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Quantum rate calculations for thetfD,—HO+O combustion reaction, as well as for the reverse
reaction, are reported. Using the DMBE IV potential energy surface, the cumulative reaction
probability No(E) has been directly computed for total angular momendus®, by means of the
Seideman, Manthe and Miller Lanczos-based absorbing boundary condition rhgtdedm. Phys.

96, 4412(1992); 99, 3411(1993]. Special attention has been paid to the definition of the molecular
basis set, and to the sensitivity of the results to the absorbing potentials used in the asymptotic
regions. TheNy(E) results show very good overall agreement with the coupled channel calculations
of Packet al.[J. Chem. Physl02 5998(1995], although the highly oscillatory behavior just above
threshold renders such a comparison difficult in that energy range. The behavior df-the
cumulative reaction probability has been estimated from calculations using,tbenserving
approximation ford values in the range 10—70. This allowed us to define which reference geometry
should be used in thd-shifting approximation, in order to compute the cumulative reaction
probability N;(E) for any J value. By imposing conservation of the total energy within this
approximation, the rate constants are shown to display better agreement with the experimental
results. ©1998 American Institute of Physids$0021-960808)02609-9

I. INTRODUCTION order to computdN(E), the Manthe and Millétt expression
The HO, molecular system has received a great deal of N(E)=Tr[|5(E)]EE pe(E) 3)
theoretical interest recently, both as the intermediate com- K

. -1 2 ~
plex for the combustion reactiort was used, where the reaction probability oper&ads

H+0,=0H+O0, (1) P(E)=4¢""G(E)"e,G(E) &' (4
Here G(E)=(E+ie—H) ! is the Green’s function as de-
fined by Seideman and Milléf,whereH is the Hamiltonian
+0, (1) operator and%zfs,%—EP an absorbing potential which en-
OH+O (II). forces outgoing wave boundary conditios(e,) being the
part of the absorbing potential in the reactgmtoduc) re-
These two aspects are closely related as the Cumulative Rgion. Manthe and Miller showed that a convenient way to
action Probability(CRP N(E) shows numerous resonance evaluate the trace oP(E) in Eq. (3) is to determine its
structures extending far above the reaction threshofd. eigenvalueqp,(E)}, the eigenreaction probabilities, whose
Those resonances can be expected to govern the unimolecgslues all lie between 0 and 1. The eigenva|ue§50f\/ere
lar decomposition above the second threshold for dissociacomputed by the Lanczos procedure described in Ref. 21.
tion (Il). Such a behavior was found by Dobbghal'**"  Thys if there aren nonzero eigenvalue,} which contrib-
above the first threshold), with widths Varying over five ute to the sum in Eq(3)7 then ~n Lanczos iteration$p|us
orders of magnitude. maybe one or twpare required. This formulation was ap-

In a preliminary study,we presented guantum mechani- plied to the calculation oR(E) for total angular momentum
cal calculations of the rate constak(fT), using Seidemann J=0, the higherd values(up to J=150) being handled via
and Miller's formulatiort®2° the J-shifting approximation.

Recently, Germann and Mill& extended this study to
the case where both reaction and recombination
OH+0—HO, are possible. In this formulation, the rate con-
stants for reaction and recombination were respectively com-
which relies on a direct evaluation of the CRKE). In puted in terms of the flux correlation functions

