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The Hausdorff dimension of the range of the Lévy multistable processes

We compute the Hausdorff dimension of the image X(E) of a non random Borel set E ⊂ [0, 1], where X is a Lévy multistable process in R. This extends the case where X is a classical stable Lévy process by letting the stability exponent α be a smooth function. Hence we are considering here non-homogeneous processes with increments which are not stationary and not necessarily independent. Contrary to the situation where the stability parameter is a constant, the dimension depends on the version of the multistable Lévy motion when the process has an infinite first moment.

Introduction

For (X t ) t a stochastic process, we define the range of X on a non random Borel set E as the set X(E) = {x : x = X t for some t in E}. We already know that for X a typical Lévy process, X(E) is a random fractal set. Many authors have been interested in producing the dimension properties of the sets X(E). The computation of dim X(E) has been performed under various assumptions on X and E, mainly if X is a stable process, a subordinator or a general Lévy process. For instance, see MacKean [START_REF] Mckean | Sample functions of Stable Processes[END_REF], Blumenthal and Getoor [START_REF] Blumenthal | A dimension theorem for sample functions of stable processes[END_REF], Hawkes [START_REF] Hawkes | On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set[END_REF], Pruitt and Taylor [START_REF] Pruitt | Sample path properties of processes with stable components[END_REF], Hendricks [START_REF] Hendricks | Hausdorff dimension theorem in a processes with stable components -An interesting counterexample[END_REF] or Kahane [START_REF] Kahane | Ensembles aléatoires et dimensions[END_REF] for stable processes, Millar [START_REF] Millar | Path behavior of processes with stationary independent increments[END_REF], Pruitt [START_REF] Pruitt | The Hausdorff dimension of the range of a process with stationary independent increments[END_REF] or Blumenthal and Getoor [START_REF] Blumenthal | Sample functions of stochastic processes with stationary independent increments[END_REF] for processes with stationary independent increments. More recently, some results on operator stable processes or additive Lévy processes have been obtained for example in Becker-Kern, Meerschaert and Scheffler [START_REF] Becker-Kern | Hausdorff dimension of operator stable sample paths[END_REF], Meerschaert and Xiao [START_REF] Meerschaert | Dimension results for sample paths of operator stable Lévy processes[END_REF], Khoshnevisan, Xiao and Zhong [START_REF] Khoshnevisan | Measuring the range of an additive Lévy process[END_REF] or Khoshnevisan and Xiao [START_REF] Khoshnevisan | Lévy processes: capacity and Hausdorff dimension[END_REF]. Our aim in this article is to present the fractal nature of X(E) through its Hausdorff dimension, with the assumption that X belongs to the class of multistable Lévy processes, a natural extension of the stable Lévy processes.

The multistable processes have been introduced by Falconer and Lévy-Véhel in 2009 [START_REF] Falconer | Multifractional, multistable, and other processes with prescribed local form[END_REF]. Their distributions, their Hölderian regularity or their multifractal properties have been studied for instance in [START_REF] Ayache | Sharp estimates on the tail behavior of a multistable distribution[END_REF][START_REF] Le Guével | A Ferguson -Klass -LePage series representation of multistable multifractional processes and related processes[END_REF][START_REF] Guével | Incremental moments and Hölder exponents of multifractional multistable processes[END_REF][START_REF] Guével | Hausdorff, Large Deviation and Legendre Multifractal Spectra of Lévy Multistable Processes[END_REF][START_REF] Falconer | Multistable Processes and Localisability[END_REF]. They provide useful models for all applications that deal with discontinuous processes where the intensity of jumps is non-constant. Most multistable processes are non-homogeneous in the sense that their increments are neither independent nor stationary. In this article, we consider only multistable Lévy motions which are the simplest examples of multistable processes.

The paper is organised as follows. Section 2 contains the notations. In Section 3, we present the main results on the computation of the Hausdorff dimension of the range. Section 4 is dedicated to statement of useful technical lemmas on multistable processes. All the proofs are gathered in Section 5.

