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Abstract

We consider the numerical coupling at a fixed spatial interface of two

homogeneous models used for describing non isothermal compressible two

phase flows. More precisely, we concentrate on the numerical coupling

of the homogeneous equilibrium model and the homogeneous relaxation

model in the context of finite volume methods. Three methods of coupling

are presented. They are based on one of the following requirements:

continuity of the conservative variable through the coupling interface,

continuity of the primitive variable and global conservation of mass,

momentum and energy. At the end, several numerical experiments are

presented in order to illustrate the ability of each method to provide

results in agreement with their principle of construction.

1 Introduction

The coupling of fluid flow models is becoming a key topic in industrial code develop-
ment. From an engineering point of view, different models are used to treat different
sub-domains of a complex system where a flow takes place. Therefore it is natural
to want to have a global simulation for the system by putting these domains, and
thus these models, side to side. This rises the delicate question of the continuity of
the description of the flow. As an example, think of the simulation of a combustion
engine, where the natural models for the fuel pipes, the injector and the combustion
chamber are clearly different, or, again, think of the treatment, in nuclear energy
industry, of the coolant circuits which are formed by different components, each one
with its associated specific model for the coolant flow. Our work is motivated by
this last application and the coolant under consideration is a two-phase fluid.



The coupling of homogeneous models for two-phase flows

Two-phase flows can be described by means of different models: mixture, drift
(homogeneous or not), two-fluid or even multi-field models are currently used in
industrial thermo-hydraulic codes. We consider here the problem of the interfacial
coupling of two models, i.e. we imagine that a two-phase flow is described by means
of a model M1 at the left of a fictitious interface I and by another model M2 at
the right of I. Our aim is to numerically describe the whole flow dealing with the
potential discontinuities at I, when the model jumps. It is clear that this analysis
strongly depends on the two models M1 and M2 that describe the flow on each side
of the discontinuity.

In this paper we focus on the coupling of two homogeneous models. More pre-
cisely, we consider as M1 a homogeneous equilibrium model frequently referred to
as HEM and, as model M2 a homogeneous relaxation model HRM. Homogeneous
models describe a two-component flow as the flow of a single fluid: the compound.
A description of these models can be found in [10], [22]. When the two components
are assumed to follow a perfect gas law, the full thermodynamic of the compound
can be described by means of analytic formulas, as it is clearly presented in [30] and
in [13], [15], [16], [17]. We will focus on this case and, for the sake of completeness,
we present these models in Section 2. The HEM model is detailed in Section 2.2.1
while Section 2.2.2 details the HRM one.

The general framework of the coupling problem is as follows. Let D be an
open subset of R

n (n ∈ N, n ≥ 1) divided in two separated open sub-domains DE

and DR and an interface I: D = DE ∪ DR ∪ I. We assume that the flow evolves
according to HEM in DE and HRM in DR. We note uE and uR the vectors of the
corresponding conservative unknowns. In the following, we restrict the study to the
one-dimensional case where DE = R

−, DR = R
+ and I = {0}. Therefore, the flow

is described by the following problem

HEM on R
+ ×DE

∂tu
E + ∂xf

E(uE) = SE(uE),

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

HRM on R
+ ×DR

∂tu
R + ∂xf

R(uR) = SR(uR),

(1)

where fE, fR and SE,SR respectively denote the conservative flux and the source
terms of the models, that will be given in Section 2. We underline the lack of
information at the interface I. Our only constraint is given by the context of the
problem. We know that the physical entity we are describing is the same: the flow
of the same fluid. Its properties are characterized by uE on one side of the interface
and by uR on the other side, and we wish to link these quantities at the crossing of
I taking into account the continuity of the flow.

We acknowledge the artificial character of this problem: the real physics is the
same, but, when different codes are used to simulate it, the global description can be
discontinuous. This can be seen as an artificial error introduced by the simulation
process. Our analysis wants to deal with this error and its effects on the solution of
the problem.
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The coupling of homogeneous models for two-phase flows

First of all, the problem must be analyzed from the modelling point of view.
To make (1) complete, we need to add an interface model, that is to say, we must
detail the properties of the flow that should hold at the crossing of the interface. We
think, for instance, of the continuity of some variables or the conservation of some
quantities. In a second place, the global problem should be analyzed mathemati-
cally. Compatibility of the constraints imposed at the interface within one another
and with the models should be checked. Moreover, we point out that, due to the
hyperbolic character of the models under consideration (see Section 2), it is very
likely that a given coupling problem with a prescribed model for the interface can-
not be solved for all initial data. Finally, we must not forget that we are interested
in the numerical simulation of the flow. This has two main implications. On the
one hand, we wish that the constraints given by the chosen interface model lead
to simple numerical relations. On the other hand, we must keep in mind that the
strategy of coupling we choose can be effective only if its numerical treatment is
appropriate.

The problem of coupling nonlinear conservation laws was first addressed in [25]
and in [26]. In [4] and in [5] a study of the case where the models to be coupled are
given by two Euler systems for gas dynamics with two different equations of state is
presented. In this case, one of the numerical techniques proposed is very similar to
the ghost fluid method ([32], [2]). The coupling between a one-dimensional model of
gas dynamics and a 2-dimensional one are treated in [28]. References [27] and [11]
study the case of a change of porosity of the medium where the flow takes place,
while [33] and [35] deal with the coupling of acoustic wave equations with different
sound speed. For the case under study in the present article, i.e. the coupling of
a Homogeneous Relaxation Model with a Homogeneous Equilibrium Model, some
results were presented in [6] and a study of an industrial case of interest can be
found in [29].

In this paper, we propose several ways for numerically solving the coupling prob-
lem (1), depending on the treatment we impose at the interface I. The HRM and
HEM models are presented in Section 2. The interface models we consider are listed
in Section 3. In Section 4 we give the basis for the numerical treatment of the
problem. In particular, we present the two main strategies that can be chosen: the
flux coupling (Section 4.1.1) and the intermediate state coupling (Section 4.1.2).
Section 4 ends with a description of the numerical schemes we consider.
Numerical tests to illustrate the different choices are presented in Section 5, followed
by a conclusion (Section 6).

2 Governing equations and physical modelling

In this study, we focus on the one-dimensional case (n = 1) and we set D = R,
DE = R

−,∗ and DR = R
+,∗. The coupling interface is then located at x = 0:

I = {x = 0}. Let us now precise the general modelling assumptions on the two-
phase flow.

International Journal on Finite Volumes 3



The coupling of homogeneous models for two-phase flows

2.1 General modelling assumptions

We follow [13], [15], [16], [17], [30] and consider that each phase is a fluid with its
own thermodynamic properties. Let us begin by introducing some notations for the
two phases. In the following, ρα, εα, pα(ρα, εα) and Tα(ρα, εα) respectively denote
the density, the internal energy, the pressure and the temperature of the phase
α = 1, 2. Then, the entropy ηα(ρα, εα) is defined up to an additive constant via
Gibbs relations, that is

∂ηα

∂εα
(ρα, εα) =

1

Tα(ρα, εα)
,

∂ηα

∂ρα
(ρα, εα) = −

pα(ρα, εα)

ρ2
αTα(ρα, εα)

. (2)

In order to make the localization of phase changes possible, we introduce an order
parameter z ∈ [0, 1] that equals 1 in phase 1 and 0 in phase 2.