and as a realistic prototype for unimolecular dissociatiot¥

[HO,]* —

k(T)=[2thR(T)]‘1f:che‘E’kTN(E), 2)
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B TABLE |. Definition of the two primary bases used in the calculations.
kp%r(T) :[Qr(T)]_lfo dte™ “’tCrp(t), (5) These bases have been contracted as defined in Sec. Il A.
Representation
_ * _ Interval Reduced basis set Dimension
krecomk{T):[Qr(T)] 1f dt(e wt_l)(Crr(t)
0 r [0,7] Sine-DVR{|r,),n=1N,} N,=70
6 [ [0,7] Odd Legendre polynomialsP ()} N, =48
—Crp(1)), (6) R [210] Sine-DVR{|R)} Ng=213
wherew is the collision frequency, and the correlations func- _
. . N ~ Extended basis set
tions are defined from the flux operatdfs andF, r [0,9] Sine-DVR{|r,),n=1N,} N, =90
ey T O Sy e [ [0,7] Odd Legendre polynomialsP ()} N,=48
_ A/2 RI2.iA A At/h
Crr () =tr[e PH2F e PHiZeMUlE e 1Y, @) R [212 Sine-DVR{|R,)} Ne=273
Crp(t):tr[e—BI:I/ZIEre—BI:iIZeH—]t/hlipe—iﬁt/ﬁ]. (8)
Due to the numerical complexity of the system, only the
=0 rate constant was exactly computed, the contribution , , s
from higherJ values being accounted for by tdeshifting HO— _ A A 1
approximation. The results suggested that dampening of the 2,qu02 ar? 2,u02 IR2 2uno.r?
forward and reverse reaction rates due to collisional recom- 2
bination should become significant for pressures around 1 1 9 J
+ ——}—=— —sin0—+V(r,R,0). 9
1000 atm. ' _ _ 2u R2 [ sing 360 T ( ) ©
In the present work, using the Seidemann-Manthe-Miller 2

formulation (Eqs. (2)—(4)), we reconsider our previous cal- The potential used is the DMBE IV energy surface of Varan-
culations of the rate COﬂStah(T) with SpeCial emphaSiS on daset a|_lv2 This System shows a deep Wé"H‘24 e\o rela-
the following points: tive to the H+O, entrance valley, the HO,—O+OH reac-

(1) as the OH-O system displays long range forces, thetion displaying an endothermicity of 0.714 elhcluding
reaction threshold is very sensitive to the actual defini-Z€r0-Point energigs -
tion of the basis set associated to the reaction coordinate. N order to represent the Hamiltonian operator of &,
A larger grid was used in order to improve as far asWe Start from the followingprimary direct product basis set
possible the CRP behavior at threshold; {Ir)PAIRg)}, where . _
(2) the sensitivity of the CRP to the complex absorbing po- * {[Tn):n=1N} and{|Ry),q= 153'}'_3}; are sine based dis-
tentials €, and €, (Eq. (4)) used in the asymptotic re- crete variable representatiébVR),

gions has been checked, and quasi-independence has *the{P/(cos6),”=1,2N,—1} Legendre basis set is re-
been achieved: stricted to odd functions because the ground state of the O—

(3) the J-shifting approximatiorf2 which allows one to es- O—H system is odd upon the interchange of the two oxygen
timate theJ dependence of the CRP fromJa-0 calcu-  &toms,
lation, has been revisited. This approximation relies on  Two different {,R)-grid definitions (reduced and ex-
defining a unique reference geometry at which the reactended, as given in Table |, have been used in the calcula-
tion is supposed to take place. As a consequenceions.
asymptotic closed channels can contribute to the rate Although very convenient, this primitive basis set is very
constant. We propose a modified version of this approxilarge, and is associated to a broad spectral range which
mation which enforces conservation of the total energywould limit its applicability in the subsequerit? method

The outline of this paper is as follows. In Sec. I, we first under use. Itis contracted in the following two steps:

describe the H® molecular system, and present the 0 (1) First, the{|Ry),q=1Ng} DVR is contracted by means

calculations of the CRM(E). Section Ill explores the be- of the HEG methotf~2%in the following way. One de-
havior of N(E) for non zeroJ values through the use of the fines an effective Vqo14(R) potential as Vq(R)
J, conserving approximation, and compares it to the =min; ,V(r,R,6). TheR operator is then diagonalized
J-shifting results. In Sec. IV, we present the rate constant in the truncated basis set built from the eigenfunctions of
results as computed within thleshifting approximation, and the Tr+ Ve¢1(R) one dimensional Hamiltonian. The new
show how the modified version leads to better agreement {|.%’p>} DVR constitutes an adaptative grid with respect
with experimental results. Finally, Sec. V concludes. to the local de Broglie wavelength, as shown at the bot-
tom of Fig. 1.