Notations

We first summarise the basic notions about Hausdorff measures on the real line (see Falconer [START_REF] Falconer | Fractal Geometry: Mathematical Foundations and Applications[END_REF] for more details). For a subset E of [0, 1], the diameter of E is defined as |E| = sup{|x -y| : x ∈ E, y ∈ E}. Let β be a non-negative number. For any δ > 0 we define

H β δ (E) = inf +∞ i=1 |U i | β : {U i } is a δ -cover of E .
We call H β (E) = lim δ→0 H β δ (E) the β-dimensional Hausdorff measure of E, and the Hausdorff dimension of E is defined as

dim(E) = inf β : H β (E) = 0 = sup β : H β (E) = ∞ . Throughout the paper, c(E) stands for the convex hull of E, that is c(E) = {tx + (1 -t)y : t ∈ [0, 1],
x ∈ E, y ∈ E}. E will be the interior of E, and P will represent the set of partitions of [0, 1]. For A ∈ P, we shall write A = A n if the number of intervals composing A is n, and if

A n = (A n i ) i=1,...,n is such that [0, 1] = n i=1 A n i and A n i ∩ A n j = ∅ for i = j, the mesh of A n is defined as |A n | = n max i=1 |A n i |.
Without loss of generality, A n 1 is assumed to be the first set, that is for all n ≥ 1, 0 ∈ A n 1 . The remainder of this section will be devoted to the definition of the multistable Lévy processes, using their Ferguson-Klass-LePage representation. For α ∈ (0, 2], recall that the stochastic integral I(f ) := f (x)M (dx) of a real function f with respect to M exists if, for instance, M is a symmetric α-stable random measure on R, with the Lebesgue measure as the control measure, and if f is measurable and satisfies R |f (x)| α dx < +∞ (see [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF]). Write S α (σ, β, µ) for the αstable distribution with scale parameter σ, skewness β and shift parameter µ; many symmetric stable processes {Y (t), t ∈ R} admit the stochastic integral representation

Y (t) = f t (x)M (dx). The marginal distribution of Y is therefore Y (t) ∼ S α (σ ft , 0, 0) where σ ft = R |f t (x)| α dx 1/α .
Among them, the symmetric standard α-stable Lévy process on the interval [0, 1] may be defined as

L α (t) := R 1 [0,t] (x)M (dx), t ∈ [0, 1].
Since L α (t) ∼ S α (t 1/α , 0, 0), the logarithm of the characteristic function of L α (t) is given by log E[e iθLα(t) ] = -t|θ| α . We shall use another representation of the Lévy processes, based on series of random variables, in order to define its multistable versions. We need for that the following sequences:

• (Γ i ) i≥1 a sequence of arrival times of a Poisson process with unit arrival rate,

• (V i ) i≥1 a sequence of i.i.d. random variables with uniform distribution on [0, 1], independent of (Γ i ) i≥1 ,

• (γ i ) i≥1 a sequence of i.i.d. random variables with distribution P (γ i = 1) = P (γ i = -1) = 1/2, independent of (Γ i ) i≥1 and (V i ) i≥1 .

Accordingly, the Lévy motion {L α (t), t ∈ [0, 1]} admits the series representation:

L α (t) = ∞ i=1 γ i C α Γ -1/α i 1 [0,t] (V i )
where C α = ∞ 0 x -α sin x dx -1/α . For more details about Ferguson-Klass-LePage representations, we refer the reader to [START_REF] Ferguson | A representation of independent increment processes without Gaussian components[END_REF][START_REF] Rosinski | On Series Representations of Infinitely Divisible Random Vectors Ann[END_REF][START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF]. It becomes clear that the stable Lévy motion is a càdlàg process, jumping at time V i with a jump of size Γ -1/α i , that is the stability index α may be seen as a parameter fitting the size of the jumps.

The multistable processes are more flexible since they allow us to consider non homogeneous jumps processes with a non constant index of stability α. The size of the jumps will be governed by a function α(t) evolving with time. The first way to define such a process is to use the Ferguson-Klass-LePage representation of the stable processes, as in [START_REF] Le Guével | A Ferguson -Klass -LePage series representation of multistable multifractional processes and related processes[END_REF], replacing α by a function α : [0, 1] → (0, 2). From now on we make the assumption that α is C 1 function, ranging in [α * , α * ], a subset of (0, 2). The multistable Lévy motion is the process

X(t) = ∞ i=1 γ i C α(t) Γ -1/α(t) i 1 [0,t] (V i ).
Since we have replaced α by α(t), for each t ∈ [0, 1], X(t) is a symmetric α(t)-stable random variable S α(t) (t 1/α(t) , 0, 0) and log E[e iθX(t) ] = -t|θ| α(t) .