The matter is now to put these two fluids in relation in a way to obtain a
thermodynamically coherent description of the two-phase flow. With this in mind,
we adopt the following definitions for the mixture density ρ, internal energy ε and
pressure p: 




ρ = zρ1 + (1 − z)ρ2,
ρε = zρ1ε1 + (1 − z)ρ2ε2,
p = zp1(ρ1, ε1) + (1 − z)p2(ρ2, ε2).

(3)

Then, we make the assumption that the two fluids have the same temperature.
Therefore, we impose the following closure relation which defines the mixture tem-
perature T

T = T1(ρ1, ε1) = T2(ρ2, ε2). (4)

We complete this section by giving explicit formulas for pα and Tα, α = 1, 2. We
consider the case of perfect gas equations of state given by

{
pα(ρα, εα) = (γα − 1)ραεα,

Tα(ρα, εα) =
εα

Cv,α
, α = 1, 2, (5)

with different adiabatic coefficients γ1 > 1 and γ2 > 1. We choose γ2 < γ1 without
loss of generality. For simplicity reasons, specific heats Cv,1 and Cv,2 are assumed
to be equal and we set

Cv = Cv,1 = Cv,2 > 0. (6)

This hypothesis is widely used in the litterature ([13], [15], [16], [17], [30]) and allows
to ease the computations. For the general case with different specific heat coefficients
for the two fluids, we refer to [23] and [3].
As an immediate consequence of (3)-(4)-(6), we thus have

ε = ε1 = ε2 = CvT. (7)

Integrating Gibbs relations (2), we then define entropies ηα by

ηα(ρα, εα) = Cv,α ln
pα(ρα, εα)

ργα
α

, α = 1, 2. (8)
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2.2 Governing equations

In this section, we describe the basic assumptions that lead to the homogeneous
equilibrium model HEM and to the homogeneous relaxation model HRM and we
give the two sets of equations associated with them. We begin by HEM.

2.2.1 The homogeneous equilibrium model HEM

The homogeneous equilibrium model is obtained under specific assumptions of me-
chanical and thermodynamic equilibrium for the two phase flow. This means that
when both phases are present, their pressures pα(ρα, εα) and their free enthalpies
gα(ρα, εα) = εα + pα(ρα, εα)/ρα − ηα(ρα, εα)Tα(ρα, εα) are equal:

{
p1(ρ1, ε1) = p2(ρ2, ε2),
g1(ρ1, ε1) = g2(ρ2, ε2),

(9)

For the perfect gas mixture described above, this is equivalent to




(γ1 − 1)ρ1 = (γ2 − 1)ρ2,

(γ1 − 1) − ln
(γ1 − 1)

ρ
(γ1−1)
1

= (γ2 − 1) − ln
(γ2 − 1)

ρ
(γ2−1)
2

, (10)

thanks to (5)-(7)-(8). By easy calculations, we get

Proposition 2.1 System (10) admits a unique solution (ρ⋆
1, ρ

⋆
2) given by





ρ⋆
1 =

1

e
(
γ2 − 1

γ1 − 1
)

γ2

γ2 − γ1 ,

ρ⋆
2 =

1

e
(
γ2 − 1

γ1 − 1
)

γ1

γ2 − γ1 .

(11)

Remark 1 Under assumption γ2 < γ1, we have ρ⋆
1 < ρ⋆

2.

At this stage, it is important to notice that considering perfect gas equations of
state with the same specific heats leads to explicit and simple formulas for equilib-
rium densities ρ⋆

1 and ρ⋆
2. This is actually the main motivation for such a choice.

As an immediate consequence of (6), note also that ρ⋆
1 and ρ⋆

2 do not depend on the
mixture temperature T .

Remark 2 Entropies ηα being defined up to an additive constant, one could have set

ηα(ρα, εα) = Cv,α ln
pα(ρα, εα)

ργα
α

− γαCv,α ln(γα − 1)Cv,α, α = 1, 2, (12)

instead of (8). In this case, ρ⋆
1 and ρ⋆

2 are given by




ρ⋆
1 = exp(−1 −

γ2 ln(γ2 − 1)Cv − γ1 ln(γ1 − 1)Cv

γ2 − γ1
) × (

γ2 − 1

γ1 − 1
)

γ2

γ2 − γ1 ,

ρ⋆
2 = exp(−1 −

γ2 ln(γ2 − 1)Cv − γ1 ln(γ1 − 1)Cv

γ2 − γ1
) × (

γ2 − 1

γ1 − 1
)

γ1

γ2 − γ1 ,

(13)

International Journal on Finite Volumes 5



The coupling of homogeneous models for two-phase flows

or, in an equivalent way,





ρ⋆
1 = exp

(
γ1 + (γ1 − 1) ln(γ1 − 1)Cv − γ2 − (γ2 − 1) ln(γ2 − 1)Cv

γ2 − γ1

)

×

(
γ2 − 1

γ1 − 1

) γ2 − 1

γ2 − γ1 ,

ρ⋆
2 = exp

(
γ1 + (γ1 − 1) ln(γ1 − 1)Cv − γ2 − (γ2 − 1) ln(γ2 − 1)Cv

γ2 − γ1

)

×

(
γ2 − 1

γ1 − 1

) γ1 − 1

γ2 − γ1 ,

(14)

which corresponds to the values proposed in [13].

This result implies that in the HEM framework, the densities ρα of each phase
are given fixed values when both phases are present, i.e. when order parameter
z ∈ (0, 1). The mixture density ρ = ρ⋆

1z + ρ⋆
2(1 − z) thus lies in the interval

[ρ⋆
1, ρ

⋆
2] and depends on the value of z. Concerning the pressure law p, we have

p(ρ, ε) = p1(ρ
⋆
1, ε1) = p2(ρ

⋆
2, ε2) for all ρ ∈ [ρ⋆

1, ρ
⋆
2] which corresponds to the first

assumption in (9). Outside this interval, it can be naturally extended since only
phase 1 (respectively phase 2) is present when 0 < ρ ≤ ρ⋆

1 (respectively ρ ≥ ρ⋆
2). We

get

p(ρ, ε) =





(γ1 − 1)ρε if ρ ≤ ρ⋆
1,

(γ1 − 1)ρ⋆
1ε = (γ2 − 1)Cvρ

⋆
2T if ρ⋆

1 < ρ < ρ⋆
2,

(γ2 − 1)ρε if ρ ≥ ρ⋆
2.

(15)

In the following, this pressure law will be noted pE(ρ, ε).
Then, the homogeneous equilibrium model describing the one-dimensional flow

under consideration is given by




∂tρ + ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρE) + ∂x(ρE + p)u = 0.