(2) The basis set associated to the two other Jacobi coordi-

Il. J=0 CALCULATIONS nates ¢, ) is defined via the sequential adiabatic reduc-

tion scheme of B&c and Light?>3° At each grid point
by, the (r,#) Hamiltonian is diagonalized, and only the
The HO, molecular system is described in terms of the eigenfunctions{® (r, 6;.%2,),m=1M} located below
(Ro-0:H,0,) Jacobi coordinates. The resultidg=0 Body some threshold are retained. This threshold depends on
Fixed (BF) HamiltonianH® reads as the total energyE, and we have found that setting it

A. Description of the system
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GMRes

Energy (eV)

-2.5

R, (au) 0 500 1000 1500 2000
Iteration Number
FIG. 1. Adiabatic energy curves with respect to B o coordinate. These
energies are referred to the zero-point energy of theOH reactants. The
filled circles (@) on theR axis correspond to the HEG grid points.

FIG. 3. Same as Fig. 2 for the GMRes algorithm.

testing two iterativg Conjugate Gradient, GMRgsand a di-
0.3-0.4 eV above leads to converged calculations with rect (LU decomposition approaches. The calculations re-
respect to the basis set definition. For the Hystem, ported below have been performed using a smaller con-
usingR as the slow variable makes this scheme particutracted basis set of dimension 4338, as only the efficiency of
larly efficient as the I(,6) coordinates are associated to the inversion scheme was to be tested.
the motion of the light H atom relative to the heavy O-0O
diatomic.

] ] 1. Conjugate gradient
The basis set is finally written 4§ ,(.72,))|.%2,)} with _ , .
a dimension ranging from 6731 to 11581, depending on the '€ Conjugate GradiertCG) m_ethod’ is based on a
threshold used. The corresponding adiabatic states are dis&n¢Z0S scheme which brings the linear system to a tridiago-
played in Fig. 1. One can note, for small separation of thd'@! form. Its main advantage is the reduced core memory

two oxygen atoms, a very high density of states which ardeeded, as only four vectors are required in order to advance
associated to the r’notion of the H atom in theox. the scheme. We present in Fig. 2 the convergence behavior

of the CG resolution of Eq(11). This graph displays the
, _ _ error ||(E+ie—H)g—u|| as a function of the number of
B. Green's function calculation iterations. It is clear that the scheme very quickly diverges.

The basic step in the calculation of the CRFE) is the
application of the Green’s functio®(E)=(E+ie—H)?!

on some vectofu):
The GMRes algorithiit"*® consists in a reorthogonalized
|9)=G(E)|u). (10 version of the conjugate gradient method. As a result, more
Different scheme¥~33 have been recently proposed, basedcore memory is required in order to store the successive it-
on an expansion o&(E) in terms of polynomials oH. In  eration vectors. Figure 3 displays the convergence behavior
this work, we have solved the equivalent linear system as a function of the number of iterations. In this calculation,
(E+ie—H)|g)=|u), (11) \a}etrriQiagonal preconditioning.has been used. Although con-
ging, the scheme necessitates a very large number of it-
erations, of the order of the basis set size.

2. GMRes

Conjugate Gradient

3. LU decomposition

The LU decomposition scheme transforms the initial

(E+ie—H) matrix into the product XU of two matrices,
L and U being respectively of lower and upper triangular
forms. This decomposition is performed only once for a
given energ\E, the Green’s function being subsequently ob-
tained by backward substitution.

Table Il gives the computation times associated to these
two steps, as well as those corresponding to the GMRes cal-
0 00 200 300 400 500 600 700 culation, using the same initial vectar). It can be seen that,

Tteration Number due to the slow convergence of GMRes, the direct LU de-
FIG. 2. Convergence of the Greens’s function calculation, using the conjupomposmon appears much more efﬂcu?nt, as the Green's
gate gradient algorithm, as a function of the number of iterations. The errofUnNCtion has to be evaluated only 5-20 times at each energy
represents the differen¢dg E+ie—H)g—ul| in Eq. (11). E by backward substitution.
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TABLE Il. Comparison of the GMRes and LU decomposition schemes forTABLE IV. Comparison ofN(E) values with respect to the basis definition,
the Green’s function calculatiofEq. (11). The CPU times are given for a as given in Table I.

