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ON SEMI-CLASSICAL LIMIT OF NONLINEAR QUANTUM SCATTERING

RÉMI CARLES

ABSTRACT. We consider the nonlinear Schrödinger equation with a short-range external

potential, in a semi-classical scaling. We show that for fixed Planck constant, a com-

plete scattering theory is available, showing that both the potential and the nonlinearity

are asymptotically negligible for large time. Then, for data under the form of coherent

state, we show that a scattering theory is also available for the approximate envelope of the

propagated coherent state, which is given by a nonlinear equation. In the semi-classical

limit, these two scattering operators can be compared in terms of classical scattering the-

ory, thanks to a uniform in time error estimate. Finally, we infer a large time decoupling

phenomenon in the case of finitely many initial coherent states.

1. INTRODUCTION

We consider the equation

(1.1) iε∂tψ
ε +

ε2

2
∆ψε = V (x)ψε + |ψε|2ψε, (t, x) ∈ R× R

3,

and both semi-classical (ε → 0) and large time (t → ±∞) limits. Of course these limits

must not be expected to commute, and one of the goals of this paper is to analyze this lack

of commutation on specific asymptotic data, under the form of coherent states as described

below. Even though our main result (Theorem 1.6) is proven specifically for the above case

of a cubic three-dimensional equation, two important intermediate results (Theorems 1.4

and 1.5) are established in a more general setting. Unless specified otherwise, we shall

from now on consider ψε : Rt × Rd
x → C, d > 1.

1.1. Propagation of initial coherent states. In this subsection, we consider the initial

value problem, as opposed to the scattering problem treated throughout this paper. More

precisely, we assume here that the wave function is, at time t = 0, given by the coherent

state

(1.2) ψε(0, x) =
1

εd/4
a

(
x− q0√

ε

)
eip0·(x−q0)/ε,

where q0, p0 ∈ Rd denote the initial position and velocity, respectively. The function a
belongs to the Schwartz class, typically. In the case where a is a (complex) Gaussian,

many explicit computations are available in the linear case (see [33]). Note that the L2-

norm of ψε is independent of ε, ‖ψε(t, ·)‖L2(Rd) = ‖a‖L2(Rd).

Throughout this subsection, we assume that the external potential V is smooth and real-

valued, V ∈ C∞(Rd;R), and at most quadratic, in the sense that

∂αV ∈ L∞(Rd), ∀|α| > 2.

This assumption will be strengthened when large time behavior is analyzed.

This work was supported by the French ANR projects SchEq (ANR-12-JS01-0005-01) and BECASIM (ANR-

12-MONU-0007-04).
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2 R. CARLES

1.1.1. Linear case. Resume (1.1) in the absence of nonlinear term:

(1.3) iε∂tψ
ε +

ε2

2
∆ψε = V (x)ψε, x ∈ R

d,

associated with the initial datum (1.2). To derive an approximate solution, and to describe

the propagation of the initial wave packet, introduce the Hamiltonian flow

(1.4) q̇(t) = p(t), ṗ(t) = −∇V (q(t)) ,

and prescribe the initial data q(0) = q0, p(0) = p0. Since the potential V is smooth and at

most quadratic, the solution (q(t), p(t)) is smooth, defined for all time, and grows at most

exponentially. The classical action is given by

(1.5) S(t) =

∫ t

0

(
1

2
|p(s)|2 − V (q(s))

)
ds.

We observe that if we change the unknown function ψε to uε by

(1.6) ψε(t, x) = ε−d/4uε
(
t,
x− q(t)√

ε

)
ei(S(t)+p(t)·(x−q(t)))/ε,

then, in terms of uε = uε(t, y), the Cauchy problem (1.3)–(1.2) is equivalent to

(1.7) i∂tu
ε +

1

2
∆uε = V ε(t, y)uε ; uε(0, y) = a(y),

where the external time-dependent potential V ε is given by

(1.8) V ε(t, y) =
1

ε

(
V (x(t) +

√
εy)− V (x(t)) −√

ε 〈∇V (x(t)), y〉
)
.

This potential corresponds to the first term of a Taylor expansion of V about the point q(t),
and we naturally introduce u = u(t, y) solution to

(1.9) i∂tu+
1

2
∆u =

1

2
〈Q(t)y, y〉u ; u(0, y) = a(y),

where

Q(t) := ∇2V (q(t)) , so that
1

2
〈Q(t)y, y〉 = lim

ε→0
V ε(t, y).

The obvious candidate to approximate the initial wave function ψε is then:

(1.10) ϕε(t, x) = ε−d/4u

(
t,
x− q(t)√

ε

)
ei(S(t)+p(t)·(x−q(t)))/ε.

Indeed, it can be proven (see e.g. [2, 4, 17, 33, 35, 36]) that there existsC > 0 independent

of ε such that

‖ψε(t, ·)− ϕε(t, ·)‖L2(Rd) 6 C
√
εeCt.

Therefore, ϕε is a good approximation of ψε at least up to time of order c ln 1
ε (Ehrenfest

time).
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1.1.2. Nonlinear case. When adding a nonlinear term to (1.3), one has to be cautious about

the size of the solution, which rules the importance of the nonlinear term. To simplify the

discussions, we restrict our analysis to the case of a gauge invariant, defocusing, power

nonlinearity, |ψε|2σψε. We choose to measure the importance of nonlinear effects not

directly through the size of the initial data, but through an ε-dependent coupling factor: we

keep the initial datum (1.2) (with an L2-norm independent of ε), and consider

iε∂tψ
ε +

ε2

2
∆ψε = V (x)ψε + εα|ψε|2σψε.

Since the nonlinearity is homogeneous, this approach is equivalent to considering α = 0,

up to multiplying the initial datum by εα/(2σ). We assume σ > 0, with σ < 2/(d − 2) if

d > 3: for a ∈ Σ, defined by

Σ = {f ∈ H1(Rd), x 7→ 〈x〉 f(x) ∈ L2(Rd)}, 〈x〉 =
(
1 + |x|2

)1/2
,

we have, for fixed ε > 0, ψε
|t=0 ∈ Σ, and the Cauchy problem is globally well-posed,

ψε ∈ C(Rt; Σ) (see e.g. [9]). It was established in [11] that the value

αc = 1 +
dσ

2

is critical in terms of the effect of the nonlinearity in the semi-classical limit ε → 0. If

α > αc, then ϕε
lin, given by (1.9)-(1.10), is still a good approximation of ψε at least up to

time of order c ln 1
ε . On the other hand, if α = αc, nonlinear effects alter the behavior of

ψε at leading order, through its envelope only. Replacing (1.9) by

(1.11) i∂tu+
1

2
∆u =

1

2
〈Q(t)y, y〉u+ |u|2σu,

and keeping the relation (1.10), ϕε is now a good approximation of ψε. In [11] though,

the time of validity of the approximation is not always proven to be of order at least c ln 1
ε ,

sometimes shorter time scales (of the order c ln ln 1
ε ) have to be considered, most likely for

technical reasons only. Some of these restrictions have been removed in [37], by consider-

ing decaying external potentials V .

1.2. Linear scattering theory and coherent states. We now consider the aspect of large

time, and instead of prescribing ψε at t = 0 (or more generally at some finite time),

we impose its behavior at t = −∞. In the linear case (1.3), there are several results

addressing the question mentioned above, considering different forms of asymptotic states

at t = −∞. Before describing them, we recall important facts concerning quantum and

classical scattering.

1.2.1. Quantum scattering. Throughout this paper, we assume that the external potential

is short-range, and satisfies the following properties:

Assumption 1.1. We suppose that V is smooth and real-valued, V ∈ C∞(Rd;R). In

addition, it is short range in the following sense: there exists µ > 1 such that

(1.12) |∂αV (x)| 6 Cα

(1 + |x|)µ+|α| , ∀α ∈ N
d.

Our final result is established under the stronger condition µ > 2 (a condition which

is needed in several steps of the proof), but some results are established under the mere

assumption µ > 1. Essentially, the analysis of the approximate solution is valid for µ > 1
(see Section 4), while the rest of the analysis requires µ > 2.
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Denote by

Hε
0 = −ε

2

2
∆ and Hε = −ε

2

2
∆ + V (x)

the underlying Hamiltonians. For fixed ε > 0, the (linear) wave operators are given by

W ε
± = lim

t→±∞
ei

t
εH

ε

e−i t
εH

ε
0 ,

and the (quantum) scattering operator is defined by

Sε
lin =

(
W ε

+

)∗
W ε

−.

See for instance [20].

1.2.2. Classical scattering. Let V satisfying Assumption 1.1. For (q−, p−) ∈ Rd × Rd,

we consider the classical trajectories (q(t), p(t)) defined by (1.4), along with the prescribed

asymptotic behavior as t→ −∞:

(1.13) lim
t→−∞

∣∣q(t)− p−t− q−
∣∣ = lim

t→−∞
|p(t)− p−| = 0.

The existence and uniqueness of such a trajectory can be found in e.g. [20, 51], provided

that p− 6= 0. Moreover, there exists a closed set N0 of Lebesgue measure zero in R2d such

that for all (q−, p−) ∈ R2d \ N0, there exists (q+, p+) ∈ Rd ×
(
Rd \ {0}

)
such that

lim
t→+∞

∣∣q(t)− p+t− q+
∣∣ = lim

t→+∞
|p(t)− p+| = 0.

The classical scattering operator is Scl : (q−, p−) 7→ (q+, p+). Choosing (q−, p−) ∈
R2d \ N0 implies that the following assumption is satisfied:

Assumption 1.2. The asymptotic center in phase space, (q−, p−) ∈ Rd ×
(
Rd \ {0}

)
is

such that the classical scattering operator is well-defined,

Scl(q−, p−) = (q+, p+), p+ 6= 0,

and the classical action has limits as t→ ±∞:

lim
t→−∞

∣∣∣∣S(t)− t
|p−|2
2

∣∣∣∣ = lim
t→+∞

∣∣∣∣S(t)− t
|p+|2
2

− S+

∣∣∣∣ = 0,

for some S+ ∈ R.

1.2.3. Some previous results. It seems that the first mathematical result involving both

the semi-classical and large time limits appears in [27], where the classical field limit of

non-relativistic many-boson theories is studied in space dimension d > 3.

In [56], the case of a short range potential (Assumption 1.1) is considered, with asymp-

totic states under the form of semi-classically concentrated functions,

e−i εt2 ∆ψε(t)|t=−∞ =
1

εd/2
f̂

(
x− q−

ε

)
, f ∈ L2(Rd),

where f̂ denotes the standard Fourier transform (whose definition is independent of ε).
The main result from [56] shows that the semi-classical limit for Sε

lin can be expressed in

terms of the classical scattering operator, of the classical action, and of the Maslov index

associated to each classical trajectory. We refer to [56] for a precise statement, and to [57]

for the case of long range potentials, requiring modifications of the dynamics.
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In [34, 35], coherent states are considered,

(1.14) e−i εt2 ∆ψε(t)|t=−∞ =
1

εd/4
u−

(
x− q−√

ε

)
eip

−·(x−q−)/ε+iq−·p−/(2ε) =: ψε
−(x).

More precisely, in [34, 35], the asymptotic state u− is assumed to be a complex Gaussian

function. Introduce the notation

δ(t) = S(t)− q(t) · p(t)− q− · p−
2

.

Then Assumption 1.2 implies that there exists δ+ ∈ R such that

δ(t) −→
t→−∞

0 and δ(t) −→
t→+∞

δ+.

In [17, 35], we find the following general result (an asymptotic expansion in powers of
√
ε

is actually given, but we stick to the first term to ease the presentation):

Theorem 1.3. Let Assumptions 1.1 and 1.2 be satisfied, and let

u−(y) = a− exp

(
i

2
〈Γ−y, y〉

)
,

where a− ∈ C and Γ− is a complex symmetric d × d matrix whose imaginary part is

positive and non-degenerate. Considerψε solution to (1.3), with (1.14). Then the following

asymptotic expansion holds in L2(Rd):

Sε
linψ

ε
− =

1

εd/4
eiδ

+/εeip
+·(x−q+)/ε+iq+·p+/(2ε)R̂(G+)u−

(
x− q+√

ε

)
+O(

√
ε),

where R̂(G+) is the metaplectic transformation associated to G+ = ∂(q+,p+)
∂(q−,p−) .

As a corollary, our main result yields another interpretation of the above statement. It

turns out that a complete scattering theory is available for (1.9). As a particular case of

Theorem 1.5 (which addresses the nonlinear case), given u− ∈ Σ, there exist a unique

u ∈ C(R; Σ) solution to (1.9) and a unique u+ ∈ Σ such that

‖e−i t
2∆u(t)− u±‖Σ −→

t→±∞
0.

Then in the above theorem (where u− is restricted to be a Gaussian), we have

u+ = R̂(G+)u−.

Finally, we mention in passing the paper [48], where similar issues and results are obtained

for

iε∂tψ
ε +

ε2

2
∆ψε = V

(x
ε

)
ψε + U(x)ψε,

for V a short-range potential, and U is bounded as well as its derivatives. The special

scaling in V implies that initially concentrated waves (at scaled ε) first undergo the effects

of V , then exit a time layer of order ε, through which the main action of V corresponds

to the above quantum scattering operator (but with ε = 1 due to the new scaling in the

equation). Then, the action of V becomes negligible, and the propagation of the wave is

dictated by the classical dynamics associated to U .
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1.3. Main results. We now consider the nonlinear equation

(1.15) iε∂tψ
ε +

ε2

2
∆ψε = V (x)ψε + εα|ψε|2σψε,

along with asymptotic data (1.14). We first prove that for fixed ε > 0, a scattering theory is

available for (1.15): at this stage, the value of α is naturally irrelevant, as well as the form

(1.14). To establish a large data scattering theory for (3.1), we assume that the attractive

part of the potential,

(∂rV (x))+ =

(
x

|x| · ∇V (x)

)

+

is not too large, where f+ = max(0, f) for any real number f .

Theorem 1.4. Let d > 3, 2
d < σ < 2

d−2 , and V satisfying Assumption 1.1 for some µ > 2.