(16)

This corresponds to uE = (ρ, ρu, ρE), fE(uE) = (ρu, ρu2+p, ρEu+pu) and SE(uE) =
(0, 0, 0) with the notations introduced in (1). The first equation expresses the conser-
vation of mass, while the second and the third respectively govern the conservation
of momentum ρu and total energy ρE. Note that the two fluids share the same ve-
locity u which is inherent in the homogeneous modelling. The pressure p = pE(ρ, ε)
is given by (15) while internal energy ε is linked to the vector uE by

ρE = ρε +
1

2
ρu2. (17)

Defining the following natural phase space for HEM:

ΩE = {uE := (ρ, ρu, ρE) ∈ R
3/ρ > 0, ε = CvT > 0},

we are in position to state:

International Journal on Finite Volumes 6
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Lemma 2.2 The first order convective system HEM is strictly hyperbolic over ΩE,
with the following eigenvalues:

λ1(u
E) = u − cE < λ2(u

E) = u < λ3(u
E) = u + cE,

where the sound speed cE is such that

(
cE(uE)

)2

=





γ1(γ1 − 1)ε if 0 < ρ ≤ ρ⋆
1,

(γ1 − 1)2
ρ⋆
1
2

ρ2
ε = (γ2 − 1)2

ρ⋆
2
2

ρ2
ε if ρ⋆

1 < ρ < ρ⋆
2,

γ2(γ2 − 1)ε if ρ ≥ ρ⋆
2.

(18)

Moreover, the second field is linearly degenerate.

The proof of this lemma follows from standard calculations and is left to the reader.
See also [30], [13], [15], [16], [17].

Remark 3 It is worth noting that the sound speed uE → cE(uE) is discontinuous
when the density ρ is equal to ρ⋆

1 or ρ⋆
2. As a result, the first and the third fields,

corresponding respectively to the eigenvalues u−cE and u+cE, are neither genuinely
nonlinear nor linearly degenerate. This property is known to make more complicated
the resolution of the Riemann problem since admissible nonclassical solutions vio-
lating the standard selection criterion naturally arise. Such considerations are of
course out of the scope of this paper. Besides, existence and uniqueness may be
recovered when imposing the validity of the Liu criterion for instance. We refer for
instance the reader to [30], [31] and the references therein.

Let us now address the homogeneous relaxation model.

2.2.2 The homogeneous relaxation model HRM

The homogeneous relaxation model considers that the two-phase flow no longer
evolves instantaneously at thermodynamic equilibrium, but only at mechanical equi-
librium. Modelling assumptions (9) are replaced by

p1(ρ1, ε1) = p2(ρ2, ε2), (19)

that is, in the case under study,

(γ1 − 1)ρ1 = (γ2 − 1)ρ2 (20)

due to (5) and (7). In other words, and contrary to HEM, densities ρ1 and ρ2 are not
restricted any longer to take the saturation values ρ⋆

1 and ρ⋆
2, but are simply linked

by the algebraic relation (20). Actually, HRM accounts for mass transfers between
the two fluids assuming that the thermodynamic equilibrium g1(ρ1, ε1) = g2(ρ2, ε2)
is not instantaneously achieved, but it is reached at speed λ0 > 0. More precisely,
the system reads





∂t(ρ1z) + ∂x(ρ1zu) = λ0

(
ρ⋆
1z

⋆(ρ) − ρ1z
)
,

∂tρ + ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρE) + ∂x(ρE + p)u = 0,

(21)
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that is, with the notations introduced in (1), uR = (ρ1z, ρ, ρu, ρE), fR(uR) =
(ρ1zu, ρu, ρu2 + p, ρEu + pu) and SR(uR) = (λ0

(
ρ⋆
1z

⋆(ρ) − ρ1z
)
, 0, 0, 0). In order

to close system (21), let us recall that ρ = ρ1z + ρ2(1 − z), therefore

z =
ρ − ρ2

ρ1 − ρ2
,

while z⋆(ρ) corresponds to the thermodynamic equilibrium value given by ρ =
ρ⋆
1z

⋆(ρ) + ρ⋆
2(1− z⋆(ρ)) when ρ ∈ [ρ⋆

1, ρ
⋆
2]. Otherwise, we naturally set ρ⋆

1z
⋆(ρ) = ρ if

ρ ≤ ρ⋆
1 and ρ⋆

1z
⋆(ρ) = 0 if ρ ≥ ρ⋆

2, so that

z⋆(ρ) =





ρ

ρ⋆
1

if 0 < ρ ≤ ρ⋆
1,

ρ − ρ⋆
2

ρ⋆
1 − ρ⋆

2

if ρ⋆
1 ≤ ρ ≤ ρ⋆

2,

0 if ρ ≥ ρ⋆
2.

(22)

Note that ρ2 > ρ1 since we have assumed γ1 > γ2. Pressure p simply follows from
identity p = zp1(ρ1, ε) + (1 − z)p2(ρ2, ε), that is

p = p(ρ1z, ρ, ε) =
(
(γ1 − 1)ρ1z + (γ2 − 1)(ρ − ρ1z)

)
ε, (23)

and (17) remains valid. Hereafter, this pressure law will be noted pR(ρ1z, ρ, ε).

Remark 4 We note that in the limit λ0 → +∞, usually called equilibrium, HRM
converges at least formally toward HEM. Indeed, the first equation in (21) leads in
this asymptotic regime to the relation ρ1z = ρ⋆

1z
⋆(ρ) and we get the pressure law

(15) by means of (23) and (22). In other words, pR,eq := pR
(
ρ⋆
1z

⋆(ρ), ρ, ε
)

equals
pE := pE(ρ, ε).

To conclude, a natural phase space for HRM is

ΩR = {uR := (ρ1z, ρ, ρu, ρE) ∈ R
4/ρ > 0, 0 ≤ ρ1z ≤ ρ, ε = CvT > 0},

and the following statement holds true.

Lemma 2.3 The first order underlying system of HRM is hyperbolic over ΩR, with
the following eigenvalues:

λ1(u
R) = u − cR < λ2(u

R) = λ3(u
R) = u < λ4(u

R) = u + cR,

where the sound speed cR is such that

(
cR(uR)

)2

=
A(ρ1z, ρ)

ρ

(
1+

A(ρ1z, ρ)

ρ

)
ε, A(ρ1z, ρ) = (γ1−1)ρ1z+(γ2−1)(ρ−ρ1z).

(24)
Moreover, the first and fourth fields are genuinely nonlinear and the second and the
third ones are linearly degenerate.

International Journal on Finite Volumes 8



The coupling of homogeneous models for two-phase flows

Remark 5 Let uE be a vector of ΩE and uR,eq =
(
ρ⋆
1z

⋆(ρ),uE
)

the associated vec-
tor of ΩR taken at equilibrium. Then, it can be shown by easy calculations that
cR(uR,eq) ≥ cE(uE) which ensures that the first (respectively last) eigenvalue of the
model HRM is less or equal (respectively greater or equal) than the first (respectively
last) eigenvalue of the model HEM. This property can be related to the so-called sub-
characteristic condition (or Whitham condition) that guarantees the stability of the
relaxation process in relaxation systems. See for instance [9], [18] and the literature
on this subject.