Cray C90.
Total energy(eV) Reduced basis Extended basis

Scheme CPU tinfe Core Memory
0.705 0.76 1.7¢3)
GMRes 682 18 0.745 1.03 1.11
LU decompositioh 288 38 0.781 2.40 2.41
LU Back transform 0.2 38 0.925 3.42 3.57
1.025 5.03 4.91

4n seconds on Cray C90.
bIn Megawords.
°NAG Library.

Table 1V, we compare the results coming from the two dif-

ferent bases for the total energies=0.705, 0.745, 0.781,

0.925 and 1.025 eV.

The CRP calculations rely on approximating the Green’s These results show_ that the CRP val¢E) depends

function representation by means of optical potentials Io-only slightly on the basis definition except at very low en-
ergy. In particular, one can note the non zero CRP value

cated in the asymptotic regions. We now explore the sensi- 27 . ) :
tivity of the CRP results with respect to the definition of obtained with the reduced basis&t0.705 eV, i.e., below

these optical potentials. We have used an exponential poteﬁhe actual reaction threshold. The reason for that discrepancy
stems from the presence of long range forces along the
OH:--O reaction coordinate. The reduced basis definition,
@(dmax— dx ) which corresponds to aR-grid range®° does not yet dis-
T play a stabilized energy along the O—O coordinate. The ex-

€exq)=C exp( - a-q
*
tended basis has thus b d for total ies below 0.92
the C and a parameters having been given by Vibok and ended basis has thus been Used for fotal energies below

Balint-Kurti®” in order to maximize its absorption with re-
spect to the extensiob=qmax—d, and to the translational g n,_ (E) results
energyE., . In Table Ill, we present test calculations of o . ] =
N(E) with respect to the initial location®, , r, , and the We present in E|g. 4 the cumglgtlve reaction probability
extensiond andL, of the optical potentials. The extended Ni=o(E) as a function of the collision energy, for the total
basis definition has been used, in conjunction with a cut off
energy of 1.23 eV for the adiabatic basis set definitisee
Sec. Il A). These results correspond to a total energy
E=0.781 eV with respect to the HO, ground channel.

In these tests calculations, we successively varied the
parameters of the optical potentials in the entrangeand
exit (R) valleys. In both cases, thd(E) value becomes
stationary for the range value=2 a.u., which will be used 40 |
throughout the remaining of this paper.

C. Test of the optical potential

(12

100 »

—= Present results
+-=-=¢ Pack & al.

80

6.0

N(E)

20

D. Test of the basis definition 00 ‘ ‘ ‘ ‘ ‘ , ‘

. . 06 07 08 09 1 LI 12 13
The extended basisee Table)l, which has been used in (a) E (V)

the previous tests, corresponds to a very large size at higher

total energies. The reason is that the cut off value retained for

defining the adiabatic states has to be increased with the 307 At |

energy. In another series of tests calculations, presented in

20

%)
TABLE Ill. Variation of the N(E) CRP with respect to parameters of the 4
optical potential parameters. The total energy correspon&s=t0.781 eV. '
Lengths are given in a.u. 1.0 e——e Present results
+---+ Pack & al.
Iy L, R, Lg N(E)
6.5 25 9.5 25 2.386 ool A
7.0 2.0 g ” 2.407 0 ‘ ey ‘ '
75 15 " " 2.336
FIG. 4. The cumulative reaction probability;_,(E) as a function of en-
7.0 2.0 9.0 3.0 2.350 ergy E for total angular momenturd=0: The full curve reports the present
" " 9.5 2.5 2.407 results, as obtained by E¢R), while the dashed curve corresponds to the
10.0 2.0 2.412 coupled channel calculations of Pack and coworkBef. 9: (a) the whole
" ” 10.5 15 2.301 energy range studiedb) blow up of the threshold region to show the reso-

nance structure.
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1.0

TABLE V. Different complex geometries used in tleshifting approxima-
tion. Distances are given in bohrs, and rotational constants in‘cm