There exists M =M(µ, d) such that if the attractive part of the potential (∂rV )+ satisfies

(∂rV (x))+ 6
M

(1 + |x|)µ+1
, ∀x ∈ R

d,

one can define a scattering operator for (3.1) in H1(Rd): for all ψε
− ∈ H1(Rd), there

exist a uniqueψε ∈ C(R;H1(Rd)) solution to (3.1) and a uniqueψε
+ ∈ H1(Rd) such that

‖ψε(t)− ei
εt
2 ∆ψε

±‖H1(Rd) −→
t→±∞

0.

The (quantum) scattering operator is the map Sε : ψε
− 7→ ψε

+.

We emphasize the fact that several recent results address the same issue, under various

assumptions on the external potential V : [58] treats the case where V is an inverse square

(a framework which is ruled out in our contribution), while in [12], the potential is more

general than merely inverse square. In [12], a magnetic field is also included, and the

Laplacian is perturbed with variable coefficients. We make more comparisons with [12] in

Section 3.

The second result of this paper concerns the scattering theory for the envelope equation:

Theorem 1.5. Let d > 1, 2
d 6 σ < 2

(d−2)+
, and V satisfying Assumption 1.1 for some

µ > 1. One can define a scattering operator for (1.11) in Σ: for all u− ∈ Σ, there exist a

unique u ∈ C(R; Σ) solution to (1.11) and a unique u+ ∈ Σ such that

‖e−i t
2∆u(t)− u±‖Σ −→

t→±∞
0.

As mentioned above, the proof includes the construction of a linear scattering operator,

comparing the dynamics associated to (1.9) to the free dynamics ei
t
2∆. In the above for-

mula, we have incorporated the information that ei
t
2∆ is unitary on H1(Rd), but not on Σ

(see e.g. [13]).

We can now state the nonlinear analogue to Theorem 1.3. Since Theorem 1.4 requires

d > 3, we naturally have to make this assumption. On the other hand, we will need the

approximate envelope u to be rather smooth, which requires a smooth nonlinearity, σ ∈ N.

Intersecting this property with the assumptions of Theorem 1.4 leaves only one case: d = 3
and σ = 1, that is (1.1), up to the scaling. We will see in Section 5 that considering d = 3
is also crucial, since the argument uses dispersive estimates which are known only in the

three-dimensional case for V satisfying Assumption 1.1 with µ > 2 (larger values for µ
could be considered in higher dimensions, though). Introduce the notation

Σk = {f ∈ Hk(Rd), x 7→ |x|kf(x) ∈ L2(Rd)}.
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Theorem 1.6. Let Assumptions 1.1 and 1.2 be satisfied, with µ > 2 and V as in Theo-

rem 1.4. Consider ψε solution to

iε∂tψ
ε +

ε2

2
∆ψε = V (x)ψε + ε5/2|ψε|2ψε, (t, x) ∈ R× R

3,

and such that (1.14) holds, with u− ∈ Σ7. Then the following asymptotic expansion holds

in L2(R3):

(1.16) Sεψε
− =

1

ε3/4
eiδ

+/εeip
+·(x−q+)/ε+iq+·p+/(2ε)u+

(
x− q+√

ε

)
+O(

√
ε),

where Sε is given by Theorem 1.4 and u+ stems from Theorem 1.5.

Remark 1.7. In the subcritical case, that is if we consider

iε∂tψ
ε +

ε2

2
∆ψε = V (x)ψε + εα|ψε|2ψε, (t, x) ∈ R× R

3,

along with (1.14), for some α > 5/2, the argument of the proof shows that (1.16) remains

true, but with u+ given by the scattering operator associated to (1.9) (as opposed to (1.11)),

that is, the same conclusion as in Theorem 1.3 when u− is a Gaussian.

As a corollary of the proof of the above result, and of the analysis from [11], we infer:

Corollary 1.8 (Asymptotic decoupling). Let Assumption 1.1 be satisfied, with µ > 2 and

V as in Theorem 1.4. Consider ψε solution to

iε∂tψ
ε +

ε2

2
∆ψε = V (x)ψε + ε5/2|ψε|2ψε, (t, x) ∈ R× R

3,

with initial datum

ψε(0, x) =

N∑

j=1

1

ε3/4
aj

(
x− q0j√

ε

)
eip0j ·(x−q0j)/ε =: ψε

0(x),

where N > 2, q0j , p0j ∈ R3, p0j 6= 0 so that scattering is available as t → +∞ for

(qj(t), pj(t)), in the sense of Assumption 1.2, and aj ∈ S(R3). We suppose (q0j , p0j) 6=
(q0k, p0k) for j 6= k. Then we have the uniform estimate:

sup
t∈R

∥∥∥∥∥∥
ψε(t)−

N∑

j=1

ϕε
j(t)

∥∥∥∥∥∥
L2(R3)

−→
ε→0

0,

where ϕε
j is the approximate solution with the j-th wave packet as an initial datum. As a

consequence, the asymptotic expansion holds in L2(R3), as ε→ 0:

(
W ε

±
)−1

ψε
0 =

N∑

j=1

1

ε3/4
eiδ

±
j /εeip

±
j ·(x−q±j )/ε+iq±j ·p±

j /(2ε)uj±

(
x− q±j√

ε

)
+ o(1),

where the inverse wave operators
(
W ε

±
)−1

stem from Theorem 1.4, the uj±’s are the as-

ymptotic states emanating from aj , and

δ±j = lim
t→±∞

(
Sj(t)−

qj(t) · pj(t)− q0j · p0j
2

)
∈ R.



8 R. CARLES

Remark 1.9. In the case V = 0, the approximation by wave packets is actually exact, since

then Q(t) ≡ 0, hence uε = u. For one wave packet, Theorem 1.6 becomes empty, since

it is merely a rescaling. On the other hand, for two initial wave packets, even in the case

V = 0, Corollary 1.8 brings some information, reminiscent of profile decomposition. More

precisely, define uε by (1.6), and choose (arbitrarily) to privilege the trajectory (q1, p1).
The Cauchy problem is then equivalent to





i∂tu
ε +

1

2
∆uε = |uε|2uε,

uε(0, y) = a1(y) + a2

(
y +

q01 − q02√
ε

)
eip02·δq0/ε−iδp0·y/

√
ε,

where we have set δp0 = p01 − p02 and δq0 = q01 − q02. Note however that the initial

datum is uniformly bounded in L2(R3), but in no Hs(R3) for s > 0 (if p01 6= p02), while

the equation is Ḣ1/2-critical, Therefore, even in the case V = 0, Corollary 1.8 does not

seem to be a consequence of profile decompositions like in e.g. [21, 42, 45]. In view of

(1.4), the approximation provided by Corollary 1.8 reads, in that case:

uε(t, y) = u1(t, y) + u2

(
t, y +

tδp0 + δq0√
ε

)
eiφ

ε
2(t,y) + o(1) in L∞(R;L2(R3)),

where the phase shift is given by

φε2(t, y) =
1

ε
p02 · (tδp0 + δq0)−

1√
ε
δp0 · y +

t

2ε

(
|p02|2 − |p01|2

)

=
1

ε
p02 · δq0 −

1√
ε
δp0 · y −

t

2ε
|δp0|2.

Notation. We write aε(t) . bε(t) whenever there exists C independent of ε ∈ (0, 1] and t
such that aε(t) 6 Cbε(t).

2. SPECTRAL PROPERTIES AND CONSEQUENCES

In this section, we derive some useful properties for the Hamiltonian

H = −1

2
∆+ V.

Since the dependence upon ε is not addressed in this section, we assume ε = 1.

First, it follows for instance from [46] that Assumption 1.1 implies thatH has no singu-

lar spectrum. Based on Morawetz estimates, we show that H has no eigenvalue, provided

that the attractive part of V is sufficiently small. Therefore, the spectrum of H is purely

absolutely continuous. Finally, again if the attractive part of V is sufficiently small, zero is

not a resonance of H , so Strichartz estimates are available for e−itH .

2.1. Morawetz estimates and a first consequence. In this section, we want to treat both

linear and nonlinear equations, so we consider

(2.1) i∂tψ +
1

2
∆ψ = V ψ + λ|ψ|2σψ, λ ∈ R.

Morawetz estimate in the linear case λ = 0 will show the absence of eigenvalues. In

the nonlinear case λ > 0, these estimates will be a crucial tool for prove scattering in

the quantum case. The following lemma and its proof are essentially a rewriting of the

presentation from [3].
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Proposition 2.1 (Morawetz inequality). Let d > 3, and V satisfying Assumption 1.1 for

some µ > 2. There existsM =M(µ, d) > 0 such that if the attractive part of the potential

satisfies

(∂rV (x))+ 6
M

(1 + |x|)µ+1
, ∀x ∈ R

d,

then any solution ψ ∈ L∞(R;H1(Rd)) to (2.1) satisfies

(2.2) λ

∫∫

R×Rd

|ψ(t, x)|2σ+2

|x| dtdx+

∫∫

R×Rd

|ψ(t, x)|2
(1 + |x|)µ+1

dtdx . ‖ψ‖2L∞(R;H1).

In other words, the main obstruction to global dispersion for V comes from (∂rV )+,

which is the attractive contribution of V in classical trajectories, while (∂rV )− is the re-

pulsive part, which does not ruin the dispersion associated to −∆ (it may reinforce it, see

e.g. [8], but repulsive potentials do not necessarily improve the dispersion, see [32]).

Proof. The proof follows standard arguments, based on virial identities with a suitable

weight. We resume the main steps of the computations, and give more details on the

choice of the weight in our context. For a real-valued function h(x), we compute, for ψ
solution to (3.1),

d

dt

∫
h(x)|ψ(t, x)|2dx = Im

∫
ψ̄(t, x)∇h(x) · ∇ψ(t, x)dx,

(2.3)

d

dt
Im

∫
ψ̄(t, x)∇h(x) · ∇ψ(t, x)dx =

∫
∇ψ̄(t, x) · ∇2h(x)∇ψ(t, x)dx

−1

4

∫
|ψ(t, x)|2∆2h(x)dx−

∫
|ψ(t, x)|2∇V · ∇h(x)dx

+
λσ

σ + 1

∫
|ψ(t, x)|2σ+2∆h(x)dx.

In the case V = 0, the standard choice is h(x) = |x|, for which

∇h =
x

|x| , ∇2
jkh =

1

|x|

(
δjk − xjxk

|x|2
)
, ∆h >

d− 1

h
, and ∆2h 6 0 for d > 3.

This readily yields Proposition 2.1 in the repulsive case ∂rV 6 0, since ∇h ∈ L∞.

In the same spirit as in [3], we proceed by perturbation to construct a suitable weight

when the attractive part of the potential is not too large. We seek a priori a radial weight,

h = h(|x|) > 0, so we have

∆h = h′′ +
d− 1

r
h′,

∆2h = h(4) + 2
d− 1

r
h(3) +

(d− 1)(d− 3)

r2
h′′ − (d− 1)(d− 3)

r3
h′,

∇2
jkh =

1

r

(
δjk − xjxk

r2

)
h′ +

xjxk
r2

h′′.

We construct a function h such that h′, h′′ > 0, so the condition ∇2h > 0 will remain.

The goal is then to construct a radial function h such that the second line in (2.3) is non-

negative, along with ∆h > η/|x| for some η > 0.
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Case d = 3. In this case, the expression for ∆2h is simpler, and the above conditions read

1

4
h(4) +

1

r
h(3) +∇V (x) · ∇h 6 0,

h′′ +
2

r
h′ >

η

r
, h′, h′′ > 0.

Since we do not suppose a priori that V is a radial potential, the first condition is not

rigorous. We actually use the fact that for h′ > 0, Assumption 1.1 implies

∇V (x) · ∇h 6 (∂rV (x))+ h
′(r) 6

M

(1 + r)µ+1
h′(r).

To achieve our goal, it is therefore sufficient to require:

1

4
h(4) +

1

r
h(3) +

M

(1 + r)µ+1
h′ 6 0,(2.4)

h′′ +
2

r
h′ >

η

r
, h′ ∈ L∞(R+), h

′, h′′ > 0.(2.5)

In view of (2.5), we seek

h′(r) = η +

∫ r

0

h′′(ρ)dρ.

Therefore, if h′′ > 0 with h′′ ∈ L1(R+), (2.5) will be automatically fulfilled. We now

turn to (2.4). Since we want h′ ∈ L∞, we may even replace h′ by a constant in (2.4), and

solve, for C > 0, the ODE

1

4
h(4) +

1

r
h(3) +

C

(1 + r)µ+1
= 0.

We readily have

h(3)(r) = −4C

r4

∫ r

0

ρ4

(1 + ρ)µ+1
dρ,

along with the properties h(3)(0) = 0,

h(3)(r) ∼
r→∞

− k

rmin(µ,4)
, for some k > 0.

It is now natural to set

h′′(r) = −
∫ ∞

r

h(3)(ρ)dρ,

so we have h′′ ∈ C([0,∞);R+) and

h′′(r) ∼
r→∞

κ

rmin(µ−1,3)
, for some κ > 0.

This function is indeed in L1 if and only if µ > 2. We define h by h(r) =
∫ r

0 h
′(ρ)dρ,

(2.6) h(3)(r) = −K
r4

∫ r

0

ρ4

(1 + ρ)µ+1
dρ,

for some K > 0, h′′ and h′ being given by the above relations: (2.5) is satisfied for any

value of K > 0, and (2.4) boils down to an inequality of the form

(2.7) − K

4
+M (η + C(µ)K) 6 0,

where C(µ) is proportional to

1

K
‖h′‖L∞ =

∫ ∞

0

∫ ∞

r

1

ρ4

∫ ρ

0

s4

(1 + s)µ+1
dsdρdr.
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We infer that (2.6) is satisfied for K ≫ η, provided that M < 1
4C(µ) . Note then that by

construction, we may also require

1

4
∆2h+∇V · ∇h 6

−c0
(1 + |x|)µ+1

,

for c0 > 0 morally very small.

