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Abstract—High-Assurance applications usually require
achieving fast response time and high throughput on a constant
basis. To fulfil these stringent quality of service requirements,
these applications are commonly deployed in clustered instances.
However, how to effectively manage these clusters has become
a new challenge. A common approach is to deploy a front-end
load balancer to optimise the workload distribution among the
clustered applications. Thus, researchers have been studying how
to improve the effectiveness of a load balancer. Our previous
work presented a novel load balancing strategy which improves
the performance of a distributed Java system by avoiding the
performance impacts of Major Garbage Collection, which is a
common cause of performance degradation in Java applications.
However, as that strategy used a static configuration, it could
only improve the performance of a system if the strategy was
configured with domain expert knowledge. This paper extends
our previous work by presenting an adaptive GC-aware load
balancing strategy which self-configures according to the GC
characteristics of the application. Our results have shown that
this adaptive strategy can achieve higher throughput and lower
response time, compared to the round-robin load balancing,
while also avoiding the burden of manual tuning.

Keywords—High-Assurance Systems, Performance and Relia-
bility, Java Garbage Collection

I. INTRODUCTION

Modern high-assurance applications are commonly de-
ployed in clustered instances to achieve higher system per-
formance. This is particularly common in enterprise-level ap-
plications which usually have tight performance requirements,
requiring to achieve fast response time and high throughput
constantly to meet their service level agreements. These clus-
ters also make wide use of some forms of load balancing
to optimise their performance. However, how to effectively
distribute the workload among the available clustered instances
has become a new challenge. Therefore, many research efforts
have aimed to develop effective load balancing algorithms
based on different criteria. For example, the authors of [4]
enhanced a load balancing algorithm by considering the util-
isation of the Java Virtual Machine (JVM) threads, memory
and CPU to decide how to distribute the load. Similarly, the
work in [10] considered the utilisation of Enterprise JavaBeans
(EJB) to balance the load among the available EJB instances.

In Java applications, a particular area of performance
concern is Garbage Collection (GC). Even though GC is a key
feature of Java which automates most of the tasks related to
memory management, it also comes with a cost: Whenever the
GC is triggered, it has an impact on the system performance by

pausing the involved programs. Research studies have provided
evidence of these performance costs. For example, the authors
of [26] identified the GC as a major factor affecting the
throughput of Java Application Servers (a traditional Java busi-
ness niche) due to the sensitivity of the GC to the workload.
In their experiments, the GC took up to 50% of the JVM
execution time (involving pauses as high as 300 seconds), and
the MaGC represented more than 95% of those pauses on
the heaviest workload. Similarly, a survey conducted among
practitioners [20] reports that GC is one of the typical areas
of performance problems in the industry.

Research studies have also shown that it is not possible
to have a single “best-fit-for-all” GC strategy because the GC
behaviour is dependent of the application inputs and the system
configuration [7], [9], [12]. For example, the authors of [3]
showed that the GC is particularly sensitive to the heap size
and even small changes could affect the GC behaviour. Due
to the multiple environmental factors (such as increases in
workload, or non-ideal tuning settings) which can still provoke
long MaGC pauses, it is commonly agreed that GC keeps
playing an important role in the performance of Java systems.

Under the above conditions, a preferable situation is that
the occurrence of the MaGC events do not affect the perfor-
mance of the cluster. To achieve this goal, our research has
centred on enhancing a load balancer so that it selects the
nodes which are not close to suffer a MaGC pause as optimal
nodes for given workloads. This strategy (shown in Figure 1)
can keep the system performance safe from MaGC pauses.

Fig. 1. GC-Aware Load Balancer

In [15] we proposed a novel MaGC forecast algorithm and
demonstrated how a load balancing strategy can exploit the
MaGC forecast to improve the performance of a distributed
system. However, as that strategy uses a static configuration,
it mostly relies on human expert knowledge to optimise its
settings to achieve the best system performance. In this paper



we extend our previous work by proposing an adaptive GC-
aware load balancing strategy which utilises JVM data from the
underlying application to self-configure according to the GC
characteristics of the application, while also using the MaGC
forecast to decide on the best way to balance the workload
among the clustered applications. Our results showed that this
strategy can offer a significant performance gain: The average
response time decreased 22.5% across all tested programs,
while the average throughput increased 60.7% across all tested
programs. The contributions of this paper are:

1) An adaptive GC-aware load balancing strategy that ex-
ploits the MaGC forecast information to improve the
performance of a distributed Java system.