0.8

Complex Ryo Rgo HOO A B C K
0.6 H---O-0 4.0 2.29 117 6.14 113 0.96 —-0.631
@ H-0-0 1.85 254 104 20.25 1.10 1.04 -0.891
. H-O---O 182 5.08 40 4492 0.289 0.288 —0.987

04 |

0.2

S 018” Y T (2) the reaction takes place around some reference geometry

Energy (eV) [ABC]J#, at which the rotational energi’j‘,( of the mol-
ecule is not available to overcome the transition state.
The effective energy for the reaction to take place is
thereforeE — Efj, , which leads to the further approxima-
tion

FIG. 5. Eigenreaction reaction probabilitipg( E)—i.e., the eigenvalues of
the matrixl5(E) of Eq. (3), as a function of total energy.

angular momentum valug=0, altogether_with the _coupled N* (E)~Nj_o(E—E%). (15)
channel calculations of Pacht al® The highly oscillatory

behavior just above threshold renders the comparison diffiEor the case considered here, the first assumption should be
cult, but the overall agreement is very good. Figure 5 disverified as the reaction corresponds to the motion of a light
plays the corresponding individual eigenreaction probabili-atom with respect to the heavy oxygens. The occurrence of
ties {px(E)} contributing toN(E), as shown in Eq(2). All  resonances in this reaction might however limit its applica-
these curves display resonance structures resulting from Rlity. o o .

collision complex caused by the deep well potential. The fact ~ The second assumption is more intricate as it supposes a
that the reaction probabilities do not rise promptly to unity Well defined transition state, where essentially the whole dy-
with increasing energy is also a manifestation of dynamic§'@mics takes place. For a reaction with a deep well, this
that violates the basic tenet of transition state theory; i.e., aflegion is more dilute as it essentially spreads all over the
trajectories—using the language of classical mechanics-interaction region. Resonances correspond to the system be-
which enter the interaction region do not proceed to proding trapped for a long time before dissociating in any of the

ucts, but some turn around and become non reactive. two possible channels. In practice, two different “com-
plexes” have been used, corresponding respectively to the

bottom of theH-O-Owell and to the H-O-O transition
state located in the exit valley. The corresponding geometries
Using the conservation of angular momentunthe are given in Table V, as well as the associated moments of

lll. J#0 APPROXIMATIONS

CRPN(E) can be written as inertia A, B andC.
We present in Fig. 6 thNﬁK:O(E) curves, as defined in
N(E)=>, (2J+1)N4(E). (13 Eq. (15), corresponding to these two different complexes, for
J

values ofJ in the range 10—70. The curves obtained from

From this equation, the individual CRPM,(E) should be Using the H--O—O geometrynot represented herare al-
calculated for each value of total angular momentum up td"ost indistinguishable from those corresponding to the H-
someJ;, o threshold. As will be shown in the next section, a OO complex. To draw these curves, the rotational energy
Jmax Value in the range 60—150 has to be considered, dé=x has been approximated by the symmetric top expression
pending on the temperature. Th&+1) dependence of the E# =B*J(J+1)+(A*—BHK2, (16)
basis set size precludes any exBigt., calculation for the

%2 method ado.pted. herg. Instead, we have considered twg J,-conserving approximation

different approximations in order to estimate the J depen-

dence of the CRP: thd-shifting approximation or thel, In this formulation?! one considers that is conserved
conserving formulation. during the reaction. As noted previously, the choice of O-O
as thez BF axis tends to improve this approximation. Its net
effect is to add the centrifugal term{J(J+1)

This approximation is essentially a molecular —2K2}/(2,u02r2) to the Hamiltonian operatdd® of Eq. (9).
versiort®3 of the wave number approximatitthof atomic ~ These calculations require the same computational effort as
physics. It relies on the following assumptions: those presented in the previous sectionJer0.