Case d > 4. Resume the above reductions, pretending that the last two terms in ∆2h are

not present: (2.6) just becomes

h(3)(r) = − K

r2d−2

∫ r

0

ρ2d−2

(1 + ρ)µ+1
dρ,

and we see that with h′′ and h′ defined like before, we have

rh′′ − h′ = −η −
∫ r

0

h′′ + rh′′.

Since this term is negative at r = 0 and has a non-positive derivative, we have rh′′−h′ 6 0,

so finally ∆2h 6 0. �

We infer that H has no eigenvalue. Indeed, if there were an L2 solution ψ = ψ(x)
to Hψ = Eψ, E ∈ R, then ψ ∈ H2(Rd), and ψ(x)e−iEt would be an H1 solution to

(2.1) for λ = 0. This is contradiction with the global integrability in time from (2.2), so

σpp(H) = ∅.

2.2. Strichartz estimates. In [3, Proposition 3.1], it is proved that zero is not a resonance

of H , but with a definition of resonance which is not quite the definition in [52], which

contains a result that we want to use. So we shall resume the argument.

By definition (as in [52]), zero is a resonance of H , if there is a distributional solution

ψ 6∈ L2, such that 〈x〉−s ψ ∈ L2(Rd) for all s > 1
2 , to Hψ = 0.

Corollary 2.2. Under the assumptions of Proposition 2.1, zero is not a resonance of H .

Proof. Suppose that zero is a resonance of H . Then by definition, we obtain a stationary

distributional solution of (2.1) (case λ = 0), ψ = ψ(x), and we may assume that it is

real-valued. Since ∆ψ = 2V ψ, Assumption 1.1 implies

〈x〉µ−s
∆ψ ∈ L2(Rd), ∀s > 1

2
.

This implies that ∇ψ ∈ L2, by taking for instance s = 1 in
∫

|∇ψ|2 = −
∫

〈x〉−s ψ 〈x〉s ∆ψ.

By definition, for all test function ϕ,

(2.8)
1

2

∫

Rd

∇ϕ(x) · ∇ψ(x)dx +

∫

Rd

V (x)ϕ(x)ψ(x)dx = 0.

Let h be the weight constructed in the proof of Proposition 2.1, and consider

ϕ = ψ∆h+ 2∇ψ · ∇h.
Since ∇h ∈ L∞, ∇2h(x) = O(〈x〉−1), and ∇3h(x) = O(〈x〉−2), we see that ϕ ∈ H1,

and that this choice is allowed in (2.8). Integration by parts then yields (2.3) (where the

left hand side is now zero):

0 =

∫
∇ψ · ∇2h∇ψ − 1

4

∫
ψ2∆2h−

∫
ψ2∇V · ∇h.
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By construction of h, this implies
∫

Rd

ψ(x)2

(1 + |x|)µ+1
dx 6 0,

hence ψ ≡ 0. �

Therefore, [52, Theorem 1.4] implies non-endpoint global in time Strichartz estimates.

In the case d = 3, we know from [31] that (in view of the above spectral properties)

‖e−itH‖L1→L∞ 6 C|t|−d/2, ∀t 6= 0,

a property which is stronger than Strichartz estimates, and yields the endpoint Strichartz

estimate missing in [52], from [41]. On the other hand, this dispersive estimate does not

seem to be known under Assumption 1.1 with µ > 2 when d > 4: stronger assumptions

are always present so far (see e.g. [7, 22]). However, endpoint Strichartz estimates for

d > 4 are a consequence of [19, Theorem 1.1], under the assumptions of Proposition 2.1.

Proposition 2.3. Let d > 3. Under the assumptions of Proposition 2.1, for all (q, r) such

that

(2.9)
2

q
= d

(
1

2
− 1

r

)
, 2 < q 6 ∞,

there exists C = C(q, d) such that

‖e−itHf‖Lq(R;Lr(Rd)) 6 C‖f‖L2(Rd), ∀f ∈ L2(Rd).

It is classical that this homogeneous Strichartz estimate, a duality argument and Christ-

Kiselev’s Theorem imply the inhomogeneous counterpart. For two admissible pairs (q1, r1)
and (q2, r2) (that is, satisfying (2.9)), there exists Cq1,q2 independent of the time interval I
such that if we denote by

R(F )(t, x) =

∫

I∩{s6t}
e−i(t−s)HF (s, x)ds,

we have

‖R(F )‖Lq1(I;Lr1(Rd)) 6 Cq1,q2‖F‖Lq′
2(I;Lr′

2(Rd))
, ∀F ∈ Lq′2(I;Lr′2(Rd)).

Note that the assumption µ > 2 seems essentially sharp in order to have global in time

Strichartz estimates. The result remains true for µ = 2 ([5, 6]), but in [32], the authors

prove that for repulsive potentials which are homogeneous of degree smaller than 2, global

Strichartz estimates fail to exist.

3. QUANTUM SCATTERING

In this section, we prove Theorem 1.4. Since the dependence upon ε is not measured in

Theorem 1.4, we shall consider the case ε = 1, corresponding to

(3.1) i∂tψ +
1

2
∆ψ = V ψ + |ψ|2σψ.

We split the proof of Theorem 1.4 into two steps. First, we solve the Cauchy problem with

data prescribed at t = −∞, that is, we show the existence of wave operators. Then, given

an initial datum at t = 0, we show that the (global) solution to (3.1) behaves asymptotically

like a free solution, which corresponds to asymptotic completeness.
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For each of these two steps, we first show that the nonlinearity is negligible for large

time, and then recall that the potential is negligible for large time (linear scattering). This

means that for any ψ̃− ∈ H1(Rd), there exists a unique ψ ∈ C(R;H1(Rd)) solution to

(3.1) such that

‖ψ(t)− e−itH ψ̃−‖H1(Rd) −→
t→−∞

0,

and for any ϕ ∈ H1(Rd), there exist a unique ψ ∈ C(R;H1(Rd)) solution to (3.1) and a

unique ψ̃+ ∈ H1(Rd) such that

‖ψ(t)− e−itH ψ̃+‖H1(Rd) −→
t→+∞

0.

Then, we recall that the potential V is negligible for large time. We will adopt the following

notations for the propagators,

U(t) = ei
t
2∆, UV (t) = e−itH .

In order to construct wave operators which show that the nonlinearity can be neglected

for large time, we shall work with an H1 regularity, on the Duhamel’s formula associated

to (3.1) in terms of UV , with a prescribed asymptotic behavior as t→ −∞:

(3.2) ψ(t) = UV (t)ψ̃− − i

∫ t

−∞
UV (t− s)

(
|ψ|2σψ(s)

)
ds.

Applying the gradient to this formulation brings up the problem of non-commutativity with

UV . The worst term is actually the linear one, UV (t)ψ̃−, since

∇
(
UV (t)ψ̃−

)
= UV (t)∇ψ̃− − i

∫ t

0

UV (t− s)
(
(UV (s)ψ̃−)∇V

)
ds.

Since the construction of wave operators relies on the use of Strichartz estimates, it would

be necessary to have an estimate of
∥∥∥∇
(
UV (t)ψ̃−

)∥∥∥
LqLr

in terms of ψ−, for admissible pairs (q, r). Proposition 2.3 yields
∥∥∥∇
(
UV (t)ψ̃−

)∥∥∥
LqLr

. ‖∇ψ̃−‖L2 + ‖(UV (t)ψ̃−)∇V ‖Lq̃′Lr̃′ ,

for any admissible pair (q̃, r̃). In the last factor, time is present only in the term UV (t)ψ̃−,

so to be able to use Strichartz estimates again, we need to consider q̃ = 2, in which case

r̃ = 2∗ := 2d
d−2 :

‖(UV (t)ψ̃−)∇V ‖L2L2∗′ 6 ‖UV (t)ψ̃−‖L2L2∗‖∇V ‖Ld/2,

where Assumption 1.1 implies ∇V ∈ Ld/2(Rd) as soon as µ > 1. Using the endpoint

Strichartz estimate from Proposition 2.3, we have

‖UV (t)ψ̃−‖L2L2∗ . ‖ψ̃−‖L2 ,

and we have:

Lemma 3.1. Let d > 3. Under the assumptions of Proposition 2.1, for all admissible pair

(q, r),

‖e−itHf‖Lq(R;W 1,r(Rd)) . ‖f‖H1(Rd).

We shall rather use a vector-field, for we believe this approach may be interesting in

other contexts.
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3.1. Vector-field. We introduce a vector-field which naturally commutes with UV , and is

comparable with the gradient.

From Assumption 1.1, V is bounded, so there exists c0 > 0 such that V + c0 > 0. We

shall consider the operator

A =
√
H + c0 =

√
−1

2
∆ + V + c0.

Lemma 3.2. Let d > 3, and V satisfying Assumption 1.1 with V + c0 > 0. For every

1 < r <∞, there exists Cr,Kr such that for all f ∈W 1,r(Rd),

(3.3) ‖Af‖Lr 6 Cr (‖f‖Lr + ‖∇f‖Lr) 6 Kr (‖f‖Lr + ‖Af‖Lr) .

Proof. The first inequality is very close to [19, Theorem 1.2], and the proof can readily

be adapted. On the other hand, the second inequality would require the restriction 4/3 <
r < 4 if we followed the same approach, based on Stein’s interpolation theorem (a similar

approach for followed in e.g. [43]). We actually take advantage of the smoothness of the

potential V to rather apply Calderón–Zygmund result on the action of pseudo-differential

operators.

We readily check that the two functions

a(x, ξ) =

√
|ξ|2
2 + V (x) + c0

1 + |ξ|2 , b(x, ξ) =

√
|ξ|2

|ξ|2
2 + V (x) + c0 + 1

,

are symbols of order zero, in the sense that they satisfy

|∂αx ∂βξ a(x, ξ)|+ |∂αx ∂βξ b(x, ξ)| 6 Cα,β 〈ξ〉−|β| ,

for all α, β ∈ Nd. This implies that the pseudo-differential operators of symbol a and b,
respectively, are bounded on Lr(Rd), for all 1 < r < ∞; see e.g. [53, Theorem 5.2]. In

the case of a, this yields the first inequality in (3.3), and in the case of b, this yields the

second inequality. �

3.2. Wave operators. With the tools presented in the previous section, we can prove the

following result by adapting the standard proof of the case V = 0, as established in [29].

Proposition 3.3. Let d > 3, 2
d 6 σ < 2

d−2 , and V satisfying Assumption 1.1 for some

µ > 2. For all ψ̃− ∈ H1(Rd), there exists a unique

ψ ∈ C((−∞, 0];H1(Rd)) ∩ L 4σ+4
dσ ((−∞, 0);L2σ+2(Rd))

solution to (3.1) such that

‖ψ(t)− e−itH ψ̃−‖H1(Rd) −→
t→−∞

0.

Proof. The main part of the proof is to prove that (3.2) has a fixed point. Let

q =
4σ + 4

dσ
.
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The pair (q, 2σ + 2) is admissible, in the sense that it satisfies (2.9). With the notation

Lβ
TY = Lβ(]−∞,−T ];Y ), we introduce:

XT :=
{
ψ ∈ C(]−∞,−T ];H1) ; ‖ψ‖Lq

TL2σ+2 6 K‖ψ̃−‖L2 ,

‖∇ψ‖Lq
TL,2σ+2 6 K‖ψ̃−‖H1 , ‖ψ‖L∞

T L2 6 2‖ψ̃−‖L2 ,

‖∇ψ‖L∞
T L2 6 K‖ψ̃−‖H1 , ‖ψ‖Lq

TL2σ+2 6 2
∥∥∥UV (·)ψ̃−

∥∥∥
Lq

TL2σ+2

}
,

where K will be chosen sufficiently large in terms of the constants present in Strichartz

estimates presented in Proposition 2.3. Set r = s = 2σ + 2: we have

1

r′
=

1

r
+

2σ

s
,

1

q′
=

1

q
+

2σ

k
,

where q 6 k < ∞ since 2/d 6 σ < 2/(d − 2). Denote by Φ(ψ) the right hand side

of (3.2). For ψ ∈ XT , Strichartz estimates and Hölder inequality yield, for all admissible

pairs (q1, r1):

‖Φ(ψ)‖Lq1
T Lr1 6 Cq1‖ψ̃−‖L2 + C

∥∥|ψ|2σψ
∥∥
Lq′

T Lr′

6 Cq1‖ψ̃−‖L2 + C‖ψ‖2σLk
TLs‖ψ‖Lq

TLr

6 Cq1‖ψ̃−‖L2 + C‖ψ‖2σθLq
TLr‖ψ‖2σ(1−θ)

L∞
T Lr ‖ψ‖Lq

TLr ,

for some 0 < θ 6 1, where we have used the property r = s = 2σ+2. Sobolev embedding

and the definition of XT then imply:

‖Φ(ψ)‖Lq1
T Lr1 6 Cq1‖ψ̃−‖L2 + C

∥∥∥UV (·)ψ̃−
∥∥∥
2σθ

Lq
TLr

‖ψ‖2σ(1−θ)
L∞

T H1 ‖ψ‖Lq
TLr .

We now apply the operatorA. Since A commutes with H , we have

‖AΦ(ψ)‖Lq1
T Lr1 . ‖Aψ̃−‖L2 +

∥∥A
(
|ψ|2σψ

)∥∥
Lq′

T Lr′ .

In view of Lemma 3.2, we have successively,

‖Aψ̃−‖L2 . ‖ψ̃−‖H1 ,
∥∥A
(
|ψ|2σψ

)∥∥
Lq′

T Lr′ .
∥∥|ψ|2σψ

∥∥
Lq′

T Lr′ +
∥∥∇
(
|ψ|2σψ

)∥∥
Lq′

T Lr′

. ‖ψ‖2σLk
TLs

(
‖ψ‖Lq

TLr + ‖∇ψ‖Lq
TLr

)

. ‖ψ‖2σLk
TLs

(
‖ψ‖Lq

TLr + ‖Aψ‖Lq
TLr

)
.

We infer along the same lines as above,

‖∇Φ(ψ)‖Lq1
T Lr1 . ‖ψ̃−‖H1 +

∥∥∥UV (·)ψ̃−
∥∥∥
2σθ

Lq
TLr

‖ψ‖2σ(1−θ)
L∞

T H1

(
‖ψ‖Lq

TLr + ‖Aψ‖Lq
TLr

)
.