3 The coupling problem

The coupling problem we study is as follows. The global problem is 1D (see [28] for
coupling problems in higher dimensions). The interface coupling is I = {x = 0} and
separates the two open sub-domains DE = R

−,∗ and DR = R
+,∗. The flow is thus

governed by the following set of PDE:

∂tu
E + ∂xf

E(uE) = SE(uE), for t > 0 and x ∈ DE,
∂tu

R + ∂xf
R(uR) = SR(uR), for t > 0 and x ∈ DR,

detailed respectively in (16) and (21), complemented by the initial data

uE(x, 0) = uE
0 (x), for x ∈ DE,

uR(x, 0) = uR
0 (x), for x ∈ DR,

where uE
0 ∈ ΩE and uR

0 ∈ ΩR are given.
It remains to define the behavior of the flow through I. Since the two models are

different, there is no obvious way to couple the systems HEM and HRM. However,
these models are somehow compatible (see Rem. 4) and govern the evolution of
the same fluid. Therefore, the coupling should be performed in such a way that
the solution obeys some physical requirements. Here, we provide three numerical
coupling methods, in order to ensure respectively:

• the global conservation of ρ, ρu and ρE,

• the continuity of ρ, ρu and ρE (and the conservation of ρ) through I,

• the continuity of ρ, ρu and p (and the conservation of ρ and ρu) through I.

(For rigorous definitions of coupling, we refer to [25, 26].) Let us emphasize that the
two latter coupling must be understood in a weak sense, since we are dealing with
hyperbolic systems and discontinuous solutions. Indeed, if the characteristic speeds
are incompatible, the variables expected to be constant through I can jump. As an
example, think about the transport equation ∂tv + a∂xv = 0, with a > 0 for x < 0
and a < 0 for x > 0. In this case, the solution will be discontinuous [25].

In the following, a numerical method of coupling is proposed for each interface
coupling. Afterward, the ability of each numerical coupling method to provide ap-
proximate solutions in agreement with the corresponding coupling condition (that is
either the global conservation, the continuity of the conservative variable or the con-
tinuity of the primitive variable) is illustrated by numerous numerical experiments.
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4 The numerical coupling

In this section, we show how to couple the two homogeneous models from a numerical
point of view. We aim at presenting several strategies, depending on informations
that should be transferred through the interface and/or expected properties of the
solution, in terms of conservation in particular.

Let be given a constant time step ∆t and a constant space step ∆x and let us
set ν = ∆t/∆x. Introducing the cell interfaces xj = j∆x for j ∈ Z and tn = n∆t for
n ∈ N, we classically seek at each time tn a piecewise constant approximate solution
x → uν(x, tn) of the solution u of the coupling problem (1):

uν(x, tn) = un
j+1/2 for all x ∈ Cj+1/2 = [xj;xj+1), j ∈ Z, n ∈ N.

Note that for j = 0, xj = x0 coincides with the coupling interface and, for all
n ∈ N, un

j+1/2 = (ρ, ρu, ρE)nj+1/2 has three components for j < 0 and un
j+1/2 =

(ρ1z, ρ, ρu, ρE)nj+1/2 has four components for j ≥ 0.

In order to advance some given sequence (un
j+1/2)j∈Z at time tn to the next time

level tn+1, our approach proposes two steps based on a splitting strategy between
the convective parts and the source terms of HEM and HRM. More precisely:

Step 1 (tn → tn+1−)
In the first step, we focus on the convective part of the coupling problem. It consists
in solving {

∂tu
E + ∂xf

E(uE) = 0, x < 0,
∂tu

R + ∂xf
R(uR) = 0, x > 0,

(25)

for t ∈ (0,∆t] with initial data uν(., t
n) and some coupling condition which we

describe below. We denote uν(., t
n+1−) the corresponding solution at time t = ∆t.

Step 2 (tn+1− → tn+1)
Then, uν(., t

n+1−) naturally serves as initial data for solving the source terms:
{

∂tu
E = SE(uE), x < 0,

∂tu
R = SR(uR), x > 0,

(26)

again for t ∈ (0,∆t]. This step will provide us with an updated solution uν(., t
n+1)

and this completes the numerical procedure.

4.1 The convective part

Let us first address the first step devoted to the convective part. In this context, we
assume two schemes to be given, by mean of two 2-point numerical flux functions
gE : R

3 × R
3 7→ R

3 and gR : R
4 × R

4 7→ R
4 respectively consistent with the flux

functions fE and fR in the sense of finite volume methods. The former are used to
numerically solve the first-order underlying systems of HEM and HRM on each side
of the interface, that is

un+1−
j−1/2 = un

j−1/2 − ν(gE
j − gE

j−1), j ≤ 0,

un+1−
j+1/2 = un

j+1/2 − ν(gR
j+1 − gR

j ), j ≥ 0,

(27)
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with for all j 6= 0:

gE
j = gE(un

j−1/2,u
n
j+1/2), gR

j = gR(un
j−1/2,u

n
j+1/2).

We concentrate on 3-point conservative schemes without loss of generality. At the
discrete level, the coupling of HEM and HRM amounts to define the quantities gE

0

and gR
0 . In particular, observe from now on that the first step is conservative in the

quantities common to both systems, namely ρ, ρu and ρE, if and only if the last
three components of gE

0 and gR
0 are equal. We now describe three different strategies

for evaluating gE
0 and gR

0 .

4.1.1 The flux coupling

The flux coupling strategy consists in including HEM and HRM to be coupled in
a global model. The very motivation is to propose a fully conservative numerical
treatment. To that purpose, let us first recall that owing to Remark 4, HEM and
HRM are thermodynamically consistent, that is pR,eq = pE. In a rather natural
way, we then consider the following HRM-like relaxation system in order to include
together HEM and HRM in the same formalism:





∂t(ρ1z) + ∂x(ρ1zu) = λ(x)
(
ρ⋆
1z

⋆(ρ) − ρ1z
)
,

∂tρ + ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρE) + ∂x(ρE + p)u = 0,

(28)

with (x, t) ∈ R × R
+,⋆ and

λ(x) =

{
+∞ for x < 0,

0 for x > 0.
(29)

As expected, the relaxation parameter λ is considered to be +∞ for HEM, that is
ρ1z = ρ⋆

1z
⋆(ρ), and 0 for HRM since for the present moment we are dealing with the

convective parts only. The pressure p = pR(ρ1z, ρ, ε) is still given by (23). Defining
u

n,eq
−1/2 =

(
ρ⋆
1z

⋆(ρ), ρ, ρu, ρE
)n

−1/2
, we are thus led to set

gE
0 = (gR

2 , gR
3 , gR

4 )(un,eq
−1/2,u

n
1/2) and gR

0 = gR(un,eq
−1/2,u

n
1/2), (30)

where with classical notations, {gR
i }i=2,3,4 denotes the last three components of gR.

4.1.2 The intermediate state coupling

We have just seen that the flux coupling is motivated by (and achieves) a conser-
vation property on conservative variables ρ, ρu, ρE common to both systems HEM
and HRM. Regarding the intermediate state coupling, the idea is rather to impose
the continuity of some variables of physical interest through the interface.