The second construction, due to Falconer and Liu [START_REF] Falconer | Multistable Processes and Localisability[END_REF], comes from the definition of multistable random measures M α(x) where we have replaced again α by a function α(t). They defined the stochastic integral of f with respect to a multistable random measure providing all its finite dimensional distributions. The multistable Lévy motion resulting from this definition is

Z(t) = ∞ i=1 γ i C α(V i ) Γ -1/α(V i ) i 1 [0,t] (V i ), which satisfies log E[e iθZ(t) ] = - t 0 |θ| α(x) dx.
We already know that the two processes X and Z are linked by the following formula ( [START_REF] Guével | On two multistable extensions of stable Lévy motion and their semimartingale representation[END_REF], Theorem 8):

X(t) = Y (t) + Z(t), (1) 
where

Y (t) = t 0 +∞ i=1 γ i K i (u)1 [0,u[ (V i )du and K i (u) = d C α(s) Γ -1/α(s) i ds (u).
Our results involve the following quantities:

α * (E) = inf t∈E α(t), α * (E) = sup t∈E α(t), d * (E) = max(1, α * (E)) dim(E) and d * (E) = max(1, α * (E)) dim(E).
Finally, in all the paper, for some parameter β, K β will mean a finite positive constant which depends only on β, and we will use the fact that there exists K > 0 such that for all u ∈ U and all i ≥ 1,

|K i (u)| ≤ K(1 + | log Γ i |)( 1 Γ 1/α * (U ) i + 1 Γ 1/α * (U ) i
).
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3 Main theorems

Theorem 1. Let E be a subset of [0, 1]. Almost surely, dim Z(E) ≥ min(1, α * (c(E)) dim(E)).
Suppose also that inf

s∈E s > 0, sup (s,t)∈E 2 |t-s| |α(t)-α(s)| < +∞ and α * (c(E))-α * (c(E)) ≤ α 2 * 2 . Almost surely, dim X(E) ≥ min(1, d * (E)). Theorem 2. Let E be a subset of [0, 1]. Almost surely, dim Z(E) ≤ α * (E) dim(E) and dim X(E) ≤ d * (E). Theorem 3. Let (A n ) n∈N be a sequence of partitions of P such that lim n→+∞ |A n | = 0, E a subset of [0, 1]. Almost surely, dim Z(E) = min(1, lim sup n→+∞ n max i=1 α * (E ∩ A n i ) dim(E ∩ A n i )). Theorem 4. Let (A n ) n∈N be a sequence of partitions of P such that lim n→+∞ |A n | = 0, E a subset of [0, 1] such that inf s∈E s > 0. Assume that ∃n 0 ≥ 1 such that ∀n ≥ n 0 , ∀i ∈ 1, n , sup (s,t)∈(E∩ Ån i ) 2 |t-s| |α(t)-α(s)| < +∞. Almost surely, dim X(E) = min(1, lim sup n→+∞ n max i=1 d * (E ∩ A n i )) = min(1, lim sup n→+∞ n max i=1 d * (E ∩ A n i )). Remark: Notice that if α * (E) ≤ 1, almost surely, dim X(E) = dim(E), which is not true if α is constant. Else, if α * (E) > 1, almost surely, dim X(E) = dim Z(E). 4 Technical lemmas Lemma 1. ∀β ∈ (0, 1), ∀U ⊂ [0, 1], ∃K U,β > 0 such that ∀(s, t) ∈ U 2 , E[|X(t) -X(s)| -β ] ≤ K U,β |t -s| -β α * (U ) and E[|Z(t) -Z(s)| -β ] ≤ K U,β |t -s| - β α * (c(U )) .
If we assume also that inf s∈U s > 0, sup

(s,t)∈U 2 |t-s| |α(t)-α(s)| < +∞ and α * (c(U )) -α * (c(U )) ≤ α 2 * 2 , then ∃K U,β > 0 such that ∀(s, t) ∈ U 2 , E[|X(t) -X(s)| -β ] ≤ K U,β |t -s| -β . Lemma 2. Let (I j ) j = ([a j , b j ]) j be a collection of closed intervals of [0, 1] and p ∈ (0, inf j α * (I j )). For all ε > 0, ∃K p,ε > 0 such that ∀j, E[ sup (s,t)∈I 2 j |Z(t) -Z(s)| p ] ≤ K p,ε |I j | p max(1,sup j α * (I j ))+ε and E[ sup (s,t)∈I 2 j |X(t) -X(s)| p ] ≤ K p,ε |I j | p max(1,sup j α * (I j ))+ε . Lemma 3. Let (A n ) n∈N ∈ P N be a sequence of partitions of [0, 1] such that lim n→+∞ |A n | = 0.
Then, for all subsets E of [0, 1], lim sup

n→+∞ n max i=1 d * (E ∩ A n i ) = lim sup n→+∞ n max i=1 d * (E ∩ A n i ) (3) 
and

lim sup n→+∞ n max i=1 α * (E ∩ A n i ) dim(E ∩ A n i ) = lim sup n→+∞ n max i=1 α * (E ∩ A n i ) dim(E ∩ A n i ) = lim sup n→+∞ n max i=1 α * (c(E ∩ A n i )) dim(E ∩ A n i ) = lim sup n→+∞ n max i=1 α * (c(E ∩ A n i )) dim(E ∩ A n i ).
Furthermore, all these equalities also occur with lim inf n→+∞ instead of lim sup n→+∞ .