We have also

‖Φ(ψ)‖Lq
TLr 6

∥∥∥UV (·)ψ̃−
∥∥∥
Lq

TLr
+ C

∥∥∥UV (·)ψ̃−
∥∥∥
2σθ

Lq
TLr

‖ψ‖2σ(1−θ)
L∞

T H1 ‖ψ‖Lq
TLr .

From Strichartz estimates, UV (·)ψ̃− ∈ Lq(R;Lr), so
∥∥∥UV (·)ψ̃−

∥∥∥
Lq

TLr
→ 0 as T → +∞.

Since θ > 0, we infer that Φ sends XT to itself, for T sufficiently large.
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We have also, for ψ2, ψ1 ∈ XT :

‖Φ(ψ2)− Φ(ψ1)‖Lq
TLr . max

j=1,2
‖ψj‖2σLk

TLs ‖ψ2 − ψ1‖Lq
TLr

.
∥∥∥UV (·)ψ̃−

∥∥∥
2σθ

Lq
TLr

‖ψ̃−‖2σ(1−θ)
H1 ‖ψ2 − ψ1‖Lq

TLr .

Up to choosing T larger, Φ is a contraction on XT , equipped with the distance

d(ψ2, ψ1) = ‖ψ2 − ψ1‖Lq
TLr + ‖ψ2 − ψ1‖L∞

T L2 ,

which makes it a Banach space (see [13]). Therefore, Φ has a unique fixed point in XT ,

solution to (3.2). It follows from (3.3) that this solution has indeed an H1 regularity with

‖ψ(t)− e−itH ψ̃−‖H1(Rd) −→
t→−∞

0.

In view of the global well-posedness results for the Cauchy problem associated to (3.1)

(see e.g. [13]), the proposition follows. �

3.3. Asymptotic completeness. There are mainly three approaches to prove asymptotic

completeness for nonlinear Schrödinger equations (without potential). The initial approach

([28]) consists in working with a Σ regularity. This makes it possible to use the operator

x+it∇, which enjoys several nice properties, and to which an important evolution law (the

pseudo-conformal conservation law) is associated; see Section 4 for more details. This law

provides important a priori estimates, from which asymptotic completeness follows very

easily the the case σ > 2/d, and less easily for some range of σ below 2/d; see e.g. [13].

The second historical approach relaxes the localization assumption, and allows to work

in H1(Rd), provided that σ > 2/d. It is based on Morawetz inequalities: asymptotic

completeness is then established in [44, 29] for the case d > 3, and in [47] for the low

dimension cases d = 1, 2, by introducing more intricate Morawetz estimates. Note that

the case d 6 2 is already left out in our case, since we have assumed d > 3 to prove

Proposition 3.3.

The most recent approach to prove asymptotic completeness in H1 relies on the intro-

duction of interaction Morawetz estimates in [16], an approach which has been revisited

since, in particular in [49] and [30]. See also [55] for a very nice alternative approach of

the use of interaction Morawetz estimates. In the presence of an external potential, this

approach was used in [12], by working with Morrey-Campanato type norms.

An analogue for the pseudo-conformal evolution law is available (see e.g. [13]), but it

seems that in the presence of V satisfying Assumption 1.1, it cannot be exploited to get

satisfactory estimates. We shall rather consider Morawetz estimates as in [29], and thus

give an alternative proof of the corresponding result from [12]: note that for λ = 1, the

first part of (2.2) provides exactly the same a priori estimate as in [29].

Proposition 3.4. Let d > 3, 2
d < σ < 2

d−2 , and V satisfying Assumption 1.1 for some

µ > 2. There exists M =M(µ, d) such that if the attractive part of the potential satisfies

(∂rV (x))+ 6
M

(1 + |x|)µ+1
, ∀x ∈ R

d,

then for all ϕ ∈ H1(Rd), there exist a unique ψ ∈ C(R;H1(Rd)) solution to (3.1) with

ψ|t=0 = ϕ, and a unique ψ̃+ ∈ H1(Rd) such that

‖ψ(t)− e−itH ψ̃+‖H1(Rd) −→
t→+∞

0.

In addition, ψ,∇ψ ∈ Lq(R+, L
r(Rd)) for all admissible pairs (q, r).
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Proof. The proof follows that argument presented in [29] (and resumed in [26]), so we

shall only described the main steps and the modifications needed in the present context.

The key property in the proof consists in showing that there exists 2 < r < 2d
d−2 such that

(3.4) ‖ψ(t)‖Lr −→
t→+∞

0.

Since ψ ∈ L∞(R;H1) (see e.g. [13]), we infer that the above property is true for all

2 < r < 2d
d−2 . This aspect is the only one that requires some adaptation in our case.

Indeed, once this property is at hand, the end of the proof relies on Strichartz estimates

applied to Duhamel’s formula. In our framework, since we first want to get rid of the

nonlinearity only (and not the potential V yet), we consider

ψ(t) = UV (t)ϕ− i

∫ t

0

UV (t− s)
(
|ψ|2σψ(s)

)
ds,

and thanks to Proposition 2.3, it is possible to follow exactly the same lines as in [29] (see

also [54]) in order to infer Proposition 3.4.

Therefore, the only delicate point is to show that (3.4) holds for some 2 < r < 2d
d−2 .

This corresponds to Corollary 5.1 in [29] (Lemme 12.6 in [26]). The main technical re-

mark is that once Morawetz estimate is available (the one given in Proposition 2.1, whose

final conclusion does not depend on V ), one uses dispersive properties of the group U(t).
As mentioned above, we do not want to use dispersive properties of UV (t), since they are

known only in the case d = 3 (on the other hand, this means that the result is straightfor-

ward in the case d = 3, from [29] and [31]). So instead, we consider Duhamel’s formula

for (3.1) in terms of U(t), which reads

(3.5) ψ(t) = U(t)ϕ− i

∫ t

0

U(t− s)
(
|ψ|2σψ(s)

)
ds− i

∫ t

0

U(t− s) (V ψ(s)) ds.

The new term compared to [29] is of course the last term in (3.5), and so the nonlinearity

is now

f(ψ) = |ψ|2σψ + V ψ.

Following the argument from [29] (or [26]), it suffices to prove the following two proper-

ties:

1. There exist r1 > 2∗ = 2d
d−2 and α > 0 such that

(3.6)

∥∥∥∥∥

∫ t−ℓ

t0

U(t− s) (V ψ(s)) ds

∥∥∥∥∥
Lr1(Rd)

6 Cℓ−α‖ψ‖L∞(R;H1),

Consider a Lebesgue index r1 slightly larger than 2∗,

1

r1
=

1

2∗
− η, 0 < η ≪ 1.

Let ℓ > 0, and consider

I1(t) =

∥∥∥∥∥

∫ t−ℓ

t0

U(t− s) (V ψ(s)) ds

∥∥∥∥∥
Lr1(Rd)

.

Standard dispersive estimates for U yield

I1(t) .

∫ t−ℓ

t0

(t− s)−δ1‖V ψ(s)‖
Lr′1ds,
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where δ1 is given by

δ1 = d

(
1

2
− 1

r1

)
= 1 + ηd.

Now we apply Hölder inequality in space, in view of the identity

1

r′1
=

1

2
+

1

d
− η =

1

2
− 1

d
+ η

︸ ︷︷ ︸
1/k

+
2

d
− 2η

︸ ︷︷ ︸
1/q

.

For η > 0 sufficiently small, V ∈ Lq(Rd) since µ > 2, and so

‖V ψ(s)‖
Lr′1 6 ‖V ‖Lq‖ψ(s)‖Lk . ‖ψ‖L∞(R;H1),

where we have used Sobolev embedding, since 2 < k < 2∗. We infer

I1(t) .

∫ t−ℓ

t0

(t− s)−δ1ds‖ψ‖L∞(R;H1) .

∫ ∞

ℓ

s−δ1ds‖ψ‖L∞(R;H1)

. ℓ1−δ1‖ψ‖L∞(R;H1) = ℓ−ηd‖ψ‖L∞(R;H1).

2. Now for fixed ℓ > 0, let

I2(t) =

∥∥∥∥
∫ t

t−ℓ

U(t− s) (V ψ(s)) ds

∥∥∥∥
L2σ+2(Rd)

.

We show that for any ℓ > 0, I2(t) → 0 as t→ ∞. Dispersive estimates for U(t) yield

I2(t) .

∫ t

t−ℓ

(t− s)−δ‖V ψ(s)‖
L

2σ+2
2σ+1

ds, δ = d

(
1

2
− 1

2σ + 2

)
=

dσ

2σ + 2
< 1.

For (a small) α to be fixed later, Hölder inequality yields

‖V ψ(s)‖
L

2σ+2
2σ+1

=

∥∥∥∥|x|αV
ψ(s)

|x|α
∥∥∥∥
L

2σ+2
2σ+1

6 ‖|x|αV ‖
L

σ+1
σ

∥∥∥∥
ψ(s)

|x|α
∥∥∥∥
L2σ+2

.

Note that for 0 < α ≪ 1, ‖|x|αV ‖
L

σ+1
σ

is finite, since σ+1
σ > d

2 and µ > 2. For

0 < θ < 1, write
∥∥∥∥
ψ(s)

|x|α
∥∥∥∥
L2σ+2

=

∥∥∥∥
|ψ(s)|θ
|x|α |ψ(s)|1−θ

∥∥∥∥
L2σ+2

6

∥∥∥∥
ψ(s)

|x|α/θ
∥∥∥∥
θ

L2σ+2

‖ψ(s)‖1−θ
L2σ+2

.

∥∥∥∥
ψ(s)

|x|α/θ
∥∥∥∥
θ

L2σ+2

‖ψ‖1−θ
L∞(R;H1) .

To use Morawetz estimate, we impose α/θ = 1/(2σ + 2), so that we have
∥∥∥∥
ψ(s)

|x|α
∥∥∥∥
L2σ+2

.

(∫

Rd

|ψ(s, x)|2σ+2

|x| dx

)θ/(2σ+2)

‖ψ‖1−θ
L∞(R;H1) .

We conclude by applying Hölder inequality in time: since δ < 1, the map s 7→ (t − s)−δ

belongs to Lq
loc for 1 6 q 6 1 + γ and γ > 0 sufficiently small. Let q = 1 + γ with

0 < γ ≪ 1 so that s 7→ (t− s)−δ ∈ Lq
loc: we have q′ <∞, and we can choose 0 < θ ≪ 1

(or equivalently 0 < η ≪ 1) so that

θq′ = 2σ + 2.

We end up with

I2(t) . ℓβ

(∫∫

[t−ℓ,t]×Rd

|ψ(s, x)|2σ+2

|x| dsdx

)1/(2σ+2)q′

,
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for some β > 0. The last factor goes to zero as t → ∞ from Proposition 2.1. �

3.4. Scattering. Under Assumption 1.1, a linear scattering theory is available, provided

that µ > 1; see e.g. [20, Section 4.6]. This means that the following strong limits exist in

L2(Rd),

lim
t→−∞

UV (−t)U(t), and lim
t→+∞

U(−t)UV (t),

where the second limit usually requires to project on the continuous spectrum. Recall that

this projection is the identity in our framework.

Lemma 3.5. Let d > 3, V satisfying Assumption 1.1 with p > 1. Then the strong limit

lim
t→−∞

UV (−t)U(t)

exists in H1(Rd).

Proof. Following Cook’s method ([51, Theorem XI.4]), it suffices to prove that for all

ϕ ∈ S(Rd),

t 7→ ‖UV (−t)V U(t)ϕ‖H1 ∈ L1((−∞,−1]).

For the L2 norm, we have

‖UV (−t)V U(t)ϕ‖L2 = ‖V U(t)ϕ‖L2 .

Assumption 1.1 implies that V ∈ Lq(Rd) for all q > d/µ. For µ > 1, let q be given by

1

q
=

1

d
+ η, with η > 0 and q >

d

µ
.

We apply Hölder inequality with the identity

1

2
=

1

q
+

1

2
− 1

d
− η

︸ ︷︷ ︸
1/r

.

Using dispersive estimates for U(t), we have

‖V U(t)ϕ‖L2 . ‖U(t)ϕ‖Lr . |t|−d( 1
2− 1

r )‖ϕ‖Lr′ = |t|−1−dη‖ϕ‖Lr′ ,

hence the existence of the strong limit in L2.

For the H1 limit, recall that from Lemma 3.2,

‖∇UV (−t)V U(t)ϕ‖L2 . ‖AUV (−t)V U(t)ϕ‖L2

Since A commutes with UV which is unitary on L2, the right hand side is equal to

‖AV U(t)ϕ‖L2 . ‖V U(t)ϕ‖H1 ,

where we have used Lemma 3.2 again. Now

‖V U(t)ϕ‖H1 6 ‖V U(t)ϕ‖L2 + ‖∇V × U(t)ϕ‖L2 + ‖V U(t)∇ϕ‖L2 ,

and each term is integrable, like for the L2 limit, from Assumption 1.1. �

In the case d = 3, the dispersive estimates established by Goldberg [31] make it possible

to prove asymptotic completeness in H1 by Cook’s method as well: for all ϕ ∈ S(Rd),

t 7→ ‖U(−t)V UV (t)ϕ‖H1 ∈ L1(R),
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a property which can be proven by the same computations as above, up to changing the

order of the arguments. To complete the proof of Theorem 1.4, it therefore remains to

prove that for d > 4, ψ+ ∈ H1(Rd) and

(3.7) ‖ψ(t)− U(t)ψ+‖H1(Rd) −→
t→∞

0.

It follows from the above results that

ψ(t) = U(t)ψ+ + i

∫ +∞

t

U(t− s)
(
|ψ|2σψ(s)

)
ds+ i

∫ +∞

t

U(t− s) (V (ψ(s)) ds,

and that ψ,∇ψ ∈ Lq(R;Lr(Rd)) for all admissible pairs (q, r). Since we have

ψ+ = U(−t)ψ(t)− i

∫ +∞

t

U(−s)
(
|ψ|2σψ(s)

)
ds− i

∫ +∞

t

U(−s) (V (ψ(s)) ds,

the previous estimates show that ψ+ ∈ H1(Rd), along with (3.7).