We present in Fig. 7 the\?_,(E) curves, obtained
within this approximation, for values af in the range 10—
70. It should be noted that, as only the general behavior of

3 these curves was of interest, only few total energies were
Ny(E)~ 2 Ny(E)), (14) sampled, resulting in apparent smoother curves than sheir
K=—J =0 counterpart. Comparison of Figs. 6 and 7 shows that

A. The J-shifting approximation

(1) one neglects the coriolis coupling(( projection ofJ on
the z BF axis, is a good quantum numbeesulting in
the relation
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[H-0-0]

10

)
z
Z 4
2 L
0 . . . . . .
0.6 0.7 0.8 09 1.0 1.1 12 1.3
(a) Energy (eV)
[H-0...0]
10 :
8 L
6 L
g
z
Z 4
2 L
0 L . . . .
0.6 0.7 0.8 09 1.0 1.1 12 13
(b) Energy (eV)

FIG. 6. The cumulative reaction probabilitidd,_,(E), as obtained in the
J-shifting approximation(Eq. (15)) for different values of total angular mo-

mentumJ : (a) H-O-Ogeometry;(b) H-O---O geometry.

using the H-0O-O transition state geometry in tleshifting
approximation leads to a better agreement with theon-

Viel, Leforestier, and Miller

—— T=500
s T = 1000
---- T=1500
——- T=2000
—-— T=2500

0 50 100 150 200
J

FIG. 8. Convergence of the rotational partition funct@ﬁn(T) as a func-
tion of the maximumJ value entering Eq(20), using the H—-©-O geom-
etry as reference.

IV. RATE CONSTANT CALCULATIONS

The canonical rate constatiq. (2)) displays the reac-
tant partition functiorQg(T) in front of its expression. This
function is given by

Qr(T)=Qe-Qyib -Qrot -Qtrans: (17)

whereQ,;, and Q,,; are the standard vibrational and rota-
tional partition functions for the diatomiBC (O, or OH),
and Qyans= (1a sckT/271%)¥2 is the translational partition
function (per unit volume for relative motion ofA andBC.
The Qg term deserves special attention as it takes into
account the electronic degeneracy of the reacténts:

(1) the ground state reactantszr$q+02(32§ ) have?“A”

serving results. If we consider these latter results as the best Symmetry. As the H@surface considered here is %"

description available for such a complex system, they indi-

symmetry*® the Q. factor is 6/2.

cate that thel-shifting approximation should be used with (2) For the reverse reaction €R)+OH(?Il), the effective

the H-0O--O geometry as the reference one. This conclusion
is in direct contradiction with the two previous studies real-
ized on this system!? Both of them made use of the H—

partition functiort*

Qei=2{[5+3e M +e7320M][2+ 272}~ (18)

O-0 geometry as it leads to a better agreement with the 55 ysed.
experimental results. This contradiction is addressed in more

detalil in the next section.

J, conserving

Nyo(E)

FIG. 7. The cumulative reaction probabilit%szo(E) as obtained in thé,

0 H e L . . .
0.6 0.7 0.8 0.9 1.0 1.1 12 13

Energy (eV)

A. Convergence tests

Before presenting the rate constant calculations, we re-
port some tests with respect to the maximiimalue and the
total energy range required for convergence.

Using the J-shifting approximation, it is easily shown
that the rate constahi(T) can be expressed as

K(T)=[27AQr(T)] *Qley(T) J dEe TN, _(E),
(19

Wherleot(T) is the rotational partition function of the sup-
posed complex

el J
Q(M=F (23+1) 3 & 5T (20

Figure 8 displays thd-convergence of the rotational parti-

conserving approximation for different values of total angular momertum tion function as a function of the temperature, for the H—
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——- T=2000
—— T=2500

k(T) [cml,mol".s‘l]

0.6 08 1.0 12 1.4

E,.(ev) HO,

FIG. 9. Convergence of the rate const&fT) as a function of the upper

. T . FIG. 11. Schematic representation of the variation of energy of a given
integration limitE,,, used in Eq(19).