2) A practical validation of the proposed strategy consisting
of a prototype and two experiments to prove the perfor-
mance benefits of using the strategy.

3) A classification of the programs in the evaluated Java
benchmarks based on their GC characteristics.

The rest of the paper is structured as follows: Section II
discusses the background and related work. Section III explains
the proposed load balancing strategy. Sections IV and V
describe the performed experiments and their results. Finally,
Section VI shows the conclusions and future work.

II. BACKGROUND AND RELATED WORK

Memory Management in Java. GC is a core feature
of Java which offers significant software engineering benefits
over explicit memory management. For example, it frees the
programmers from the burden of manual memory manage-
ment, preventing the most common sources of memory leaks
and overwrites [24]. Despite its advantages, the GC comes
with a performance cost (as discussed in Section I). It is not
possible to programmatically force the execution of a GC [11],
only to suggest the JVM to execute it by calling the method
System.gc() (or Runtime.getRuntime().gc()). However, the JVM
is not forced to fulfil this request and may choose to ignore it.
Moreover, the usage of these methods is discouraged by the
JVM vendors1 because the JVM usually does a much better
job on deciding when to do GC.

Nowadays one of the most commonly used heap types in
Java is the generational heap2, where objects are segregated
by age into memory regions called generations. The survival
rates of younger generations are usually lower than those of
older ones, so younger generations are more likely to contain
garbage and can be collected more frequently. The GC in the
younger generations is known as Minor GC (MiGC), it is
usually inexpensive and rarely causes a performance concern.
MiGC is also responsible of moving the live objects which
have become old enough to the older generations. The GC in
the older generations is known as Major GC (MaGC) and is
commonly accepted as the most expensive GC type due to its
performance impact [13].

GC Optimisation. Multiple research efforts have focused
on improving the performance of the GC: Several works have
proposed new parallel [2], [18] and concurrent algorithms [14],
[21] that have smaller impacts on the performance of the

1http://docs.oracle.com/cd/E13150 01/jrockit jvm/jrockit/-
geninfo/devapps/codeprac.html

2http://www.oracle.com/technetwork/java/javase/memorymanagement-
whitepaper-150215.pdf

applications. Another approach has been to develop algorithms
that might have predictable GC performance [8]. However this
predictability comes in terms of soft-requirements, meaning
that the GC might still take more time than expected. Even
though all these works have helped to reduce the frequency
and impact of GC, it remains a performance concern due to
the different factors that can still affect its performance.

Memory Forecasting. It is another active research area
which has focused on the self-improvement of the JVM, look-
ing for ways to invoke a GC only when it is worthwhile. For
example, the work presented in [22] exploits the observation
that dead objects tend to cluster together to estimate how
much space would be reclaimable to avoid low-yield GCs.
Meanwhile, the authors of [25] present an approach to estimate
the dead objects at any time, information that a JVM could use
to determine when to trigger a MaGC. In all these cases, the
memory forecasts help to determine if it is a good time (in
terms of potential memory gains) to execute a GC. However
these memory forecasts do not provide enough information
to know when the next MaGC would occur. In contrast, our
work aims to forecast the MaGC events, also making this
information available outside the JVM so that other actors
(such as a load balancer) could leverage on this information.