We first propose to impose the continuity of the common variables ρ, ρu, ρE
at the interface. So, introducing the natural vectors u

n,E
1/2 = (ρ, ρu, ρE)n1/2 and
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u
n,R
−1/2 =

(
ρ⋆
1z

⋆(ρ), ρ, ρu, ρE
)n

−1/2
for converting a vector of HRM into a vector of

HEM and vice versa, it gives the following natural definition for gE
0 and gR

0 :

gE
0 = gE(un

−1/2,u
n,E
1/2) and gR

0 = gR(un,R
−1/2,u

n
1/2). (31)

Remark 6 We remark that u
n,R
−1/2 = u

n,eq
−1/2 so that (30) and (31) only differ by the

definition of gE
0 . But in the case when un

1/2 is at equilibrium, that is (ρ1z)n
1/2 =

ρ⋆
1z

⋆(ρn
1/2), let us recall that the pressure p obeys equivalently (15) and (23) (see

Remark 4). This implies that the last three conservation laws of HRM on ρ, ρu and
ρE coincide with the three ones of HEM. From a numerical point of view, it is thus
expected that (gR

2 , gR
3 , gR

4 )(un,eq
−1/2,u

n
1/2) and gE(un

−1/2,u
n,E
1/2) are equal, or at least very

close depending on the choice of gE and gR.

Definition (31) aims at providing, whenever possible, the continuity of ρ, ρu
and ρE at the interface. If such a property actually holds, the internal energy ε is
continuous as well by (17) but not the pressure p since generally speaking un

1/2 is not

at equilibrium, that is ρ1z 6= ρ⋆
1z

⋆(ρ) and therefore pE(ρ, ε) 6= pR(ρ1z, ρ, ε). That
is the reason why we now propose to modify the initial intermediate state coupling
in order to impose the continuity of the pressure p and let us say ρ and ρu. The
latter choice is natural to achieve conservation of mass ρ and momentum ρu. We
then define two vectors, u

n,E
1/2 for HEM and u

n,R
−1/2 for HRM, sharing the same ρ, ρu

and p as un
1/2 and un

−1/2 respectively:

u
n,E
1/2 = (ρ, ρu, ρE

E
)n1/2 and u

n,R
−1/2 =

(
ρ⋆
1z

⋆(ρ), ρ, ρu, ρE
R)n

−1/2
.

This is done by inverting the pressure laws (15) and (23) with respect to ε. Using
in addition (17), straightforward calculations give:

ρE
E

=
1

2

(ρu)2

ρ
+





p

(γ1 − 1)
if ρ ≤ ρ⋆

1,

p

(γ1 − 1)

ρ

ρ⋆
1

if ρ⋆
1 < ρ < ρ⋆

2,

p

(γ2 − 1)
if ρ ≥ ρ⋆

2

and

ρE
R

=
1

2

(ρu)2

ρ
+

ρp

(γ1 − 1)ρ⋆
1z

⋆(ρ) + (γ2 − 1)
(
ρ − ρ⋆

1z
⋆(ρ)

) .

Then we set:

gE
0 = gE(un

−1/2,u
n,E
1/2) and gR

0 = gR(un,R
−1/2,u

n
1/2). (32)

Remark 7 The state u
n,R
−1/2 being at equilibrium, it is clear that ρE

Rn

−1/2 equals

ρEn
−1/2. As an immediate consequence we have u

n,R
−1/2 = u

n,R
−1/2 and both flux coupling

and intermediate state coupling strategies (modified or not) only differ by gE
0 (see

also Remark 6).
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Remark 8 Let us also note that if un
1/2 is at equilibrium, the corresponding pressure

pn
1/2 may well be computed using either pE or pR so that u

n,E
1/2 = u

n,E
1/2 and both

intermediate state coupling strategies (modified or not) have the same gE
0 . Hence

and by Remark 6, the three coupling strategies are expected to be equal in this (very
particular) situation.

To conclude this section, let us keep in mind that in general gE
0 6= gR

0 for the
intermediate state coupling strategy (modified or not). Therefore, the first step of
the whole numerical procedure is not conservative in ρ, ρu and ρE contrary to the
flux coupling strategy.

4.2 The source term

This section is devoted to the numerical treatment of (26). Since SE = (0, 0, 0) and
SR = (λ0

(
ρ⋆
1z

⋆(ρ) − ρ1z
)
, 0, 0, 0), we naturally set





ρn+1
j+1/2 = ρn+1−

j+1/2,

un+1
j+1/2 = un+1−

j+1/2,

En+1
j+1/2 = En+1−

j+1/2,

∀j ∈ Z, n ∈ N

since ρ, ρu and ρe do not vary in this step. It remains to solve

∂tρ1z = λ0

(
ρ⋆
1z

⋆(ρ) − ρ1z
)

in each cell of DR. This is done exactly via the formula

ρ1
n+1
j+1/2

zn+1
j+1/2

= ρ⋆
1z

⋆(ρn+1−
j+1/2

) −
(
ρ⋆
1z

⋆(ρn+1−
j+1/2

) − ρ1
n+1−
j+1/2

zn+1−
j+1/2

)
e−λ0∆t,

for all j ∈ N and n ∈ N.

4.3 The numerical schemes

We present now the numerical schemes we have tested, that is, we give several
possible definitions for gE and gR. The first scheme is the Rusanov scheme [34],
which is a very simple, but diffusive, scheme. The second scheme is a standard
Lagrange-Projection scheme, as proposed in [20]. In opposition to the previous one,
this method is an upwinding scheme, but not a 3-point scheme (it is actually a
5-point scheme and the numerical flux also depends on ν = ∆t/∆x). The third
scheme is a nonconservative modification of the Lagrange-Projection scheme first
introduced in [4, 8], in order to avoid spurious oscillations of pressure near contact
discontinuities.

4.3.1 The Rusanov scheme

The Rusanov scheme [34] is a classical 3-point scheme. The associated numerical
flux is

gα(u,v) =
fα(u) + fα(v)

2
−

λα
m(u,v)

2
(v − u), (33)

International Journal on Finite Volumes 13



The coupling of homogeneous models for two-phase flows

with
λα

m(u,v) = max(max
i

(|λα
i (u)|),max

i
(|λα

i (v)|))

where λα
i is the i-th eigenvalue of the jacobian matrix Dfα, α = E,R. Under the

classical CFL condition

ν max
j

(max
i

|λα
i (un

j+1/2)|) ≤ C <
1

2
,

the Rusanov scheme is positive for the density and stable (C is called the Courant
number). This scheme is very simple but it is very diffusive, which is due to the
central, but stable, discretization (opposed to an upwind discretization). When con-
sidering for instance stationary contact discontinuities (null velocity, uniform pres-
sure and non uniform density), the Rusanov scheme cannot preserve such profiles,
the density is diffused, contrarily to usual upwind schemes like Godunov method or
Lagrange-Projection schemes. We will see the consequences of this drawback in the
numerical results.