5 Proofs

Proof of theorem 1 Let β < min(1, α * (c(E)) dim(E)). Since β α * (c(E)) < dim(E), H β α * (c(E)) (E) = +∞. According to Davies theorem [6], ∃F ⊂ E, F closed set such that H β α * (c(E)) (F ) > 0. Then C β α * (c(E)) (F ) > 0 by Frostman's theorem. Let p m a probability measure concentrated on F s.t. F F |x -y| - β α * (c(E)) p m (dx)p m (dy) < +∞.
With Lemma 1,

E F F |Z(x) -Z(y)| -β p m (dx)p m (dy) ≤ K β,F F F |x -y| - β α * (c(F )) p m (dx)p m (dy) ≤ K β,F F F |x -y| - β α * (c(E)) p m (dx)p m (dy) < +∞. So P H β (Z(F )) > 0 = 1, P H β (Z(E)) > 0 = 1, and dim(Z(E)) ≥ β.
Assume now that inf s∈E s > 0, sup

(s,t)∈E 2 |t-s| |α(t)-α(s)| < +∞ and α * (c(E)) -α * (c(E)) ≤ α 2 *
2 . The proof for the process X is similar to the previous one. Consider

β < min(1, d * (E)) and γ * (E) = max(1, α * (E)). We obtain dim(X(E)) ≥ β replacing α * (c(E)) dim(E) by d * (E) in the previous calculus and α * (c(E)) by γ * (E) Proof of theorem 2 For a partition (A k ) k=1,...N , dim X(E) = N max k=1 dim X(E ∩ A k ) therefore it is enough to show that for all k, dim X(E ∩ A k ) ≤ max(1, α * (E ∩ A k )) dim(E ∩ A k ) (≤ max(1, α * (E)) dim E) and dim Z(E ∩ A k ) ≤ α * (E ∩ A k ) dim(E ∩ A k ) (≤ α * (E) dim E) .
Thus we may suppose that |α * (E) -α * (E)| ≤ ε for ε > 0 as small as we want.

Suppose first that dim(E) < 1.

Let β ∈ (dim(E), 1) and n 0 ∈ N. For each n ≥ n 0 , let {I in , i ≥ 1} be a cover of E by closed intervals such that lim Notice that for all i,n, β(d + ε) < β(c + 2ε) < c. Now for each n ≥ n 0 , {X(I in ), i ≥ 1} is a cover of X(E), and {Z(I in ), i ≥ 1} a cover of Z(E). We consider two cases to finish the proof when dim(E) < 1. (i): Case α * (E) ≥ 1.

We apply Lemma 2 to obtain

E +∞ i=1 |X(I in )| β(d+ε) ≤ K d,β,ε +∞ i=1 |I in | β and E +∞ i=1 |Z(I in )| β(d+ε) ≤ K d,β,ε +∞ i=1 |I in | β . (4) 
Then for a subsequence of n's approaching ∞, almost surely,

lim n→+∞ +∞ i=1 |X(I in )| β(d+ε) = 0, and dim X(E) ≤ β( sup i,n≥n 0 α * (I in ) + ε).
Letting ε tend to 0, then letting n 0 tend to infinity one finally obtains dim X(E) ≤ βα * (E). Since β was arbitrary, dim X(E) ≤ α * (E) dim(E). Equation ( 4) leads also to dim Z(E) ≤ α * (E) dim(E) for the same reasons.

(ii): Case α * (E) < 1.

Suppose that ∀i, ∀n ≥ n 0 , α * (I in ) + ε < 1. With equations (1) and (2),

|X(I in )| = sup (s,t)∈I 2 in |X(t) -X(s)| ≤ sup (s,t)∈I 2 in t s +∞ j=1 K(1 + | log Γ j |)( 1 Γ 1/c j + 1 Γ 1/d j )ds + |Z(I in )|, so +∞ i=1 |X(I in )| β ≤   +∞ j=1 K(1 + | log Γ j |)( 1 Γ 1/c j + 1 Γ 1/d j )   β +∞ i=1 |I in | β + +∞ i=1 |Z(I in )| β . (5) 
Since

+∞ j=1 K(1 + | log Γ j |)( 1 Γ 1/c j + 1 Γ 1/d j ) < +∞ and lim n→+∞ +∞ i=1 |I in | β = 0, almost surely, lim n→+∞   +∞ j=1 K(1 + | log Γ j |)( 1 Γ 1/c j + 1 Γ 1/d j )   β +∞ i=1 |I in | β = 0.
Let us show that lim Suppose now that dim(E) = 1.