4. SCATTERING FOR THE ASYMPTOTIC ENVELOPE

In this section, we prove Theorem 1.5. The general argument is similar to the quantum

case: we first prove that the nonlinear term can be neglected to large time, and then rely on

previous results to neglect the potential. Recall that in view of Assumption 1.1, the time

dependent harmonic potential 1
2 〈Q(t)y, y〉 satisfies

(4.1)

∥∥∥∥
dα

dtα
Q(t)

∥∥∥∥ . 〈t〉−µ−2−α
, α ∈ N,

where ‖ · ‖ denotes any matricial norm. We denote by

HQ = −1

2
∆+

1

2
〈Q(t)y, y〉

the time-dependent Hamiltonian present in (1.11). Like in the quantum case, we show that

the nonlinearity is negligible for large time by working on Duhamel’s formula associated to

(1.11) in terms of HQ. Since HQ depends on time, we recall that the propagator UQ(t, s)
is the operator which maps u0 to ulin(t), where ulin solves

i∂tulin +
1

2
∆ulin =

1

2
〈Q(t)y, y〉ulin; ulin(s, y) = u0(y).

It is a unitary dynamics, in the sense that UQ(s, s) = 1, and UQ(t, τ)UQ(τ, s) = UQ(t, s);
see e.g. [20]. Then to prove the existence of wave operators, we consider the integral

formulation

(4.2) u(t) = UQ(t, 0)ũ− − i

∫ t

−∞
UQ(t, s)

(
|u|2σu(s)

)
ds.

A convenient tool is given by Strichartz estimates associated toUQ. Local in time Strichartz

estimates follow from general results given in [25], where local dispersive estimates are

proven for more general potential. To address large time, we take advantage of the fact that

the potential is exactly quadratic with respect to the space variable, so an explicit formula

is available for UQ, entering the general family of Mehler’s formulas (see e.g. [23, 39]).
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4.1. Mehler’s formula. Consider, for t0 ≪ −1,

i∂tu+
1

2
∆u =

1

2
〈Q(t)y, y〉u ; u(t0, y) = u0(y).

We seek a solution of the form

(4.3) u(t, y) =
1

h(t)

∫

Rd

e
i
2 (〈M1(t)y,y〉+〈M2(t)z,z〉+2〈P (t)y,z〉)u0(z)dz,

with symmetric matrices M1,M2, P ∈ Sd(R). Experience shows that no linear term is

needed in this formula, since the potential is exactly quadratic (see e.g. [18]).

We compute:

i∂tu = −i ḣ
h
u− 1

2

〈
Ṁ1(t)y, y

〉
u

+
1

h

∫
e

i
2 (...)

(
−1

2

〈
Ṁ2(t)z, z

〉
−
〈
Ṗ (t)y, z

〉)
u0(z)dz,

∂2j u =
1

h

∫
e

i
2 (...)

(
−
(
(M1(t)y)j + (P (t)z)j

)2
− i (M1)jj

)
u0(z)dz,

hence

i∂tu+
1

2
∆u = −i ḣ

h
u+

i

2
trM1 −

1

2

〈
Ṁ1(t)y, y

〉
u

+
1

2h

∫
e

i
2 (〈M1(t)y,y〉+〈M2(t)z,z〉+2〈P (t)y,z〉)u0(z)×

×
(
−
〈
Ṁ2(t)z, z

〉
− 2

〈
Ṗ (t)y, z

〉
− |M1(t)y|2 − |P (t)z|2 − 2 〈M1(t)y, P (t)z〉

)
dz.

Identifying the quadratic forms (recall that the matricesMj and P are symmetric), we find:

ḣ

h
=

1

2
trM1,

Ṁ1 +M2
1 +Q = 0,

Ṁ2 + P 2 = 0,

Ṗ + PM1 = 0.

Dispersion is given by

h(t) = h(t1) exp

(
1

2

∫ t

t1

trM1(s)ds

)
,

where M1 solves the matrix Riccati equation

(4.4) Ṁ1 +M2
1 +Q = 0; M1(t0) =

1

t0
Id.

Note that in general, solutions to Riccati equations develop singularities in finite time.

What saves the day here is that (4.4) is not translation invariant, and can be considered, for

t 6 t0 ≪ −1, as a perturbation of the Cauchy problem

Ṁ +M2 = 0; M(t0) =
1

t0
Id,

whose solution is given by

M(t) =
1

t
Id.
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Lemma 4.1. Let Q be a symmetric matrix satisfying (4.1) for µ > 1. There exists t0 < 0
such that (4.4) has a unique solution M1 ∈ C((−∞, t0];Sd(R)). In addition, it satisfies

M1(t) =
1

t
Id +O

(
1

t2

)
as t→ −∞.

Proof. Seek a solution of the form M1(t) =
1
t Id + R(t), where R is s symmetric matrix

solution of

Ṙ+
2

t
R+R2 +Q = 0; R(t0) = 0.

Equivalently, the new unknown R̃ = t2R must satisfy

(4.5)
˙̃R+

1

t2
R̃2 + t2Q = 0; R̃(t0) = 0.

Cauchy-Lipschitz Theorem yields a local solution: we show that it is defined on (−∞, t0],
along with the announced decay. Integrating between t0 and t, we find

R̃(t) = −
∫ t

t0

1

s2
R̃(s)2ds−

∫ t

t0

s2Q(s)ds.

Note that s 7→ s2Q is integrable as s→ −∞ from (4.1) (we assume µ > 1). Setting

ρ(t) = sup
t6s6t0

‖R̃(s)‖,

where ‖ · ‖ denotes any matricial norm, we have

ρ(t) 6
C

t0
ρ(t)2 +

C

tµ−1
0

,

for some constant C. Choosing t0 ≪ −1, global existence follows from the following

bootstrap argument (see [1]): Let f = f(t) be a nonnegative continuous function on [0, T ]
such that, for every t ∈ [0, T ],

f(t) 6 ε1 + ε2f(t)
θ,

where ε1, ε2 > 0 and θ > 1 are constants such that

ε1 <

(
1− 1

θ

)
1

(θε2)1/(θ−1)
, f(0) 6

1

(θε2)1/(θ−1)
.

Then, for every t ∈ [0, T ], we have

f(t) 6
θ

θ − 1
ε1.

This shows that for |t0| sufficiently large, the matrixR (henceM1) is defined on (−∞, t0].

Moreover, since R̃ is bounded,R(t) = O(t−2) as t→ −∞, hence the result. �

We infer

h(t) ∼
t→−∞

c|t|d/2,
which is the same dispersion as in the case without potential. Putting this result together

with local dispersive estimates from [25], we have:

Lemma 4.2. Let Q be a symmetric matrix satisfying (4.1) for µ > 1. Then for all admis-

sible pairs (q, r), there exists C = C(q, d) such that for all s ∈ R,

‖UQ(·, s)f‖Lq(R;Lr(Rd)) 6 C‖f‖L2(Rd), ∀f ∈ L2(Rd).
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For two admissible pairs (q1, r1) and (q2, r2), there exists Cq1,q2 such that for all time

interval I , if we denote by

R(F )(t, y) =

∫

I∩{s6t}
UQ(t, s)F (s, y)ds,

we have

‖R(F )‖Lq1(I;Lr1(Rd)) 6 Cq1,q2‖F‖Lq′2(I;Lr′2(Rd))
, ∀F ∈ Lq′2(I;Lr′2(Rd)).

Remark 4.3. Since we have dispersive estimates, end-point Strichartz estimates (q = 2
when d > 3) are also available from [41].

4.2. Wave operators. In this section, we prove:

Proposition 4.4. Let d > 1, 2
d 6 σ < 2

(d−2)+
, and V satisfying Assumption 1.1 for some

µ > 1. For all ũ− ∈ Σ, there exists a unique u ∈ C(R; Σ) solution to (1.11) such that

‖UQ(0, t)u(t)− ũ−‖Σ −→
t→−∞

0.

Remark 4.5. The assumption σ > 2
d could easily be relaxed, following the classical argu-

ment (see e.g. [13]). We do not present the argument, since Theorem 1.4 is proven only

for σ > 2
d .

Proof. The proof follows closely the approach without potential (Q = 0). From this

perspective, a key tool is the vector field

J(t) = y + it∇.
It satisfies three important properties:

• It commutes with the free Schrödinger dynamics,
[
i∂t +

1

2
∆, J

]
= 0.

• It acts like a derivative on gauge invariant nonlinearities. If F (z) is of the form

F (z) = G(|z|2)z, then

J(t) (F (u)) = ∂zF (u)J(t)u − ∂z̄F (u)J(t)u.

• It provides weighted Gagliardo-Nirenberg inequalities:

‖f‖Lr .
1

|t|δ(r) ‖f‖
1−δ(r)
L2 ‖J(t)f‖δ(r)L2 , δ(r) = d

(
1

2
− 1

r

)
,

with





2 6 r 6 ∞ if d = 1,

2 6 r <∞ if d = 2,

2 6 r 6
2d

d− 2
if d > 3.

The last two properties stem from the factorization J(t)f = itei
|y|2
2t ∇

(
e−i |y|

2

2t f
)

. Note

that the commutation property does not incorporate the quadratic potential:

[i∂t −HQ, J ] = itQ(t)y = itQ(t)J(t) + t2Q(t)∇.

Now the important remark is that t 7→ t2Q(t) is integrable, from (4.1) since µ > 1.
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To prove Proposition 4.4, we apply a fixed point argument to the Duhamel’s formula

(4.2). As in the case of the quantum scattering operator, we have to deal with the fact that

the gradient does not commute with UQ, leading to the problem described in Section 3.1.

Above, we have sketched how to deal with the inhomogeneous term in (4.2), while in Sec-

tion 3.1, we had underscored the difficulty related to the homogeneous term. We therefore

start by showing that for any admissible pair (q1, r1), there exists Kq1 such that

(4.6) ‖∇UQ(t, 0)f‖Lq1(R;Lr1) + ‖J(t)UQ(t, 0)f‖Lq1(R;Lr1) 6 Kq1‖f‖Σ.
To prove this, denote

v0(t) = UQ(t, 0)f, v1(t) = ∇UQ(t, 0)f, v2(t) = J(t)UQ(t, 0)f.

Since yv0 = v2 − itv1, we have:

i∂tv1 = HQv1 +Q(t)yv0 = Hv1 +Q(t)v2 − itQ(t)v1; v1(0, y) = ∇f(y),
i∂tv2 = HQv2 + itQ(t)v2 + t2Q(t)v1; v2(0, y) = yf(y).

Lemma 4.2 yields

‖v1‖Lq1(R;Lr1) + ‖v2‖Lq1(R;Lr1) . ‖f‖Σ +

∫ ∞

−∞
‖ 〈t〉Q(t)v2(t)‖L2dt

+

∫ ∞

−∞
‖ 〈t〉2Q(t)v1(t)‖L2dt,

where we have chosen (q2, r2) = (∞, 2). The fact that UQ is unitary on L2 and (4.1)

imply

‖ 〈t〉Q(t)v2(t)‖L2 . 〈t〉−µ−1 ‖yf‖L2, ‖ 〈t〉2Q(t)v1(t)‖L2 . 〈t〉−µ ‖∇f‖L2,

hence (4.6). We then apply a fixed point argument in

X(T ) =
{
u ∈ L∞((−∞,−T ];H1),

∑

B∈{Id,∇,J}

(
‖Bu‖L∞((−∞,−T ];L2) + ‖Bu‖Lq((−∞,−T ];Lr)

)
6 K‖ũ−‖Σ

}
,

where the admissible pair (q, r) is given by

(q, r) =

(
4σ + 4

dσ
, 2σ + 2

)
,

and the constant K is related to the constantsCq from Strichartz inequalities (Lemma 4.2),

and Kq from (4.6), whose value we do not try to optimize. The fixed point argument is

applied to the Duhamel’s formula (4.2): we denote by Φ(u) the left hand side, and let

u ∈ X(T ). We have

‖Φ(u)‖L∞((−∞,−T ];L2) 6 ‖ũ−‖L2 + C
∥∥|u|2σu

∥∥
Lq′

T Lr′ ,

where La
T stands for La((−∞,−T ]). Hölder inequality yields

∥∥|u|2σu
∥∥
Lq′

T Lr′ 6 ‖u‖2σLk
TLr‖u‖Lq

TLr ,

where k is given by

1

q′
=

1

q
+

2σ

k
, that is k =

4σ(σ + 1)

2− (d− 2)σ
.



SEMI-CLASSICAL NONLINEAR QUANTUM SCATTERING 25

Weighted Gagliardo-Nirenberg inequality and the definition of X(T ) yield

‖u(t)‖Lr .
1

|t| dσ
2σ+2

‖u−‖Σ.

We check that for σ > 2
d ,

k × dσ

2σ + 2
=

2dσ2

2− (d− 2)σ
> 2,

and so

‖u‖kLk
TLr = O

(
1

T

)
as T → ∞.

By using Strichartz estimates again,

‖Φ(u)‖Lq
TLr 6 Cq‖ũ−‖L2 + C

∥∥|u|2σu
∥∥
Lq′

T Lr′ ,

which shows, like above, that if T is sufficiently large, ‖Φ(u)‖Lq
TLr 6 2Cq‖ũ−‖L2 .

We now apply ∇ and J(t) to Φ, and get a closed system of estimates:

∇Φ(u) = ∇UQ(t, 0)ũ− − i

∫ t

−∞
UQ(t, s)∇

(
|u|2σu(s)

)
ds

− i

∫ t

−∞
UQ(t, s) (Q(s)J(s)Φ(u)) ds−

∫ t

−∞
UQ(t, s) (sQ(s)∇Φ(u)) ds,

J(t)Φ(u) = J(t)UQ(t, 0)ũ− − i

∫ t

−∞
UQ(t, s)J(s)

(
|u|2σu(s)

)
ds

+

∫ t

−∞
UQ(t, s) (sQ(s)J(s)Φ(u)) ds− i

∫ t

−∞
UQ(t, s)

(
s2Q(s)∇Φ(u)

)
ds,

where we have used the same algebraic properties as in the proof of (4.6). Set

M(T ) =
∑

B∈{∇,J}

(
‖B(t)Φ(u)‖L∞

T L2 + ‖B(t)Φ(u)‖Lq
TLr

)
.