(J,K) rotational channel as a function of the geometry of the system.

O---O geometry. This figure shows that very highvalues
are required in the calculations, thereby mandating the use ¢he present calculations using tleshifting approximation
the J-shifting approximation. for the two reference geometrigsl-O—-O and H-0-0),
Our second convergence test concerns the upper integrtiose computed by German and Miffefrom the flux cor-
tion limit, E,.,, to be used in the rate constant calculationrelation functions and based on theshifting approximation
(Eq. (19)). Figure 9 presents this rate constant for the O—(using theH—O—-0O geometry, the quasi classical results of
O-H geometry as a function d&,,,y, in the temperature Varandas and coworkefsas well as the experimental data
interval 500—2500 K. It shows that the energy range sample@vailable?>~*® The striking fact concerns the better agree-
in our calculation, and shown in Fig. 4, allows in principle ment between the experimental data and the calculations as-
for a near convergence of the rate constant. In order to obtaisociated with theH—O—Oreference geometry, although the
this quantity at high temperatures, we have made use of &,-conserving results revealed that the H~O geometry
linear extrapolation ofN;_,(E) beyond the last available lead to a better descriptigsee Figs. 6 and)7It thus appears

dataEg,,=1.365 eV, that such an agreement is fortuitous, and thatJshifting
E_E approximation should be revisited.
N;_o(E> Esup):NJ:O(Esup)X—thr, (21) The cumulative reaction probability;(E) is defined as
Esup™ Ethr a sum over all th@penreactive and products channels
whereE,;,, corresponds to the threshold for reaction. open
- 2
B. Forward reaction NJ(E)_ngp |SnP‘*nR(E)| '

Figure 10 shows the rate consta(l), as given by Eq.  As formulated in Eq(15), the J-shifting approximation con-
(2), in the temperature range=250-2500 K, for the for-  siders a g,K) rotational channel to be open at total enefgy
ward reaction. In this plot are reported the values obtained i the sole condition thag — E*. be located above the reac-
tion thresholdE,y, , E?K corresponding to the rotational en-
H+0,~>OH+O ergy of the'reference complex. Clgarly, this aII.ows for'closed
: , (J,K) rotational channels to contribute dM(E) in the situ-

ation where the entrance and exit channels are associated to
10° different reduced masses, as shown in Fig. 11. This is the
case for the reaction under study with approximate reduced
= o masses ofmy and mg/2 in the entrance and exit valleys
i respectively.
z = hiftng (110-0) 3 We have thus modified théshifting approximation in
gt :__:;sﬁé%‘g&} SO order to enforce that only the open channels are taken into
2 Piraglia 82145 S account. Assuming( to be a good quantum number, a given
10° ¢ VY e & Millat12] Xy (J,K) rotational channel was considered as open at total en-
e Yang & ] ‘ , ergy E if the two following conditions were met
03 0.5 0.7 0.9 1.1 #n #n
1000/T (K) E-Ex=Ess 22)
FIG. 10. Arrhenius plot of the forward reaction thermal rate constén}, E— EﬁCK)”tB E#g“t,

as given by Eq(2), over the rangd =250-2500 K. The dashed and long M M ) )
dashed curves correspond to thehifting approximation using thd—0—-0  WhereE], andE7grefer respectively to the rotational energy
and H-0--O geometries respectively, the solid curve connecting the circle§ Eq. (16)) and the transition state ener¢including the zero

refers to its modified version, and the short-long dashed curve connecting : ;
the triangles recalls the results of Germann and MilRef. 12. The quasi- Bomt) of the complex. It should be noted that the assumption

classical results of Varandas al. (Ref. 2 and the available experimental of K b_eing a QOOd qgantum number is now invoked in the
data(Refs. 45—-4Bare reported with their error bars. whole interaction region;
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OH+O—>H+0, (Eqgs. (3)—(4)) to be iteratively determined is comparable to
‘ ‘ - the number of open products asymptotic channels.