|Z(t) -Z(s)| ≤ K +∞ j=1 ( 1 Γ 1/c j + 1 Γ 1/d j )1 [s,t] (V j ). Let D α (t) = +∞ j=1 1 Γ 1/α j 1 [0,t] (V j ) so that |Z(I in )| β ≤ K β |D c (I in )| β + K β |D d (I in )| β . ( 6 
)
D d is a stable-subordinator so |D d (I in )| β is distributed as |I in | β/d |D d (1)| β . Since β d > β,
The result is obvious for the process X, and for the process Z if α * (E) ≥ 1 so we consider only the case α * (E) < 1. As previously, the result is a consequence of the equation ( 6). Let β > 1,

n 0 ∈ N, n ≥ n 0 and {I in , i ≥ 1} be a cover of E by closed intervals such that lim n→+∞ +∞ i=1 |I in | β = 0.
Suppose also that d = sup i,n≥n 0 α * (I in ) < 1. Equation ( 6) and its consequences are still available: 

|Z(I in )| βd ≤ K β,d |D c (I in )| βd + K β,d |D d (I in )| βd
dim X(E) = n max i=1 dim X(E ∩ A n i ) ≤ n max i=1 d * (E ∩ A n i ) and dim X(E) ≤ lim inf n→+∞ n max i=1 d * (E ∩ A n i ) ≤ lim sup n→+∞ n max i=1 d * (E ∩ A n i ). (7) 
Let us show that dim X(E) ≥ min(1, lim sup

n→+∞ n max i=1 d * (E ∩ A n i )). Theorem 1 gives dim X(E) = n max i=2 dim X(E ∩ A n i ) ≥ n max i=2 min(1, d * (E ∩ A n i )). (8) 
Then we consider three cases.

(i): Case lim sup n→+∞ n max i=1 d * (E ∩ A n i ) < 1.
With the two inequalities [START_REF] Falconer | Fractal Geometry: Mathematical Foundations and Applications[END_REF] and [START_REF] Falconer | Multifractional, multistable, and other processes with prescribed local form[END_REF], (ii): Case lim sup

n max i=1 min(1, d * (E ∩ A n i )) < 1 so for all n ≥ 1 and all i = 1, ..., n, d * (E ∩ A n i ) < 1 and n max i=1 min(1, d * (E ∩ A n i )) = n max i=1 d * (E ∩ A n i ), i.e. dim X(E) ≥ n max i=1 d * (E ∩ A n i ).
n→+∞ n max i=1 d * (E ∩ A n i ) = 1. If for all n ≥ 1 and all i = 1, ..., n, d * (E ∩ A n i ) < 1, we obtain as previously dim X(E) ≥ lim sup n→+∞ n max i=1 d * (E ∩ A n i ) = 1.
Otherwise, there exists n 0 ∈ N and

i 0 ∈ 1, n 0 such that d * (E ∩ A n 0 i 0 ) ≥ 1. Then dim X(E) ≥ dim X(E ∩ A n 0 i 0 ) ≥ min(1, d * (E ∩ A n 0 i 0 )) = 1. (iii): Case lim sup n→+∞ n max i=1 d * (E ∩ A n i ) > 1.
With Lemma 3, lim sup

n→+∞ n max i=1 d * (E ∩ A n i ) > 1 so there exists n 0 ∈ N and i 0 ∈ 1, n 0 such that d * (E ∩ A n 0 i 0 ) ≥ 1.
As previously stated, dim X(E) ≥ 1. In order to get Theorem 3, replace X by Z and d(E

∩ A n i ) by α(E ∩ A n i ) dim(E ∩ A n i ) in the proof of Theorem 4 Remark: Notice that if dim X(E) = lim sup n→+∞ n max i=1 d * (E ∩A n i ) < 1, then lim n→+∞ n max i=1 d * (E ∩A n i ) exists and is equal to dim X(E): indeed the inequality (7) becomes dim X(E) ≤ lim inf n→+∞ n max i=1 d * (E ∩ A n i ) ≤ lim sup n→+∞ n max i=1 d * (E ∩ A n i ) = dimX(E). Lemma 3 gives also in that case dim X(E) = lim n→+∞ n max i=1 d * (E ∩ A n i ).