Lemma 4.2 and (4.6) yield

M(T ) . ‖ũ−‖Σ +
∑

B∈{∇,J}

∥∥|u|2σBu
∥∥
Lq′

T Lr′

+ ‖ 〈t〉Q(t)J(t)Φ(u)‖L1
TL2 + ‖ 〈t〉2Q(t)∇Φ(u)‖L1

TL2 ,

where we have also used the fact that J(t) acts like a derivative on gauge invariant nonlin-

earities. The same Hölder inequalities as above yield

∥∥|u|2σBu
∥∥
Lq′

T Lr′ 6 ‖u‖2σLk
TLr‖Bu‖Lq

TLr .
1

T 2σ/k
‖Bu‖Lq

TLr .

On the other hand, from (4.1),

‖ 〈t〉Q(t)J(t)Φ(u)‖L1
TL2 + ‖ 〈t〉2Q(t)∇Φ(u)‖L1

TL2 .
1

T µ−1
M(T ),

and so

M(T ) . ‖ũ−‖Σ +
1

T 2σ/k

∑

B∈{∇,J}
‖Bu‖Lq

TLr +
1

T µ−1
M(T ).
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By choosing T sufficiently large, we infer

M(T ) . ‖ũ−‖Σ +
1

T 2σ/k

∑

B∈{∇,J}
‖Bu‖Lq

TLr ,

and we conclude that Φ maps X(T ) to X(T ) for T sufficiently large. Up to choosing T
even larger, Φ is a contraction on X(T ) with respect to the weaker norm Lq

TL
r, since for

u, v ∈ X(T ), we have

‖Φ(u)− Φ(v)‖Lq
TLr .

∥∥|u|2σu− |v|2σv
∥∥
Lq′

T Lr′ .
(
‖u‖2σLk

TLr + ‖v‖2σLk
TLr

)
‖u− v‖Lq

TLr

.
1

T 2σ/k
‖u− v‖Lq

TLr ,

where we have used the previous estimate. Therefore, there exists T > 0 such that Φ
has a unique fixed point in X(T ). This solution actually belongs to C(R; Σ) from [10].

Unconditional uniqueness (in Σ, without referring to mixed space-time norms) stems from

the approach in [54]. �

4.3. Vector field. It is possible to construct a vector field adapted to the presence of Q,

even though it is not needed to prove Proposition 4.4. Such a vector field will be useful

in Section 5, and since its construction is very much in the continuity of Section 4.1, we

present it now. Set, for a scalar function f ,

Af = iW (t)eiφ(t,y)∇
(
e−iφ(t,y)f

)
=W (t) (f∇φ+ i∇f) ,

where W is a matrix and the phase φ solves the eikonal equation

∂tφ+
1

2
|∇φ|2 + 1

2
〈Q(t)y, y〉 = 0.

Since the underlying Hamiltonian is quadratic, φ has the form

φ(t, y) =
1

2
〈K(t)y, y〉 ,

where K(t) is a symmetric matrix. For A to commute with i∂t −HQ, we come up with

the conditions

K̇ +K2 +Q = 0, Ẇ =W∇2φ =WK.

We see that we can take K = M1 as in the proof of Lemma 4.1, and A will then satisfy

the same three properties as J , up to the fact that the commutation property now includes

the quadratic potential.

Since the construction of this vector field boils down to solving a matricial Riccati

equation with initial data prescribed at large time (see (4.4)), we naturally construct two

vector fields A±, associated to t → ±∞. In view of Lemma 4.1, A− is defined on

(−∞,−T ], while A+ is defined on [T,∞), for a common T ≫ 1, with

A± =W±(t) (∇φ± + i∇) , φ±(t, y) =
1

2
〈K±(t)y, y〉 ,

where K± and W± satisfy

K̇± +K2
± +Q = 0, Ẇ± =W±K±,

so that Lemma 4.1 also yields

(4.7) K±(t) ∼
1

t
Id, W±(t) ∼ tId as t→ ±∞.
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We construct commuting vector fields for large time only, essentially because on finite time

intervals, the absence of commutation is not a problem, so we can use ∇, y or J .

4.4. Asymptotic completeness. In this section we prove:

Proposition 4.6. Let d > 1, 2
d 6 σ < 2

(d−2)+
, and V satisfying Assumption 1.1 for some

µ > 1. For all u0 ∈ Σ, there exists a unique ũ+ ∈ Σ such that the solution u ∈ C(R; Σ)
to (1.11) with u|t=0 = u0 satisfies

∑

Γ∈{Id,∇,J}
‖Γ(t)u(t)− Γ(t)UQ(t, 0)ũ+‖L2 −→

t→+∞
0.

Proof. In the case Q = 0, such a result is a rather direct consequence of the pseudo-

conformal conservation law, established in [28]. Recalling that J(t) = y + it∇, this law

reads

d

dt

(
1

2
‖J(t)u‖2L2 +

t2

σ + 1
‖u(t)‖2σ+2

L2σ+2

)
=

t

σ + 1
(2− dσ)‖u(t)‖2σ+2

L2σ+2 .

A way to derive this relation is to apply J to (1.11). The operator J commutes with

the linear part (Q = 0), and the standard L2 estimate, which consists in multiplying the

outcome by Ju, integrating in space, and taking the imaginary part, yields:

1

2

d

dt
‖J(t)u‖2L2 = Im

∫
JuJ

(
|u|2σu

)
.

Since we have J = itei
|y|2
2t ∇

(
·e−i |y|

2

2t

)
,

J
(
|u|2σu

)
= (σ + 1)|u|2σJu+ σuσ+1ūσ−1Ju.

The first term is real, and the rest of the computation consists in expanding the remaining

term.

In the case where Q 6= 0, we resume the above approach: the new contribution is due

to the fact that J does not commute with the external potential, so we find:

1

2

d

dt
‖J(t)u‖2L2 = like before +Re

∫
tQ(t)xu · Ju

= like before + tRe

∫

Rd

〈Q(t)J(t)u, J(t)u〉+ t2 Im

∫

Rd

〈Q(t)∇u, Ju〉 .

On the other hand, we still have

d

dt
‖u(t)‖2σ+2

L2σ+2 = 2(σ + 1)

∫
|u|2σ Re (ū∂tu) = 2(σ + 1)

∫
|u|2σ Re

(
ū× i

2
∆u

)
,

and so,

d

dt

(
1

2
‖J(t)u‖2L2 +

t2

σ + 1
‖u(t)‖2σ+2

L2σ+2

)
=

t

σ + 1
(2− dσ)‖u(t)‖2σ+2

L2σ+2

+tRe

∫

Rd

〈Q(t)J(t)u, J(t)u〉+ t2 Im

∫

Rd

〈Q(t)∇u, Ju〉 .

Thus for t > 0 and σ > 2
d , (4.1) implies

d

dt

(
1

2
‖J(t)u‖2L2 +

t2

σ + 1
‖u(t)‖2σ+2

L2σ+2

)
. 〈t〉−µ−1 ‖J(t)u‖2L2+〈t〉−µ ‖∇u‖L2‖Ju‖L2.

Even though there is no conservation of the energy for (1.11) since the potential depends

on time, we know from [37] that u ∈ L∞(R;H1(Rd)). As a matter of fact, the proof given
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in [37, Section 4] concerns the case σ = 1 in d = 2 or 3, but the argument, based on energy

estimates, remains valid for d > 1, σ < 2
(d−2)+

, since we then know that u ∈ C(R; Σ).

Since µ > 1, we infer

(4.8) Ju ∈ L∞(R+;L
2).

Writing Duhamel’s formula for (1.11) with initial datum u0, in terms of UQ, we have

u(t) = UQ(t, 0)u0 − i

∫ t

0

UQ(t, s)
(
|u|2σu(s)

)
ds.

Resuming the computations presented in the proof of Proposition 4.4, (4.8) and (weighted)

Gagliardo-Nirenberg inequalities make it possible to prove that

Bu ∈ Lq1(R+;L
r1), ∀(q1, r1) admissible, ∀B ∈ {Id,∇, J}.

Duhamel’s formula then yields, for 0 < t1 < t2,

UQ(0, t2)u(t2)− UQ(0, t1)u(t1) = −i
∫ t2

t1

UQ(0, s)
(
|u|2σu(s)

)
ds.

From Strichartz estimates,

‖UQ(0, t2)u(t2)− UQ(0, t1)u(t1)‖L2 .
∥∥|u|2σu

∥∥
Lq′ ([t1,t2]:Lr′)

,

and the right hand side goes to zero as t1, t2 → +∞. Therefore, there exists (a unique)

ũ+ ∈ L2 such that

‖UQ(0, t)u(t)− ũ+‖L2 −→
t→+∞

0,

and we have

u(t) = UQ(t, 0)ũ+ + i

∫ ∞

t

UQ(t, s)
(
|u|2σu(s)

)
ds.

Using the same estimates as in the proof of Proposition 4.4, we infer

‖∇u(t)−∇UQ(t, 0)ũ+‖L2 + ‖J(t)u(t)− J(t)UQ(t, 0)ũ+‖L2

.
∥∥|u|2σ∇u

∥∥
Lq′ (t,∞;Lr′)

+
∥∥|u|2σJu

∥∥
Lq′ (t,∞;Lr′)

+ ‖ 〈s〉−µ−1
J(s)u‖L1(t,∞;L2) + ‖ 〈s〉−µ ∇u‖L1(t,∞;L2).

The right hand side goes to zero as t→ ∞, hence the proposition. �

Remark 4.7. As pointed out in the previous section, it would be possible to prove the

existence of wave operators by using an adapted vector field A. On the other hand, if Q(t)
is not proportional to the identity matrix, it seems that no (exploitable) analogue of the

pseudo-conformal conservation law is available in terms of A rather than in terms of J .

4.5. Conclusion. Like in the case of quantum scattering, we use a stronger version of the

linear scattering theory:

Proposition 4.8. Let d > 1, V satisfying Assumption 1.1 with µ > 1. Then the strong

limits

lim
t→±∞

UQ(0, t)U(t) and lim
t→±∞

U(−t)UQ(t, 0) and

exist in Σ.
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Proof. For the first limit (existence of wave operators), again in view of Cook’s method,

we prove that for all ϕ ∈ S(Rd),

t 7→ ‖UQ(0, t) 〈Q(t)y, y〉U(t)ϕ‖Σ ∈ L1(R).

For the L2 norm, we have, in view of (4.1),

‖UQ(0, t) 〈Q(t)y, y〉U(t)ϕ‖L2 . 〈t〉−µ−2
d∑

j=1

‖y2jU(t)ϕ‖L2 .

Write

y2j = (yj + it∂j)
2 + t2∂2j − 2ityj∂j = (yj + it∂j)

2 − t2∂2j − 2it(yj + it∂j)∂j ,

to take advantage of the commutation

(yj + it∂j)U(t) = U(t)yj ,

and infer

‖UQ(0, t) 〈Q(t)y, y〉U(t)ϕ‖L2 . 〈t〉−µ−2 (‖|y|2ϕ‖L2 + t2‖∆ϕ‖L2

)
. 〈t〉−µ .

The right hand side is integrable since µ > 1, so the strong limits

lim
t→±∞

UQ(0, t)U(t)

exist in L2. To infer that these strong limits actually exist in Σ, we simply invoke (4.6) in

the case (q1, r1) = (∞, 2), so the above computation are easily adapted.

For asymptotic completeness, we can adopt the same strategy. Indeed, it suffices to

prove that for all ϕ ∈ S(Rd),

t 7→ ‖U(−t) 〈Q(t)y, y〉UQ(t, 0)ϕ‖Σ ∈ L1(R).

For the L2 norm, we have

‖U(−t) 〈Q(t)y, y〉UQ(t, 0)ϕ‖L2 = ‖〈Q(t)y, y〉UQ(t, 0)ϕ‖L2

. 〈t〉−µ−2
d∑

j=1

∥∥y2jUQ(t, 0)ϕ
∥∥
L2 .

We first proceed like above, and write

y2j = (yj + it∂j)
2 − t2∂2j − 2it(yj + it∂j)∂j .

The operator J does not commute with UQ, but this lack of commutation is harmless for

our present goal, from (4.6). By considering the system satisfied by

(yj + it∂j)
2UQ(t, 0)ϕ, ∂

2
jUQ(t, 0)ϕ, ∂j(yj + it∂j)UQ(t, 0)ϕ,

we obtain

d∑

j=1

(
‖(yj + it∂j)

2UQ(t, 0)ϕ‖L2 + ‖∂2jUQ(t, 0)ϕ‖L2 + ‖∂j(yj + it∂j)UQ(t, 0)ϕ‖L2

)

6 C‖ϕ‖Σ2 ,

where Σk is the space of Hk functions with k momenta in L2, and C does not depend

on time. Finally, we also have a similar estimate by considering one more derivative or

momentum. The key remark in the computation is that the external potential 〈Q(t)y, y〉
is exactly quadratic in space, and so differentiating it three times with any space variables

yields zero. �
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5. PROOF OF THEOREM 1.6

The main result of this section is:

Theorem 5.1. Let d = 3, σ = 1, V as in Theorem 1.4, and u− ∈ Σ7. Suppose that

Assumption 1.2 is satisfied. Let ψε be given by Theorem 1.4, u be given by Theorem 1.5,

ϕε defined by (1.10). We have the uniform error estimate:

sup
t∈R

‖ψε(t)− ϕε(t)‖L2(R3) = O
(√
ε
)
.

Theorem 1.6 is a direct consequence of the above result, whose proof is the core of

Section 5. From now on, we assume d = 3 and σ = 1.

5.1. Extra properties for the approximate solution. Further regularity and localization

properties on u will be needed.