4.3.2 The Lagrange-Projection scheme

Lagrange-Projection schemes are based on an operator splitting consisting in solv-
ing first the Euler equations in pseudo-Lagrangian coordinates (tn → tn+1/2) and
then the advection part of the equations (tn+1/2 → tn+1−), which may appear as a
projection procedure on the fixed mesh. The exact Godunov scheme associated with
this splitting is described in [24]. We prefer here to use an approximate Godunov
resolution of the Lagrange part. This Lagrangian scheme can be interpreted as an
acoustic scheme (see [21]) or a relaxation scheme (see [19]). The Lagrange step of
the scheme for HRM is




ρ1
n+1/2
j+1/2 z

n+1/2
j+1/2 = ρ

n+1/2
j+1/2

ρ1
n
j+1/2z

n
j+1/2

ρn
j+1/2

,

ρ
n+1/2
j+1/2 =

ρn
j+1/2

1 + ν
(
un

j+1 − un
j

) ,

u
n+1/2
j+1/2 = un

j+1/2 −
ν

ρn
j+1/2

(
pn

j+1 − pn
j

)
,

E
n+1/2
j+1/2 = En

j+1/2 −
ν

ρn
j+1/2

(
pn

j+1u
n
j+1 − pn

j un
j

)

with {
un

j = 1
2(ρc)n

j
(pn

j−1/2 − pn
j+1/2) + 1

2(un
j−1/2 + un

j+1/2),

pn
j = 1

2(pn
j−1/2 + pn

j+1/2) +
(ρc)n

j

2 (un
j−1/2 − un

j+1/2),

the approximate local Lagrangian sound speed (ρc)nj above being given by

(ρc)nj =
√

max(ρn
j−1/2c

n
j−1/2

2, ρn
j+1/2c

n
j+1/2

2)min(ρn
j−1/2, ρ

n
j+1/2)

where cn
j+1/2 is the sound speed in cell j + 1/2 at time step n: cn

j+1/2 = cR(un
j+1/2).

Quantities pn
j+1/2 are to be understood in the same sense,

pn
j+1/2 = pR

(
ρ1

n
j+1/2z

n
j+1/2, ρ

n
j+1/2, E

n
j+1/2 − 1/2

(
un

j+1/2

)2
)
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for all j under consideration.
Then, the projection step enables to compute

(
ρ1

n+1−
j+1/2z

n+1−
j+1/2, ρ

n+1−
j+1/2, ρ

n+1−
j+1/2u

n+1−
j+1/2, ρ

n+1−
j+1/2E

n+1−
j+1/2

)
.

The whole Lagrange-Projection time step for HRM results in the following flux:

gR
j =




ρ̃1
n
j z̃n

j un
j

ρ̃n
j un

j

ρ̃n
j ũn

j un
j + pn

j

ρ̃n
j Ẽn

j un
j + pn

j un
j




(see above for the fluxes un
j and pn

j ) with

if un
j ≥ 0,





ρ̃1
n
j z̃n

j = ρ1
n+1/2
j−1/2 z

n+1/2
j−1/2 ,

ρ̃n
j = ρ

n+1/2
j−1/2 ,

ũn
j = u

n+1/2
j−1/2

,

Ẽn
j = E

n+1/2
j−1/2 ,

and if un
j < 0,





ρ̃1
n
j z̃n

j = ρ1
n+1/2
j+1/2 z

n+1/2
j+1 ,

ρ̃n
j = ρ

n+1/2
j+1/2 ,

ũn
j = u

n+1/2
j+1/2

,

Ẽn
j = E

n+1/2
j+1/2 .

The flux gE
j for HEM follows the same definition and is composed of the last three

components of gR
j .

Note that because of the definition of ρ̃1
n
j z̃n

j , ρ̃n
j , ũn

j and Ẽn
j , this is a 4-point

flux. This leads to define four vectors instead of two for the numerical coupling:
u

n,R
−3/2 and u

n,R
−1/2 for HRM, and u

n,E
1/2 and u

n,E
3/2 for HEM.

This scheme has the drawback of creating spurious oscillations near contact dis-
continuities when dealing with a non-ideal gas such as in HEM and HRM. For
this reason we propose a slight modification of the Lagrange-Projection scheme to
avoid this phenomenon. The modification is based on the fact that the oscilla-
tions come up in the projection procedure, the Lagrange step being oscillation-
free whatever the pressure law. Thus we propose to project the quantities ρ1z,
ρ, ρu, and p instead of ρE,which implies a maximum principle on p in the pro-
jection step. This new scheme is oscillation-free near contact discontinuities but
has the drawback of being nonconservative in total energy. Nevertheless in the
following numerical test-cases where shocks are not too strong, we do not ob-
serve important artefacts. This scheme will be called “nonconservative Lagrange-
Projection scheme” and noted L-PP in the following. Let us briefly give the scheme
for HRM. The only difference concerns the quantity ρE. It is updated in two
steps. In the Lagrange step, the same formulas as above are used, and we com-

pute p
n+1/2
j+1/2 =

(
ρ1

n+1/2
j+1/2 z

n+1/2
j+1/2 , ρ

n+1/2
j+1/2 , E

n+1/2
j+1/2 − 1/2

(
u

n+1/2
j+1/2

)2
)

. Then, the un-

knowns (ρ1z, ρ, ρu) are updated in the same way as with the conservative Lagrange-
Projection scheme, but not E. We here compute first pn+1−

j+1/2
as

pn+1−
j+1/2

= p
n+1/2
j+1/2

− ν
(
un

j+1(p̃
n
j+1 − p

n+1/2
j+1/2

) − un
j (p̃n

j − p
n+1/2
j+1/2

)
)

with
if un

j ≥ 0, p̃n
j = p

n+1/2
j−1/2 , and if un

j < 0, p̃n
j = p

n+1/2
j+1/2 .
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Finally, we compute En+1−
j+1/2 by inverting the pressure law, finding En+1−

j+1/2 such that

pR

(
ρ1

n+1−
j+1/2z

n+1−
j+1/2, ρ

n+1−
j+1/2, E

n+1−
j+1/2 − 1/2

(
un+1−

j+1/2

)2
)

= pn+1−
j+1/2.

The nonconservative scheme for HEM is a straightforward transposition of this
one.

5 Numerical experiments

In this section, several numerical tests are presented in order to illustrate the different
behaviors obtained at the coupling interface, according to the numerical scheme and
the numerical coupling we use. In all the experiments, the computational space
domain is [−1/2; 1/2], the associated mesh is composed of 500 cells and the Courant
number C equals 0.4. We will always consider Riemann initial data given by

uE(0, x) = ul, −1/2 ≤ x < 0,
uR(0, x) = ur, 0 < x ≤ 1/2,

(34)

where ul ∈ ΩE and ur ∈ ΩR are two constant states. Actually, the initial data
will be given with respect to the variable v = (ρ, u, p). More precisely, ul =
(ρl, ρlul, ρ(εE(ρl, pl) + (ul)

2/2)) where εE(ρ, p) is given by inverting (15) and ur =
((ρ1)rzr, ρr, ρrur, ρ(εR((ρ1)rzr, ρr, pr) + (ur)

2/2)) where

(ρ1)r =
ρr

zr + γ1−1
γ2−1(1 − zr)

, (35)

and εR(ρ1z, ρ, p) is provided by (23). Besides, the initial data for the HRM part will
be given with respect to the variable (c,v), where c is the mass fraction of vapor and
is plotted in each figure. It is defined by c = ρ⋆

1z
⋆(ρ)/ρ for x < 0 and by c = ρ1z/ρ

for x > 0, and it naturally lies between 0 and 1.
The specific heat Cv is equal to 1, and the values of the adiabatic coefficients are

γ1 = 1.6 and γ2 = 1.4, which leads to ρ⋆
1 ≈ 0.613132 and ρ⋆

2 ≈ 0.919699, using (13)
(below, these values will be plotted on each graph of the density variable).