Proof of Lemma 1

By Proposition 6.1 of [START_REF] Le Guével | A Ferguson -Klass -LePage series representation of multistable multifractional processes and related processes[END_REF], the logarithm of the characteristic function of X(t)-X(s) satisfies for s ≤ t:

log φ X(t)-X(s) (θ) = -2s ∞ 0 sin 2 ( θ 2 [ C α(t) y 1/α(t) - C α(s) y 1/α(s) ])dy -(t -s)|θ| α(t) ,
and by Proposition 2 of [START_REF] Guével | On two multistable extensions of stable Lévy motion and their semimartingale representation[END_REF],

log φ Z(t)-Z(s) (θ) = - t s |θ| α(u) du.
Accordingly for |θ| ≥ 1 and (s,

t) ∈ U 2 , φ X(t)-X(s) (θ) ≤ e -|t-s||θ| α * (U ) , (9) 
φ Z(t)-Z(s) (θ) ≤ e -|t-s||θ| α * ([s,t]) ≤ e -|t-s||θ| α * (c(U )) , (10) 
and for all θ,

φ X(t)-X(s) (θ) ≤ e -2 min(s,t) ∞ 0 sin 2 ( θ 2 [ C α(t) y 1/α(t) - C α(s) y 1/α(s) ])dy
.

We obtain then for (s, t) ∈ U 2 , using the Parseval's formula:

|t -s| β α * (U ) E[|X(t) -X(s)| -β ] = ∞ 0 P(|X(t) -X(s)| ≤ |t -s| 1 α * (U ) x 1/β )dx ≤ 1 + 1 π ∞ 1 R sin( ξ|t-s| 1 α * (U ) x 1/β ) ξ φ X(t)-X(s) (ξ)dξdx = 1 + 1 π ∞ 1 R sin( θ x 1/β ) θ φ X(t)-X(s) ( θ |t -s| 1 α * (U ) )dθdx ≤ 1 + 1 π   ∞ 1 dx x 1/β   R φ X(t)-X(s) ( θ |t -s| 1 α * (U ) )dθ ≤ 1 + 1 π β 1 -β (2|t -s| 1 α * (U ) + 2 ∞ |t-s| 1 α * (U ) e -|θ| α * (U ) dθ) ≤ 1 + 1 π β 1 -β (2 + 2 ∞ 0 e -|θ| α * (U ) dθ).
Using the same inequalities and (10) instead of (9), we obtain also

|t -s| β α * (c(U )) E[|Z(t) -Z(s)| -β ] ≤ 1 + 1 π β 1 -β (2 + 2 ∞ 0 e -|θ| α * (c(U )) dθ).
Assume now that inf s∈U s > 0, sup Let ε ∈ (0, α 2 * 4 ). Using the fact that for |x| small enough, sin 2 (x) ≥ 1 2 x 2 , and the inequality inf x∈[α * ,α * ] |h(x)| > 0, we may choose K 1 > 1 and K 2 > 1 such that for all |ξ| ≥ 1, 

(s,t)∈U 2 |t-s| |α(t)-α(s)| < +∞ and α * (c(U )) -α * (c(U )) ≤ α 2 * 2 . Notice that C α(t) = h•α(t) where h(v) = ∞ 0 x -v sin x dx -1/v is
y 1/α(t) - C α(s) y 1/α(s) = (α(t) -α(s))   h ′ (ω y ) + h(ω y ) log(y) ω 2 y y 1/ωy   .

Now the previous calculus gives

|t -s| β E[|X(t) -X(s)| -β ] ≤ 1 + 1 π   ∞ 1 dx x 1/β   R φ X(t)-X(s) ( θ |t -s| )dθ ≤ 1 + K β R e -2ν ∞ 0 sin 2 ( θ 2 ( α(t)-α(s) |t-s| )[ ω 2 
y ≥ K 1 |ξ| α * (c(U )) 1-ε ⇒ sin 2 ( ξ 2 [ ω 2 y h ′ (ω y ) + h(ω y ) log(y) ω 2 y y 1/ωy ]) ≥ K 2 |ξ| 2 y - 2 α * (c(U )) . Now ∞ 0 sin 2 ( ξ 2 [ ω 2 y h ′ (ω y ) + h(ω y ) log(y) ω 2 y y 1/ωy ])dy ≥ K 2 |ξ| 2 y≥K 1 |ξ| α * (c(U )) 1-ε y - 2 α * (c(U )) dy ≥ K|ξ| 2+(1- 2 α * (c(U )) ) α * (c(U )) 1-ε . Since α * (c(U )) α * (c(U )) ≤ 1 + α * 2 , 2 + ( α * (c(U ))-2 α * (c(U )) ) α * (c(U )) 1-ε > 2 + (α * -2)(2+α * ) 2(1-ε) = α 2 * -4ε 2(1-ε) . Then for |ξ| ≥ 1, |ξ| 2+(1- 2 α * (c(U )) ) α * (c(U )) 1-ε ≥ |ξ| α 2 * -4ε 2 
X(t) = t 0 W 1 (u)du + t 0 W 2 (u)du + Z(t) with W 1 (u) = n 0 i=1 γ i K i (u)1 [0,u[ (V i ). Then there exists a constant K > 0 such that sup (s,t)∈I 2 j |X(t) -X(s)| p ≤ K    b j a j |W 1 (u)|du    p + K    b j a j |W 2 (u)|du    p + K sup (s,t)∈I 2 j |Z(t) -Z(s)| p .
The end of the proof consists of showing the inequality for these three terms. For the first term,