Proposition 5.2. Let σ = 1, 1 6 d 6 3, k > 2 and V satisfying Assumption 1.1 for some

µ > 1. If u− ∈ Σk, then the solution u ∈ C(R; Σ) provided by Theorem 1.5 satisfies

u ∈ C(R; Σk). The momenta of u satisfy

‖|y|ℓu(t, y)‖L2(Rd) 6 Cℓ 〈t〉ℓ , 0 6 ℓ 6 k,

where Cℓ is independent of t ∈ R.

Proof. We know from the proof of Theorem 1.5 that since u− ∈ Σ,

u,∇u, Ju ∈ L∞(R;L2(Rd)).

The natural approach is then to proceed by induction on k, to prove that

∇ku, Jku ∈ L∞(R;L2(Rd)).

We have, as we have seen in the proof of Proposition 4.4,

i∂t∇u = HQ∇u+Q(t)yu+∇
(
|u|2u

)

+HQ∇u+Q(t)J(t)u − itQ(t)∇u+∇
(
|u|2u

)
,

i∂tJu = HQJu+ itQ(t)yu+ J
(
|u|2u

)

= HQJu+ itQ(t)J(t)u + t2Q(t)∇u+ J
(
|u|2u

)
.

Applying the operators ∇ and J again, we find

i∂t∇2u = HQ∇2u+ 2Q(t)y∇u+Q(t)u+∇2
(
|u|2u

)

+HQ∇u+ 2Q(t)J(t)∇u − 2itQ(t)∇2u+Q(t)u +∇2
(
|u|2u

)
,

i∂tJ
2u = HQJ

2u− 2t2Q(t)y∇u− t2Q(t)u+ J2
(
|u|2u

)

= HQJ
2u− 2t2Q(t)J∇u + 2it3Q(t)J2u+ itQ(t)u+ J2

(
|u|2u

)
.

In view of (4.1), we see that t 7→ t3Q(t) need not be integrable (unless we make stronger

and stronger assumptions of µ, as k increases), so the commutator seems to be fatal to this

approach. To overcome this issue, we use the vector field mentioned in Section 4.3. For

bounded time t ∈ [−T, T ], the above mentioned lack of commutation is not a problem,

and we can use the operator J , which is defined for all time. We note that either of the

operators A± or J satisfies more generally the pointwise identity

B (u1u2u3) = (Bu1)u2u3 + u1
(
Bu2

)
u3 + u1u2 (Bu3) ,

for all differentiable functions u1, u2, u3.



SEMI-CLASSICAL NONLINEAR QUANTUM SCATTERING 31

Now we have all the tools to proceed by induction, and mimic the proof from [9, Appen-

dix]. The main idea is that the proof is similar to the propagation of higher regularity for

energy-subcritical problems, with the difference that large time is handled thanks to vector

fields. We leave out the details, which are not difficult but rather cumbersome: considering

B(t) =





A−(t) for t 6 −T,
J(t) for t ∈ [−T, T ],

A+(t) for t > T,

we can then prove that

∇ku,Bku ∈ L∞(R;L2(Rd)).

Back to the definition of A±,

A±(t) =W±(t)K±(t)y + iW±(t)∇,
(4.7) then yields the result. �

5.2. Strichartz estimates. Introduce the following notations, taking the dependence upon

ε into account:

Hε = −ε
2

2
∆+ V (x), Uε

V (t) = e−i t
εH

ε

.

Since we now work only in space dimension d = 3, we can use the result from [31].

Resuming the proof from [31] (a mere scaling argument is not sufficient), we have, along

with the preliminary analysis from Section 2, the global dispersive estimate

(5.1) ‖Uε
V (t)‖L1(R3)→L∞(R3) .

1

(ε|t|)3/2 , t 6= 0.

For |t| 6 δ, δ > 0 independent of ε, the above relation stems initially from [25]. As a

consequence, we can measure the dependence upon ε in Strichartz estimates. We recall the

definition of admissible pairs related to Sobolev regularity.

Definition 5.3. Let d = 3 and s ∈ R. A pair (q, r) is called Ḣs-admissible if

2

q
+

3

r
=

3

2
− s.

For t0 ∈ R ∪ {−∞}, we denote by

Rε
t0(F )(t) =

∫ t

t0

Uε
V (t− s)F (s)ds

the retarded term related to Duhamel’s formula. Since the dispersive estimate (5.1) is the

same as the one for eiεt∆, we get the same scaled Strichartz estimates as for this operator,

which can in turn be obtained by scaling arguments from the case ε = 1.

Lemma 5.4 (Scaled L2-Strichartz estimates). Let t0 ∈ R ∪ {−∞}, and let (q1, r1) and

(q2, r2) be L2-admissible pairs, 2 6 rj 6 6. We have

ε
1
q1 ‖Uε

V (·)f‖Lq1(R;Lr1(R3)) . ‖f‖L2(R3),

ε
1
q1

+ 1
q2 ‖Rε

t0(F )‖Lq1 (I;Lr1(R3)) 6 Cq1,q2‖F‖Lq′2(I;Lr′2(R3))
,

where Cq1,q2 is independent of ε, t0, and of I such that t0 ∈ Ī .

We will also use Strichartz estimates for non-admissible pairs, as established in [40]

(see also [15, 24]).
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Lemma 5.5 (Scaled inhomogeneous Strichartz estimates). Let t0 ∈ R ∪ {−∞}, and let

(q1, r1) be an Ḣ1/2-admissible pair, and (q2, r2) be an Ḣ−1/2-admissible pair, with

3 6 r1, r2 < 6.

We have

ε
1
q1

+ 1
q2 ‖Rε

t0(F )‖Lq1 (I;Lr1(R3)) 6 Cq1,q2‖F‖Lq′
2(I;Lr′

2(R3))
,

where Cq1,q2 is independent of ε, t0, and of I such that t0 ∈ Ī .

5.3. Preparing the proof. Subtracting the equations satisfied by ψε and ϕε, respectively,

we obtain as in [11]: wε = ψε − ϕε satisfies

(5.2) iε∂tw
ε +

ε2

2
∆wε = V wε − Lε + ε5/2

(
|ψε|2ψε − |ϕε|2ϕε

)
,

along with the initial condition

e−i εt2 ∆wε
|t=−∞ = 0,

where the source term is given by

Lε(t, x) =
(
V (x)− V (q(t)) −√

ε 〈∇V (q(t)) , y〉 − ε

2
〈Q(t)y, y〉

) ∣∣∣
y= x−q(t)√

ε

ϕε(t, x).

Duhamel’s formula for wε reads

wε(t) = −iε3/2
∫ t

−∞
Uε
V (t− s)

(
|ψε|2ψε − |ϕε|2ϕε

)
(s)ds

+ iε−1

∫ t

−∞
Uε
V (t− s)Lε(s)ds.

DenotingLa(]−∞, t];Lb(R3)) byLa
tL

b, Strichartz estimates yield, for anyL2-admissible

pair (q1, r1),

(5.3) ε1/q1‖wε‖Lq1
t Lr1 . ε3/2−1/q

∥∥|ψε|2ψε − |ϕε|2ϕε
∥∥
Lq′

t Lr′ +
1

ε
‖Lε‖L1

tL
2 ,

where (q, r) is the admissible pair chosen in the proof of Proposition 3.3, that is r = 2σ+2.

Since we now have d = 3 and σ = 1, this means:

q =
8

3
, k = 8,

and (5.3) yields

(5.4) ε1/q1‖wε‖Lq1
t Lr1 . ε9/8

(
‖wε‖2L8

tL
4 + ‖ϕε‖2L8

tL
4

)
‖wε‖

L
8/3
t L4 +

1

ε
‖Lε‖L1

tL
2 .

The strategy is then to first obtain an a priori estimate for wε in L8
tL

4, and then to use it

in the above estimate. In order to do so, we begin by estimating the source term Lε, in the

next subsection.

5.4. Estimating the source term.

Proposition 5.6. Let d = 3, σ = 1, V satisfying Assumption 1.1 with µ > 2, and u− ∈ Σk

for some k > 7. Suppose that Assumption 1.2 is satisfied. Let u ∈ C(R; Σk) given by

Theorem 1.5 and Proposition 5.2. The source term Lε satisfies

1

ε
‖Lε(t)‖L2(R3) .

√
ε

〈t〉3/2
and

1

ε
‖Lε(t)‖L3/2(R3) .

ε3/4

〈t〉3/2
, ∀t ∈ R.
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Proof. To ease notation, we note that

1

ε
Lε(t, x) =

1

ε3/4
Sε(t, y)

∣∣∣
y= x−q(t)√

ε

ei(S(t)+ip(t)·(x−q(t)))/ε,

where

Sε(t, y) =
1

ε

(
V
(
q(t) + y

√
ε
)
− V (q(t)) −√

ε 〈∇V (q(t)) , y〉 − ε

2
〈Q(t)y, y〉

)
u(t, y).

In particular,

1

ε
‖Lε(t)‖L2(R3) = ‖Sε(t)‖L2(R3),

1

ε
‖Lε(t)‖L3/2(R3) = ε1/4‖Sε(t)‖L3/2(R3).

Taylor’s formula and Assumption 1.1 yield the pointwise estimate

|Sε(t, y)| . √
ε|y|3

∫ 1

0

1

〈q(t) + θy
√
ε〉µ+3 dθ|u(t, y)|.

To simplify notations, we consider only positive times. Recall that from Assumption 1.2,

p+ 6= 0. Introduce, for 0 < η < |p+|/2,

Ω =

{
y ∈ R

3, |y| > η
t√
ε

}
.

Since q(t) ∼ p+t as t → ∞, on the complement of Ω, we can use the decay of V , (1.12),

to infer the pointwise estimate

(5.5) |Sε(t, y)| . √
ε|y|3 1

〈t〉µ+3 |u(t, y)| on Ωc.

Taking the L2-norm, we have

‖Sε(t)‖L2(Ωc) 6

√
ε

〈t〉µ+3 ‖|y|3u(t, y)‖L2(R3) .

√
ε

〈t〉µ ,

where we have used Proposition 5.2. On Ω however, the argument of the potential in Tay-

lor’s formula is not necessarily going to infinity, so the decay of the potential is apparently

useless. Back to the definition of Lε, that is leaving out Taylor’s formula, we see that all

the terms but the first one can be easily estimated on Ω. Indeed, the definition of Ω implies

|V (q(t))u(t, y)| . 1

〈t〉µ |u(t, y)| .
1

〈t〉µ
∣∣∣∣
y
√
ε

t

∣∣∣∣
k

|u(t, y)|,

where k will be chosen shortly. Taking the L2 norm, we find

1

ε
‖V (q(t))u(t)‖L2(Ω) .

εk/2−1

〈t〉µ+k
‖|y|ku(t, y)‖L2(R3) .

εk/2−1

〈t〉µ ,

where we have used Proposition 5.2 again. Choosing k = 3 yields the expected estimate.

The last two terms in Lε can be estimated accordingly. For the first term in Lε however,

we face the same problem as above: the argument of V has to be considered as bounded.

A heuristic argument goes as follows. In view of Theorem 1.5,

u(t, y) ∼
t→∞

ei
t
2∆u+ ∼

t→∞
1

t3/2
û+

(y
t

)
ei|y|

2/(2t),

where the last behavior stems from standard analysis of the Schrödinger group (see e.g.

[50]). In view of the definition of Ω, we have, formally for y ∈ Ω,

|u(t, y)| . 1

t3/2
sup
|z|>η

∣∣∣∣û+
(
z√
ε

)∣∣∣∣ .
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Then the idea is to keep the linear dispersion measured by the factor t−3/2 (which is in-

tegrable since d = 3), and use decay properties for û+ to gain powers of ε. To make this

argument rigorous, we keep the idea that u must be assessed in L∞ rather than in L2, and

write

1

ε
‖V
(
q(t) + y

√
ε
)
u(t, y)‖L2(Ω) 6

1

ε
‖u(t)‖L∞(Ω)‖V

(
q(t) + y

√
ε
)
‖L2(Ω).

For the last factor, we have

‖V
(
q(t) + y

√
ε
)
‖L2(Ω) 6 ε−3/4‖V ‖L2(R3),

where the last norm is finite since µ > 2. For the L∞ norm of u, we use Gagliardo-

Nirenberg inequality and the previous vector-fields. To take advantage of the localization

in space, introduce a non-negative cut-off function χ ∈ C∞(R3), such that:

χ(z) =





1 if |z| > η,

0 if |z| 6 η

2
.

In view of the definition of Ω,

‖u(t)‖L∞(Ω) 6

∥∥∥∥χ
(
y
√
ε

t

)
u(t, y)

∥∥∥∥
L∞(R3)

.

Now with B as defined in the proof of Proposition 5.2, Gagliardo-Nirenberg inequality

yields, for any smooth function f (recall that y ∈ R
3),

‖f‖L∞(R3) .
1

t3/2
‖f‖1/4L2(R3)‖B2(t)f‖3/4L2(R3).

We use this inequality with

f(t, y) = χ

(
y
√
ε

t

)
u(t, y),

and note that

B(t)f(t, y) = χ

(
y
√
ε

t

)
B(t)u(t, y) + i

√
ε

t
W (t)∇χ

(
y
√
ε

t

)
× u(t, y),

where W (t) stands for W± or t. Recall that t 7→ W (t)/t is bounded, so the last term is

actually “nice”. Proceeding in the same way as above, we obtain

‖u(t)‖L2(Ω) .

∥∥∥∥∥

∣∣∣∣
y
√
ε

t

∣∣∣∣
k

u(t, y)

∥∥∥∥∥
L2(Ω)

. εk/2,

provided that u− ∈ Σk. Similarly,

‖B2(t)u‖L2(Ω) . εk/2−1,

and so

1

ε
‖V
(
q(t) + y

√
ε
)
u(t, y)‖L2(Ω) .

1

t3/2
ε−7/4+k/8+3(k/2−1)/4 =

εk/2−5/2

t3/2
.