The first five tests illustrate the ability of the different coupling methods to
provide the continuity at the coupling interface of (ρu, ρu2 + p, u(ρE + p)) for the
flux coupling, of (ρ, ρu, ρE) for the intermediate state coupling with the conservative
variable and of (ρ, u, p) for the modified intermediate state coupling. In order to
make the results we present as clear as possible, the source term of HRM is not taken
into account in these five experiments. In the sixth one, the numerical convergence
of the coupling model between HEM and HRM toward a global HEM, letting λ0

increase, is investigated.
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5.1 A simple test in phase 2

We begin these numerical tests with a very simple case. The data of this test are

c ρ u p

vl − 2 0 1

(c,v)r 0 1.5 0 2

tm = 0.2, λ0 = 0,

(36)

where tm represents the time at which the solutions are plotted. One may remark
that the HRM part of the domain is initially at equilibrium (zr = z⋆(ρr)), so that
HRM becomes equivalent to HEM. Moreover, let us emphasize that this solution is
totally involved in phase 2 (that is ρ > ρ⋆

2). Therefore, the global solution of the
coupling problem corresponds to the one provided by a unique system HEM, defined
everywhere in the domain of computation. Due to these particular properties of the
initial data, the three numerical coupling methods must give the same results (see
also Rem. 6 and 8), which may be seen in Figs. 1, 2 and 3. One may also check
that the Rusanov scheme is more diffusive than the Lagrange-Projection schemes.
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Figure 1: A test in phase 2 (36): Intermediate state coupling (conservative vari-
able). Lagrange-Projection (L-P), nonconservative Lagrange-Projection (L-PP) and
Rusanov scheme (Rus).
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Figure 2: A test in phase 2 (36): Intermediate state coupling (nonconservative
variable). Lagrange-Projection (L-P), nonconservative Lagrange-Projection (L-PP)
and Rusanov scheme (Rus).
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Figure 3: A test in phase 2 (36): Flux coupling. Lagrange-Projection (L-P), non-
conservative Lagrange-Projection (L-PP) and Rusanov scheme (Rus).
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5.2 Uniform velocity and pressure at equilibrium

In this case, the right part of the domain is still at equilibrium, but the left part
and the right part belong to different phases since ρl > ρ⋆

2 and ρr < ρ⋆
1. Since

zr = z⋆(ρr), this test enters in the frame described in Rem. 6 and 8. The numerical
results of the different coupling methods are thus expected to be very close. The
data associated with this test are

c ρ u p

vl − 2 1 1

(c,v)r 1 0.5 1 1

tm = 0.15, λ0 = 0,

(37)

so that the solution is composed by a contact discontinuity, moving to the right,
that is in the HRM part of the domain. Since the contact discontinuity separates
the two phases, the adiabatic coefficients are different on both sides of the wave
and it is well-known that, in such case, any standard conservative scheme provides
spurious oscillations on the profiles of u and p (see for instance [1]). Basically, only
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Figure 4: Uniform velocity and pressure at equilibrium (37): Intermediate state cou-
pling (conservative variable). Lagrange-Projection (L-P), nonconservative Lagrange-
Projection (L-PP) and Rusanov scheme (Rus).

the nonconservative Lagrange-Projection scheme can maintain the velocity and the
pressure constant, that is exactly the reason why this scheme has been introduced
(see also [4, 8]). Nevertheless, as mentioned above, the intermediate state coupling
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Figure 5: Uniform velocity and pressure at equilibrium (37): Intermediate state
coupling (nonconservative variable). Lagrange-Projection (L-P), nonconservative
Lagrange-Projection (L-PP) and Rusanov scheme (Rus).
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Figure 6: Uniform velocity and pressure at equilibrium (37): Flux coupling.
Lagrange-Projection (L-P), nonconservative Lagrange-Projection (L-PP) and Ru-
sanov scheme (Rus).
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with the conservative variable modifies the pressure through the coupling interface.
Consequently, variations of pressure and velocity can be observed in Fig. 4 even for
the nonconservative Lagrange-Projection scheme L-PP.

5.3 Uniform conservative variables out of equilibrium

We now focus on initial data out of equilibrium, that is zr 6= z⋆(ρr). The initial data
of this test case is

c ρ u p

vl − 2 1 1

(c,v)r 1 2 1 1.5

tm = 0.15, λ0 = 0.

(38)

One may check by a simple calculation that (ρl, (ρu)l, (ρE)l) = (ρr, (ρu)r, (ρE)r)
and z⋆(ρl) 6= zr. In both models, the evolution in time of the conservative variables
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Figure 7: Uniform conservative variables out of equilibrium (38): Intermediate
state coupling (conservative variable). Lagrange-Projection (L-P), nonconservative
Lagrange-Projection (L-PP) and Rusanov scheme (Rus).

ρ, ρu and ρE is partially due to the spatial variation of the pressure ∂xp. Here,
the pressure is initially discontinuous at the coupling interface (because z⋆(ρl) 6= zr)
and thus ρ, ρu and ρE cannot remain constant for t > 0, even when using the
intermediate state coupling with the conservative variable, see Fig. 7. Besides, since
the velocity is positive, the discontinuity moves to the right and after some time
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Figure 8: Uniform conservative variables out of equilibrium (38): Intermediate state
coupling (nonconservative variable). Lagrange-Projection (L-P), nonconservative
Lagrange-Projection (L-PP) and Rusanov scheme (Rus).
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Figure 9: Uniform conservative variables out of equilibrium (38): Flux coupling.
Lagrange-Projection (L-P), nonconservative Lagrange-Projection (L-PP) and Ru-
sanov scheme (Rus).
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steps, the cell [x0, x1] is at equilibrium (i.e. zn
1/2 = z⋆(ρn

1/2)), leading to a continuous
pressure law through the coupling interface x = 0. As a result, all the variables are
continuous through this interface (see Figs. 7, 8 and 9, where we have plotted the
variable corresponding to the coupling method we used).

5.4 Uniform primitive variables out of equilibrium

In this case, the HRM part is still out of equilibrium:

c ρ u p

vl − 1 −0.5 1

(c,v)r 1 1 −0.5 1

tm = 0.2, λ0 = 0.

(39)

Let us note that the density, the velocity and the pressure (that are the primitive
variables) are the same on both sides of the coupling interface. In fact, if the state
(c,v)r was at equilibrium, the primitive variables would be preserved constant by
all the numerical methods, as we saw in the results of Section 5.2. But, for this
test, the equation of state changes at the coupling interface (since zr 6= z⋆(ρr)) and
solutions with complex structures can be developed.
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Figure 10: Uniform velocity and pressure out of equilibrium (39): Intermediate
state coupling (conservative variable). Lagrange-Projection (L-P), nonconservative
Lagrange-Projection (L-PP) and Rusanov scheme (Rus).
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Figure 11: Uniform velocity and pressure out of equilibrium (39): Intermediate state
coupling (nonconservative variable). Lagrange-Projection (L-P), nonconservative
Lagrange-Projection (L-PP) and Rusanov scheme (Rus).