b j a j |W 1 (u)|du ≤ (b j -a j ) n 0 i=1 sup u∈I j |K i (u)| so inequality (2) gives: ( b j a j |W 1 (u)|du) p ≤ K n 0 |b j -a j | p n 0 i=1 sup u∈I j |K i (u)| p ≤ K p |b j -a j | p n 0 i=1 (1 + | log Γ i |) p ( 1 Γ 1/c i + 1 Γ 1/d i ) p , hence E ( b j a j |W 1 (u)|du) p ≤ K n 0 ,p |I j | p .
For the second term, we obtain by Hölder and Jensen inequalities

E   ( b j a j |W 2 (u)|du) p    ≤ E   ( b j a j |W 2 (u)|du) p ′    p p ′ ≤ |b j -a j | p sup u∈I j E[|W 2 (u)| p ′ ] p p ′ . Since K i (u)1 [0,u[ (V i ) is independent of γ i , we obtain with Theorem 2 of [2] that for all u ∈ I j , E[|W 2 (u)| p ′ ] ≤ i>n 0 E[|K i (u)| p ′ ].
Then inequality (2) leads to sup

j sup u∈I j E[|W 2 (u)| p ′ ] p p ′ < +∞.
Let us consider the process Z. Proposition 5 of [START_REF] Guével | On two multistable extensions of stable Lévy motion and their semimartingale representation[END_REF] yields that Z is a semi-martingale and can be decomposed into A + M where M is a martingale and

M (t) = ∞ i=1,Γ i ≥1 γ i C α(V i ) Γ -1/α(V i ) i 1 [0,t] (V i ). Let N = Card{i ≥ 1|Γ i < 1} and K i = C α(V i ) Γ -1/α(V i ) i
. We will use the following inequality: if

V i ∈ I j , K i ≤ K( 1 Γ 1/c i + 1 Γ 1/d i
) for some constant K and the fact that N is distributed as a Poisson random variable with unit mean. For all (s, t)

∈ [a j , b j ] 2 , |A(t) -A(s)| p = +∞ n=0 | n i=1 γ i K i 1 [s,t] (V i )| p 1 N =n ≤ K +∞ n=1 n( 1 Γ 1/c 1 + 1 Γ 1/d 1 ) p ( n i=1 1 [a j ,b j ] (V i ))1 N =n . Using the fact that V i is independent of Γ 1 and N , E   sup (s,t)∈I 2 j |A(t) -A(s)| p   ≤ K(b j -a j ) +∞ n=1 n 2 E ( 1 Γ 1/c 1 + 1 Γ 1/d 1
) p 1 N =n . Now for every (s, t) ∈ I 2 j , Theorem 2 of [START_REF] Von Bahr | Inequalities for the rth Absolute Moment of a Sum of Random Variables, 1 <=r <= 2[END_REF] leads again to

Since

E[|M (t) -M (s)| p ′ ] ≤ i≥1 E[|K i | p ′ 1 Γ i ≥1 1 [s,t] (V i )] ≤ K p ′ |b j -a j | +∞ i=1 E[( 1 
Γ 1/c i + 1 Γ 1/d i ) p ′ 1 Γ i ≥1 ].
Since 

* (E ∩ A n i ) -d * (E ∩ A n i )| ≤ |(α * (E ∩ A n i ) -α * (E ∩ A n i )| dim(E ∩ A n i ).
α is a C 1 function so there exists K > 0 such that the following inequalities hold:

|d * (E ∩ A n i ) -d * (E ∩ A n i )| ≤ K |A n | , (11) 
|α * (E ∩ A n i ) -α * (E ∩ A n i )| dim(E ∩ A n i ) ≤ K |A n | , ( 12 
)
|α * (c(E ∩ A n i )) -α * (c(E ∩ A n i ))| dim(E ∩ A n i ) ≤ K |A n | , ( 13 
)
|α * (c(E ∩ A n i )) -α * (E ∩ A n i )| dim(E ∩ A n i ) ≤ K |A n | . (14) 
Then, in order to prove equality (3), we use the inequality [START_REF] Hawkes | On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set[END_REF] Equality (3) comes from the fact that d * ≤ d * . To obtain the second result of Lemma 3, we may replace d by α using (12), ( 13) and (14) instead of [START_REF] Hawkes | On the Hausdorff dimension of the intersection of the range of a stable process with a Borel set[END_REF] 

