear extrapolation ofNJ50(E) beyond the last available
dataEsup51.365 eV,

NJ50~E.Esup!5NJ50~Esup!3
E2Ethr

Esup2Ethr
, ~21!

whereEthr corresponds to the threshold for reaction.

B. Forward reaction

Figure 10 shows the rate constantk(T), as given by Eq.
~2!, in the temperature rangeT5250–2500 K, for the for-
ward reaction. In this plot are reported the values obtaine

FIG. 9. Convergence of the rate constantk(T) as a function of the upper
integration limitEmax used in Eq.~19!.

FIG. 10. Arrhenius plot of the forward reaction thermal rate constantk(T),
as given by Eq.~2!, over the rangeT5250–2500 K. The dashed and lon
dashed curves correspond to theJ-shifting approximation using theH–O–O
and H–O•••O geometries respectively, the solid curve connecting the cir
refers to its modified version, and the short-long dashed curve conne
the triangles recalls the results of Germann and Miller~Ref. 12!. The quasi-
classical results of Varandaset al. ~Ref. 2! and the available experimenta
data~Refs. 45–48! are reported with their error bars.
of

ra-

–

d

in
a

in

the present calculations using theJ-shifting approximation
for the two reference geometries~H–O–O and H–O•••O!,
those computed by German and Miller12 from the flux cor-
relation functions and based on theJ-shifting approximation
~using theH–O–O geometry!, the quasi classical results o
Varandas and coworkers,2 as well as the experimental da
available.45–48 The striking fact concerns the better agre
ment between the experimental data and the calculations
sociated with theH–O–Oreference geometry, although th
Jz-conserving results revealed that the H–O•••O geometry
lead to a better description~see Figs. 6 and 7!. It thus appears
that such an agreement is fortuitous, and that theJ-shifting
approximation should be revisited.

The cumulative reaction probabilityNJ(E) is defined as
a sum over all theopenreactive and products channels

NJ~E!5 (
nR ,nP

open

uSnP←nR
~E!u2.

As formulated in Eq.~15!, theJ-shifting approximation con-
siders a (J,K) rotational channel to be open at total energyE
at the sole condition thatE2EJK

# be located above the reac
tion thresholdEthr , EJK

# corresponding to the rotational en
ergy of the reference complex. Clearly, this allows for clos
(J,K) rotational channels to contribute toN(E) in the situ-
ation where the entrance and exit channels are associat
different reduced masses, as shown in Fig. 11. This is
case for the reaction under study with approximate redu
masses ofmH and mO/2 in the entrance and exit valley
respectively.

We have thus modified theJ-shifting approximation in
order to enforce that only the open channels are taken
account. AssumingK to be a good quantum number, a give
(J,K) rotational channel was considered as open at total
ergy E if the two following conditions were met

E2EJK
#In>ETS

#In

~22!
E2EJK

#Out>ETS
#Out ,

whereEJK
# andETS

# refer respectively to the rotational energ
~Eq. ~16!! and the transition state energy~including the zero
point! of the complex. It should be noted that the assumpt
of K being a good quantum number is now invoked in t
whole interaction region;

s
ng

FIG. 11. Schematic representation of the variation of energy of a gi
(J,K) rotational channel as a function of the geometry of the system.
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@H•••O–O##↔H–O–O↔@H–O•••O##,

whereas in the usualJ-shifting approximation, this assump
tion is only made in the vicinity of the transition state. A
though the rotational constants change significantly in t
region~see Table V!, the values of these constants are ess
tially determined from the O–O distance. This new assum
tion is henceforth tantamount to postulating an adiabatic m
tion of the heavy O–O bond in the field created by the lig
H atom.

Using H–O•••O as the reference geometry in th
J-shifting approximation~Eq. ~15!!, we present in Fig. 10 the
rate constant as computed from this modified formulation
appears that the new curve is much closer to the experim
tal values. The agreement is especially good in the high
ergy regime for which the case of a (J,K) rotational channel
being closed in the entrance channel is much more prob
due to the smaller reduced mass.

C. Reverse reaction

We present in Fig. 12 the rate constantk(T) for the
reverse reaction in the temperature range 200–2500 K
well as the experimental measurements available.49,50,45,46

One can first note that the uncorrectedJ-shifting approxima-
tion based on the H–O•••O reference geometry leads to
better agreement thanH–O–O at low temperatures. This
corroborates our previous conclusions drawn from using
Jz-conserving approximation, asN(E) is the same for both
the forward and reverse reactions. At higher temperatu
our correctedJ-shifting calculations reproduce the quas
independence of the rate constant with temperature obse
experimentally.

V. DISCUSSION

We have reported new calculations of the rate consta
for the forward and reverse H1O2
OH1O combustion re-
actions, in the absence of recombination. The method c
sisted in a direct evaluation of the cumulative reaction pr
ability, using Seideman–Manthe–Miller formulation. Th
method appears especially efficient for endothermic re
tions as the number of eigenreaction probabilitiespk(E)

FIG. 12. Same as Fig. 10 for the reverse reaction.
t
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~Eqs. ~3!–~4!! to be iteratively determined is comparable
the number of open products asymptotic channels.

The Green’s functionG(E) has been evaluated by a d
rect LU decomposition of the energy shifted Hamiltonia
matrix. Such a scheme is very efficiently handled on a vec
computer~sustained speed of 800 MFLOPS on a Cray C9!,
but it requires the whole matrix to be stored in core memo
To this end, the molecular basis set has been contracte
much as possible using the successive adiabatic reduc
method of Bac˘ić and Light.29,30 For such complex systems
recently proposed expansions ofG(E) in terms of polyno-
mials of H31–33 might be preferable as they rely on a dire
evaluation of the Hamiltonian operator on some vector, th
avoiding the large core memory requirement. It must ho
ever be kept in mind that these schemes are generally us
some primitive basis set, corresponding to no or very lit
preconditioning. As a consequence, the subsequent itera
scheme is more difficult to converge due to the broader
ergy spectrum of the Hamiltonian in such a primitive ba
set.

Special attention has been paid to the definition of
optical potentials used in the asymptotic regions, in orde
achieve quasi-independence of the CRP value with respe
their parameters. The convergence of our results has b
checked by comparison with the coupled channel calcu
tions of Pack and coworkers.9

As only exact calculations are feasible for total angu
momentumJ50, the J-dependence of the CRP has be
computed within theJ-shifting approximation. This approxi
mation relies on some reference geometry at which the re
tion is supposed to take place. Two different geometries
be used as such a reference, namely the bottom of the
~H–O–O! or the transition state located in the product vall
~H–O•••O!, leading to rate constant values differing by
factor of 2 over the whole temperature range. In order
estimate the correctJ-dependence of the CRP, we employ
the Jz conserving approximation (K50) for values ofJ in
the range 10–70. Such an approximation is particularly j
tified in the present case, as the reaction can be viewed a
motion of a light atom around a breaking heavy diatom
molecule. This study revealed that the transition state
O•••O geometry should be used, whereas theJ-shifting re-
sults based on theH–O–Ocomplex geometry lead to bette
agreement with the experimental data. This apparent para
was solved by revisiting theJ-shifting approximation, and
imposing to consider only the rotational (J,K) channels
which are open with respect to both reactants and produ
This modification is of particular importance for aL1HH
→LH1H type reaction, which displays very different re
duced masses in the entrance and exit valleys.
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