The Green'’s functiorG(E) has been evaluated by a di-
rect LU decomposition of the energy shifted Hamiltonian
matrix. Such a scheme is very efficiently handled on a vector
computer(sustained speed of 800 MFLOPS on a Cray )90

14

10

E

10

E o) (00 1 but it requires the whole matrix to be stored in core memory.
g e sy To this end, the molecular basis set has been contracted as
: & Howerd & S 0] much as possible using the successive adiabatic reduction
¥ Gormn & A1 method of Baic and Light®**° For such complex systems,
0° L o Yong &Ll | recently proposed expansions G{E) in terms of polyno-
00 o 5 v " o mials of H31=*3might be preferable as they rely on a direct
1000/T (°K) evaluation of the Hamiltonian operator on some vector, thus

avoiding the large core memory requirement. It must how-
ever be kept in mind that these schemes are generally used in
some primitive basis set, corresponding to no or very little
preconditioning. As a consequence, the subsequent iterative
[H:+-0-0f~H-0~0~[H-O---OF, scheme is more difficult to converge due to the broader en-

whereas in the usudkshifting approximation, this assump- €rgy spectrum of the Hamiltonian in such a primitive basis
tion is only made in the vicinity of the transition state. Al- S€t.

though the rotational constants change significantly in that SPecial attention has been paid to the definition of the
region(see Table V, the values of these constants are essenoptical potentials used in the asymptotic regions, in order to
tially determined from the O—O distance. This new assump&chieve quasi-independence of the CRP value with respect to
tion is henceforth tantamount to postulating an adiabatic motheir parameters. The convergence of our results has been

tion of the heavy O—0O bond in the field created by the lightchecked by comparison with the coupled channel calcula-
H atom. tions of Pack and coworkefs.

J-shifting approximation{Eq. (15)), we present in Fig. 10 the MomentumJ=0, the J-dependence of the CRP has been
rate constant as computed from this modified formulation. 1€omputed within the-shifting approximation. This approxi-
appears that the new curve is much closer to the experimefpation relies on some reference geometry at which the reac-
tal values. The agreement is especially good in the high erfion is supposed to take place. Two different geometries can
ergy regime for which the case of 4,K) rotational channel be used as such a reference, namely the bottom of the well

being closed in the entrance channel is much more probabléi—0—0 or the transition state located in the product valley
due to the smaller reduced mass. (H-O---0), leading to rate constant values differing by a

factor of 2 over the whole temperature range. In order to
_ estimate the correcd-dependence of the CRP, we employed
C. Reverse reaction the J, conserving approximationk(=0) for values ofJ in
We present in Fig. 12 the rate consta(fT) for the the range 10-70. Such an approximation is particularly jus-
reverse reaction in the temperature range 200—2500 K, diied in the present case, as the reaction can be viewed as the
well as the experimental measurements avail&hg4546 ~ motion of a light atom around a breaking heavy diatomic
One can first note that the uncorrecteghifting approxima-  molecule. This study revealed that the transition state H-
tion based on the H-@O reference geometry leads to a O-:*O geometry should be used, whereas Jrehifting re-
better agreement thaH—O—O at lowtemperatures. This Sults based on thel-O-Ocomplex geometry lead to better
corroborates our previous conclusions drawn from using th@greement with the experimental data. This apparent paradox
J,-conserving approximation, d$(E) is the same for both Was solved by revisiting thd-shifting approximation, and
the forward and reverse reactions. At higher temperaturedNP0SIng to consider only the rotational,K) channels
our correctedJ-shifting calculations reproduce the quasi- Which are open with respect to both reactants and products.

independence of the rate constant with temperature observedlis modification is of particular importance forlat HH
experimentally. —LH+H type reaction, which displays very different re-

duced masses in the entrance and exit valleys.
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V. DISCUSSION
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