|I

  in | β = 0. This can be done since H β (E) = 0. Suppose also that ε is small enough to have β < inf i,n≥n 0 α * (I in ) inf i,n≥n 0 α * (I in )+2ε < 1, and that sup i,n≥n 0 α * (I in ) < inf i,n≥n 0 α * (I in ) + ε. We shall denote c = inf i,n≥n 0 α * (I in ) and d = sup i,n≥n 0 α * (I in ).

  in )| β = 0 where the convergence is in probability.

  +∞ i=1 |D d (I in )| β tends to 0 in probability. For the same reasons, lim n→+∞ +∞ i=1 |D c (I in )| β = 0 in probability, which entails with (5) that lim n→+∞ +∞ i=1 |X(I in )| β P = 0. Then for a subsequence of n's approaching ∞, almost surely, lim n→+∞ +∞ i=1 |X(I in )| β = 0, and dim X(E) ≤ β. Since β was arbitrary, dim X(E) ≤ dim(E). Replacing β by βd in the equation (6), we obtain lim n→+∞ +∞ i=1 |Z(I in )| βd P = 0, and dim Z(E) ≤ βd. Letting n 0 tend to infinity one finally obtains dim Z(E) ≤ βα * (E).

  in )| βd P = 0, dim Z(E) ≤ βd, and dim Z(E) ≤ α * (E) Proof of Theorem 3 and Theorem 4 Let us prove Theorem 4 first. Suppose that 0 ∈ A n 1 for all n ≥ 1. Since inf s∈E s > 0, for n large enough, E ∩ A n 1 = ∅. We use Theorem 2 to obtain

Finally, dim X(E) ≥ lim sup n→+∞ n max i=1 d

 i=1 * (E ∩ A n i ) and the result comes from Lemma 3.

0 .

 0 y h ′ (ωy )+h(ωy ) log(y) Changing the variable |θ| according to the formula ξ = θ α(t)-α(s)|t-s| leads to |t -s| β E[|X(t) -X(s)| -β ] ≤ 1 + K β sup (s,t)∈U 2 |t -s| |α(t) -α(s)| R e -2ν∞ 0 sin 2 ( ξ 2 [ ω 2 y h ′ (ωy )+h(ωy ) log(y) ω 2 y y 1/ωy ])dy dξ.

  dξ ≤ K ε,U < +∞ Proof of Lemma 2 Let p ∈ (0, inf j α * (I j )), ε > 0 and n 0 ∈ N large enough to have n 0 α * > 2. Let p ′ ∈ (max(1, sup j α * (I j )), 2), c = infj α * (I j ) and d = sup j α * (I j ). Equation (1) can be written

1 ) p 1 N 2 j 2 j

 1122 =n < +∞, |A(t) -A(s)| p   ≤ K(b j -a j ). The last step of the proof is to show the inequality for the martingale M . Let p ′ = max(1, d) + ε. We apply the Hölder inequality to get E[ sup(s,t)∈I 2 j |M (t) -M (s)| p ] ≤ E[ sup (s,t)∈I 2 j |M (t) -M (s)| p ′ ] p p ′ .By the Doob's martingale inequality, there exists K p ′ > 0 such that|M (t) -M (s)| p ′   ≤ K p ′ sup (s,t)∈I 2 j E[|M (t) -M (s)| p ′ ].

  i ) p ′ 1 Γ i ≥1 ] < +∞, ( sup (s,t)∈I 2 j E[|M (t) -M (s)| p ′ ]) p p ′ ≤ K p,ε |b j -a j |p p ′ which is the result of the Lemma Proof of Lemma 3 Notice that |d

  Property 1.2.15 of[START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF] gives an explicit formula of h. Then there exists ω y ∈

	[α(t), α(s)] (or [α(s), α(t)]) such that
	C α(t)

a continuously differentiable function on [α * , α * ].

  to obtain d * (E ∩ A n i ) ≤ K |A n | + d * (E ∩ A n i ).This implies that

		lim sup n→+∞	n max i=1	d * (E ∩ A n i ) ≤ lim sup n→+∞	n max i=1	d * (E ∩ A n i )
	and	lim inf n→+∞	n max i=1	d * (E ∩ A n i ) ≤ lim inf n→+∞	n max i=1	d

* (E ∩ A n i ).