International Journal on Finite Volumes 27



The coupling of homogeneous models for two-phase flows

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

-0.4 -0.2  0  0.2  0.4

Pressure

L-P
L-PP
Rus

-0.7

-0.65

-0.6

-0.55

-0.5

-0.45

-0.4

-0.4 -0.2  0  0.2  0.4

Velocity

L-P
L-PP
Rus

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

-0.4 -0.2  0  0.2  0.4

Density

L-P
L-PP
Rus

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2  0  0.2  0.4

Fraction of vapor

L-P
L-PP
Rus

Figure 12: Uniform velocity and pressure out of equilibrium (39): Flux coupling.
Lagrange-Projection (L-P), nonconservative Lagrange-Projection (L-PP) and Ru-
sanov scheme (Rus).
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Only the two Lagrange-Projection schemes with the intermediate state coupling
based on the nonconservative variable (ρ, ρu, p) preserve the primitive variables con-
stant (see Fig. 11), all other methods introduce acoustic waves in the solution (Figs.
10, 11 and 12), notice the mixture zone in Fig. 10). More precisely, since the equa-
tion of state is different on both sides of the coupling interface, the flux coupling
and the intermediate state coupling based on the conservative variable provide dif-
ferent values of the pressure from the one side to the other side and thus, introduce
acoustic waves.

The reason why the Rusanov scheme with the modified intermediate state cou-
pling introduces acoustic waves is different. As we mentioned, the Rusanov scheme
is very diffusive. Therefore, the coupling interface is slightly “diffused” by the Ru-
sanov scheme, in the sense that, in the first cell at the right of the coupling interface,
c no longer exactly equals either 0 or 1 but lies strictly in (0, 1) (see the shape of the
fraction of vapor in Fig. 11). The direct consequence is a modification of the pres-
sure in the cell at the right of the coupling interface and thus, the pressure cannot
be left constant.

5.5 Shock tube with occurrence of phase 1

In this test, the initial condition is at equilibrium:

c ρ u p

vl − 1 −2 1

(c,v)r 0 1 1 1

tm = 0.1, λ0 = 0,

(40)

but, whereas the initial condition is in phase 2, an intermediate zone with ρ < ρ⋆
1

appears for t > 0, overlapping the coupling interface. Therefore, c = 1 in the HEM
part of the intermediate zone but since the velocity at x = 0 is negative, the fraction
c stays equal to 0 in the HRM part of the intermediate zone. As in the previous case,
the discontinuity of z leads to a discontinuity of the pressure law. Therefore, only
the coupling method based on the nonconservative variable provides a continuous
pressure through x = 0, see Fig. 14. In Fig. 15 are plotted the results obtained
by the flux coupling. The variables ρu, ρu2 + p and u(ρE + p) are represented and
one may see that, as expected, they are constant through the coupling interface.
However, in Fig. 13, the variables ρ, ρu and ρE are discontinuous at x = 0, though
these results correspond to the intermediate state coupling with the conservative
variable. Indeed, we have seen in Sec. 5.3 (see also Fig. 7) that if the HRM part is
out of equilibrium, the continuity of the conservative variables cannot be achieved
(in test of Sec. 5.3, this leads to the appearance of acoustic waves). In the present
case, since c, and thus z, is discontinuous at x = 0 (for all t > 0), the conservative
variables are discontinuous at the coupling interface.

5.6 Convergence of HRM towards equilibrium

This test is based on a uniform velocity and a uniform pressure. Moreover, the HRM
part is out of equilibrium (this test is similar to the test of Sec. 5.4, except for the
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Figure 13: Shock tube with occurrence of phase 1 (40): Intermediate state cou-
pling (conservative variable). Lagrange-Projection (L-P), nonconservative Lagrange-
Projection (L-PP) and Rusanov scheme (Rus).
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Figure 14: Shock tube with occurrence of phase 1 (40): Intermediate state coupling
(nonconservative variable). Lagrange-Projection (L-P), nonconservative Lagrange-
Projection (L-PP) and Rusanov scheme (Rus).
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Figure 15: Shock tube with occurrence of phase 1 (40): Flux coupling. Lagrange-
Projection (L-P), nonconservative Lagrange-Projection (L-PP) and Rusanov scheme
(Rus).
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density). We use different values of the relaxation parameter λ0 in HRM:

c ρ u p

vl − 1 −0.5 1

(c,v)r 1 2 −0.5 1

tm = 0.2, λ0 = 0, 10, 100.

(41)

As we mentioned in Rem. 4, HRM formally tends to HEM when λ0 → +∞. This is
the result we want to test, adding the difficulty of the numerical coupling at x = 0.
But, before commenting the numerical results, let us study the solution expected for
large λ0. One may think naively that the limit solution would be the HEM solution
associated with the initial data

ρ u p

vl 1 −0.5 1

vr 2 −0.5 1

(42)

But, for the coupling problem, zr tends to z⋆(ρr). As a consequence, the pressure is
modified in the HRM part since pR depends on ρ1z and, as noted before, (ρ1z)r 6=
ρ⋆
1z

⋆(ρr). On the contrary, the pressure of the solution of HEM with data (42)
remains constant (in time and space). Then, what is the limit solution? In fact, it
is the HEM solution with the initial data

ρ u p

vl 1 −0.5 1

ṽr 2 −0.5 2/3

(43)

since, using Rem. 4 and (35), we have

p̃r = pR,eq(ρr, ε
R((ρ1)rz

⋆(ρr), ρr, pr)),

= pR,eq(2, εR(0, 2, 1)),

= 2/3.

In Figs. 16, 17 and 18 are plotted the results for several λ0, using the Lagrange-
Projection scheme. One may see that, as expected, all the coupling methods tends
to the solution based on HEM with data (43), whatever the numerical scheme and
the coupling method.

6 Conclusion

We have shown that the coupling problem (1) can be numerically solved, once it is
completed with an interface model that restores the continuity of physics. It must be
noted that there is a multiple choice of interface models that can apply, depending
on the physics that is under study. Moreover, in each case, we are able to give
a numerical treatment that will verify the constraints imposed by the interfacial
model, at least in a weak sense. The application of the interface coupling developed
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Figure 16: Convergence towards equilibrium (41): Intermediate state coupling (con-
servative variable). Lagrange-Projection scheme for different λ0.
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Figure 17: Convergence towards equilibrium (41): Intermediate state coupling (non-
conservative variable). Lagrange-Projection scheme for different λ0.
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Figure 18: Convergence towards equilibrium (41): Flux coupling. Lagrange-
Projection scheme for different λ0.
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here to other types of numerical methods is not the aim of this paper but seems a
priori possible.

At last, let us mention that the numerical coupling techniques presented here are
being developed in other contexts: gas dynamics (cf. [4], [5]) and Lagrangian models
of gas dynamics (in [7]) and that the theory of the interface coupling is under study,
based on the pioneering works [25] and [26]. In particular, the analysis of solutions
to Riemann problems for the coupling of systems of gas dynamics is developed in
[14] and the coupling of HEM and HRM models is analyzed from a theoretical point
of view in [12].
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[20] B. Després. Symétrisation en variable de Lagrange pour la mécanique des
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