Therefore, the L2 estimate follows as soon as k > 6. For the L3/2-estimate, we resume

the same computations, and use the extra estimate: for all s > 1/2,

(5.6) ‖f‖L3/2(R3) . ‖f‖1−1/2s
L2(R3) ‖|x|sf‖

1/2s
L2(R3).
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This estimate can easily be proven by writing

‖f‖L3/2(R3) 6 ‖f‖L3/2(|y|<R) +

∥∥∥∥
1

|x|s |x|
sf

∥∥∥∥
L3/2(|x|>R)

,

so Hölder inequality yields, provided that s > 1/2 (so that y 7→ |y|−s ∈ L6(|y| > R))

‖f‖L3/2(R3) 6
√
R‖f‖L2 +

1

Rs−1/2
‖|x|sf‖L2,

and by optimizing in R. Now from (5.5), we have

‖Sε(t)‖L3/2(Ωc) 6

√
ε

〈t〉µ+3 ‖|y|3u(t, y)‖L3/2(Rd)

.

√
ε

〈t〉µ+3 ‖|y|3u(t, y)‖
1/2

L2(Rd)
‖|y|4u(t, y)‖1/2

L2(Rd)

.

√
ε

〈t〉µ−1/2
.

√
ε

〈t〉3/2

where we have used (5.6) with s = 1, Proposition 5.2, and the fact that µ > 2.

On Ω, we can repeat the computations from the L2-estimate (up to incorporating (5.6)):

for the last term, we note that

1

ε
‖V
(
q(t) + y

√
ε
)
u(t, y)‖L3/2(Ω) 6

1

ε
‖u(t)‖L∞(Ω)‖V

(
q(t) + y

√
ε
)
‖L3/2(Ω),

and that

‖V
(
q(t) + y

√
ε
)
‖L3/2(Ω) 6 ε−1‖V ‖L3/2(R3),

where the last norm is finite since µ > 2. Up to taking u in Σ7, we conclude

‖Sε(t)‖L3/2(R3) .

√
ε

〈t〉3/2
,

and the proposition follows. �

5.5. A priori estimate for the error in the critical norm. In this subsection, we prove:

Proposition 5.7. Under the assumptions of Theorem 5.1, the error wε = ψε −ϕε satisfies

the a priori estimate, for any Ḣ1/2-admissible pair (q, r),

ε
1
q ‖wε‖Lq(R;Lr(R3)) . ε1/4.

Proof. The reason for considering Ḣ1/2-admissible pairs is that the cubic three-dimensional

Schrödinger equation is Ḣ1/2-critical; see e.g. [14]. The proof of Proposition 5.7 is then

very similar to the proof of [38, Proposition 2.3].

An important tool is the known estimate for the approximate solution ϕε: we have, in

view of the fact that u,Bu ∈ L∞L2,

(5.7) ‖ϕε(t)‖Lr(R3) .

(
1

〈t〉√ε

)3( 1
2− 1

r )
, 2 6 r 6 6.

Note that for an Ḣ1/2 admissible pair, we infer

‖ϕε(t)‖Lq(R;Lr(R3)) . ε−
3
2 (

1
2− 1

r ) = ε−
1
q− 1

4 ,
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so Proposition 5.7 shows a
√
ε gain forwε compared to ϕε, which is the order of magnitude

we eventually prove in L∞L2, and stated in Theorem 5.1. Let 0 < η ≪ 1, and set

‖wε‖N ε(I) := sup
(q,r) Ḣ1/2−admissible

36r66−η

ε
1
q ‖wε‖Lq(I;Lr(R3).

Duhamel’s formula for (5.2) reads, given wε
|t=−∞ = 0,

wε(t) = −iε3/2
∫ t

−∞
Uε
V (t−s)

(
|ψε|2ψ2 − |ϕε|2ϕε

)
(s)ds+iε−1

∫ t

−∞
Uε
V (t−s)Lε(s)ds.

Since we have the point-wise estimate
∣∣|ψε|2ψ2 − |ϕε|2ϕε

∣∣ .
(
|wε|2 + |ϕε|2

)
|wε|,

Lemma 5.5 yields, with (q2, r2) = (107 , 5) for the first term of the right hand side, and with

(q2, r2) = (2, 3) for the second term,

‖wε‖N ε(−∞,t) . ε3/2−7/10
∥∥(|wε|2 + |ϕε|2

)
wε
∥∥
L

10/3
t L5/4 + ε−3/2‖Lε‖L2

tL
3/2

. ε4/5
(
‖wε‖2L20

t L10/3 + ‖ϕε‖2L20
t L10/3

)
‖wε‖L5

tL
5 + ε−3/2‖Lε‖L2

tL
3/2 ,

where we have used Hölder inequality. Note that the pairs (20, 103 ) and (5, 5) are Ḣ1/2-

admissible. Denote by

ω(t) =
1

〈t〉3/5
.

This function obviously belongs to L20(R). The estimate (5.7) and the definition of the

norm N ε yield

‖wε‖N ε(−∞,t) .
√
ε‖wε‖3N ε(−∞,t) + ‖ω‖2L20(−∞,t)‖wε‖N ε(−∞,t) + ε−3/2‖Lε‖L2

tL
3/2 .

Taking t≪ −1, we infer

‖wε‖N ε(−∞,t) .
√
ε‖wε‖3N ε(−∞,t) + ε−3/2‖Lε‖L2

tL
3/2 .

√
ε‖wε‖3N ε(−∞,t) + ε1/4,

where we have use Proposition 5.6. We can now use a standard bootstrap argument, as

recalled in Section 4. We infer that for t1 ≪ −1,

‖wε‖N ε(−∞,t1) . ε1/4.

Using Duhamel’s formula again, we have

Uε
V (t− t1)w

ε(t1) = −iε3/2
∫ t1

−∞
Uε
V (t− s)

(
|ψε|2ψ2 − |ϕε|2ϕε

)
(s)ds

+ iε−1

∫ t1

−∞
Uε
V (t− s)Lε(s)ds,

so we infer

‖Uε
V (t− t1)w

ε(t1)‖N ε(R) .
√
ε‖wε‖3N ε(−∞,t1)

+ ‖ω‖2L20(−∞,t1)
‖wε‖N ε(−∞,t1)

+ ε−3/2‖Lε‖L2((−∞,t1];L3/2)

6 C0ε
1/4.



SEMI-CLASSICAL NONLINEAR QUANTUM SCATTERING 37

We now rewrite Duhamel’s formula with some initial time tj :

wε(t) = Uε
V (t− tj)w

ε(tj)− iε3/2
∫ t

tj

Uε
V (t− s)

(
|ψε|2ψ2 − |ϕε|2ϕε

)
(s)ds

+ iε−1

∫ t

tj

Uε
V (t− s)Lε(s)ds.

For t > tj and I = [tj , t], the same estimates as above yield

‖wε‖N ε(I) 6 ‖Uε
V (· − tj)w

ε(tj)‖N ε(I) + C
√
ε‖wε‖3N ε(I) + C‖ω‖2L20(I)‖wε‖N ε(I)

+ Cε−3/2‖Lε‖L2(I;L3/2),

where the above constant C is independent of ε, tj and t. We split Rt into finitely many

intervals

R = (−∞, t1] ∪
N⋃

j=1

[tj , tj+1] ∪ [tN ,∞) =:

N+1⋃

j=0

Ij ,

on which

C‖ω‖2L20(Ij)
6

1

2
,

so that we have

‖wε‖N ε(Ij) 6 2‖Uε
V (· − tj)w

ε(tj)‖N ε(Ij) + 2C
√
ε‖wε‖3N ε(Ij)

+ 2Cε−3/2‖Lε‖L2(Ij ;L3/2)

6 2‖Uε
V (· − tj)w

ε(tj)‖N ε(Ij) + 2C
√
ε‖wε‖3N ε(Ij)

+ C̃ε1/4
∥∥∥〈t〉−3/2

∥∥∥
L2(Ij)

,

where we have used Proposition 5.6 again. Since we have

‖Uε
V (t− t1)w

ε(t1)‖N ε(R) 6 C0ε
1/4,

the bootstrap argument shows that at least for ε 6 ε1 (ε1 > 0),

‖wε‖N ε(I1) 6 3‖Uε
V (· − t1)w

ε(t1)‖N ε(I1) +
3

2
C̃ε1/4

∥∥∥〈t〉−3/2
∥∥∥
L2(I1)

.

On the other hand, Duhamel’s formula implies

Uε
V (t− tj+1)w

ε(tj+1) = Uε
V (t− tj)w

ε(tj) + iε−1

∫ tj+1

tj

Uε
V (t− s)Lε(s)ds

− iε3/2
∫ tj+1

tj

Uε
V (t− s)

(
|ψε|2ψ2 − |ϕε|2ϕε

)
(s)ds.

Therefore, we infer

‖Uε
V (t− tj+1)w

ε(tj+1)‖N ε(R) 6 ‖Uε
V (t− tj)w

ε(tj)‖N ε(R) ++C
√
ε‖wε‖3N ε(Ij)

+ C‖ω‖2L20(Ij)
‖wε‖N ε(Ij) + Cε−3/2‖Lε‖L2(Ij ;L3/2).

By induction (carrying over finitely many steps), we conclude

‖Uε
V (t− tj)w

ε(tj)‖N ε(R) = O
(
ε1/4

)
, 0 6 j 6 N + 1,

and ‖wε‖N ε(R) = O
(
ε1/4

)
as announced. �
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5.6. End of the argument. Resume the estimate (5.4) with theL2-admissible pair (q1, r1) =
(83 , 4):

ε3/8‖wε‖
L

8/3
t L4 . ε3/4

(
‖wε‖2L8

tL
4 + ‖ϕε‖2L8

tL
4

)
ε3/8‖wε‖

L
8/3
t L4 +

1

ε
‖Lε‖L1

tL
2 .

From Proposition 5.7 (the pair (8, 4) is Ḣ1/2-admissible),

‖wε‖L8(R;L4) . ε1/8,

and we have seen in the course of the proof that

‖ϕε‖L8(R;L4) . ε−3/8.

Therefore, we can split Rt into finitely many intervals, in a way which is independent of ε,
so that

ε3/4
(
‖wε‖2L8(I;L4) + ‖ϕε‖2L8(I;L4)

)
6 η

on each of these intervals, with η so small that we infer

ε3/8‖wε‖L8/3(R;L4) .
1

ε
‖Lε‖L1(R;L2) .

√
ε,

where we have used Proposition 5.6. Plugging this estimate into (5.4) and now taking

(q1, r1), Theorem 5.1 follows.

6. SUPERPOSITION

In this section, we sketch the proof of Corollary 1.8. This result heavily relies on the

(finite time) superposition principle established in [11], in the case of two initial coherent

states with different centers in phase space. We present the argument in the case of two

initial wave packets, and explain why it can be generalized to any finite number of initial

coherent states.

Following the proof of [11, Proposition 1.14], we introduce the approximate evolution

of each individual initial wave packet:

ϕε
j(t, x) = ε−3/4uj

(
t,
x− qj(t)√

ε

)
ei(Sj(t)+pj(t)·(x−qj(t)))/ε,

where uj solves (1.11) with initial datum aj . In the proof of [11, Proposition 1.14], the

main remark is that all that is needed is the control of a new source term, corresponding to

the interactions of the approximate solutions. Set

wε = ψε − ϕε
1 − ϕε

2.

It solves

iε∂tw
ε +

ε2

2
∆wε = V wε − Lε +N ε

I +N ε
s ; wε

|t=0 = 0,

where the linear source term is the same as in Section 5 (except than now we consider the

sums of two such terms), N ε
s is the semilinear term

N ε
s = ε5/2

(
|wε + ϕε

1 + ϕε
2|2(wε + ϕε

1 + ϕε
2)− |ϕε

1 + ϕε
2|2(ϕε

1 + ϕε
2)
)
,

and N ε
I is precisely the new interaction term,

N ε
I = ε5/2

(
|ϕε

1 + ϕε
2|2(ϕε

1 + ϕε
2)− |ϕε

1|2ϕε
1 − |ϕε

2|2ϕε
2

)
.

In [11], it is proven that if (q01, p01) 6= (q02, p02), then the possible interactions between

ϕε
1 and ϕε

2 are negligible on every finite time interval, in the sense that

1

ε
‖N ε

I ‖L1(0,T ;L2) 6 C(T, γ)εγ ,
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for every γ < 1/2. We infer that ‖wε‖L∞(0,T ;L2) = O(εγ) for every T > 0. For t > T ,

we have

1

ε
‖N ε

I (t)‖L2 .
∑

ℓ1,ℓ2>1, ℓ1+ℓ2=3

∥∥∥∥u
ℓ1
1

(
t, y − q1(t)− q2(t)√

ε

)
uℓ22 (t, y)

∥∥∥∥
L2

.
∑

ℓ1,ℓ2>1, ℓ1+ℓ2=3

‖u1(t)‖ℓ1L∞‖u2(t)‖ℓ2−1
L∞ ‖u2(t)‖L2 .

1

t3
.

Similarly, resuming the same estimates as in the proof of Proposition 5.6,

1

ε
‖N ε

I (t)‖L3/2 .
ε1/4

t5/2
.

By resuming the proof of Theorem 5.1 on the time interval [T,∞), we infer

‖wε‖L∞(0,∞;L2) 6 C(T, γ)εγ +
C

T 2
.

Therefore,

lim sup
ε→0

‖wε‖L∞(0,∞;L2) .
1

T 2
,

for all T > 0, hence the result by letting T → ∞.

In the case of more than two initial coherent states, the idea is that the nonlinear interac-

tion term, N ε
I , always contains the product of two approximate solutions corresponding to

different trajectories in phase space. This is enough for the proof of [11, Proposition 1.14]

to go through: we always have

1

ε
‖N ε

I (t)‖L2

.
∑

j 6=k, ℓj ,ℓk>1

ℓj+ℓk+ℓm=3

∥∥∥∥u
ℓj
j

(
t, y − qj(t)− qk(t)√

ε

)
uℓkk (t, y)uℓmm

(
t, y − qm(t)− qk(t)√

ε

)∥∥∥∥
L2

.
∑

j 6=k, ℓj ,ℓk>1

ℓj+ℓk+ℓm=3

‖um(t)‖ℓmL∞

∥∥∥∥u
ℓj
j

(
t, y − qj(t)− qk(t)√

ε

)
uℓkk (t, y)

∥∥∥∥
L2

,

so the last factor is exactly the one considered in [11] and above.
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