Distributed Systems Optimisation. Research has also
focused on the optimisation of distributed architectures. For
example, the work at [1] proposed a statistical approach for
the early detection of QoS deviations at runtime. While [5]
presented an architecture for the dynamic detection of security
threats in virtualised platforms. Regarding load balancing, the
authors of [17] proposed a technique to estimate the global
workload of a load balancer to use this information in the
balancing of new workload. Meanwhile, the authors of [4]
enhanced a load balancing algorithm for Java applications by
considering the utilisation of the JVM threads, the heap and
the CPU to decide how to distribute the load. In contrast
to those works, our work has enhanced a load balancer by
considering the MaGC forecasts in its decision layer. In such
a case, the load balancer can get extra knowledge of the JVM
to control the workload of the system in addition to existing
load balancing policies based on other system resources.

MaGC Forecast Algorithm. In our previous work [15], we
presented an algorithm to predict MaGC events in generational
heaps. The algorithm works by periodically retrieving MiGC
and memory samples from a monitored JVM (as per a config-
urable Sample Interval) to build the history of memory allo-
cations that occur in the Young and Old Generations through
time. Then, the algorithm uses the most recent historical data,
as delimited by a configurable Forecast Windows Size (FWS),
to forecast the next MaGC event. This is done in two steps.
Firstly, the algorithm forecasts how much memory allocation
needs to occur in the Young Generation (YoungGen) before the
memory in the Old Generation (OldGen) gets exhausted (hence
triggering a MaGC). An example is shown in Figure 2. There,
the algorithm uses the OldGen historical data within the FWS
(represented as a rectangle) to feed a lineal regression model
(LRM) to predict the amount of memory allocation which is
pending to occur in the YoungGen (450MB in our example)
before the required allocation in the OldGen memory occurs
(200MB in our example, assuming there are currently 100MB
of free OldGen memory and 100MB have been previously
allocated, as per the historical OldGen data). Secondly, the
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Fig. 2. Forecast of Young Memory Allocation
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Fig. 3. Forecast of MaGC Event

algorithm forecasts the MaGC event by feeding another LRM
with the most recent YoungGen historical data and the result
of the previous projection (450MB in our example). This is
shown in Figure 3: By using the historical data within our
FWS (represented as a rectangle), the algorithm predicts that
the next MaGC will occur in the millisecond 1,200.

To assess the performance benefits of adapting the load bal-
ancing based on the MaGC forecasts, in [15] we also presented
a modified version of the round-robin3 load balancing algo-
rithm. The main difference of our algorithm (compared against
the normal round-robin) is that it performs an additional check
in the selection of the next node. If the pre-selected node (as
per the normal round-robin logic) would suffer a MaGC within
a specified time threshold, that node is skipped and the next
node is evaluated. Once the MaGC is over, the affected node
is again available for selection.

III. ADAPTIVE GC-AWARE LOAD BALANCING STRATEGY

The objective of this work was to define a GC-aware
load balancing strategy which dynamically adjusts to the GC
characteristics of the underlying application. This behaviour
would allow the load balancer to forecast the occurrence of the
MaGC events with enough accuracy to exploit that information
and improve the performance of a distributed system, such as
a clustered application.

In Figure 4, we depict the contextual view of our solution,
where the adaptive GC-aware load balancing strategy periodi-
cally retrieves information from the application nodes to select
the policy which is most suitable to the GC characteristics
of the application running on each node (termed as program
family). Then, the chosen policy is used to forecast the MaGC
events and balance the incoming workload among the available
application nodes.

As defined by multiple authors [23], self-adaptation endows
a system to adapt itself autonomously to internal and external
changes to achieve particular quality goals in the face of un-
certainty. To incorporate self-adaptation to our GC-aware load
balancing strategy, we have followed the well-known MAPE-
K adaptive model [6]. It is composed of 5 elements (depicted
in Figure 4): A Monitoring element to obtain information from
the managed systems; an Analysis element to evaluate if any
adaptation is required; an element to Plan the adaptation, and

3http://publib.boulder.ibm.com/infocenter/wsdatap/4mt/
topic/com.ibm.dp.xa.doc/administratorsguide.xa35263.htm

an element to Execute it. It also has a Knowledge element to
support the others in their respective tasks.

Fig. 4. Adaptive GC-Aware Load Balancing Strategy

The key element of our proposed solution is the set of
identified program families, which fulfils the role of the Knowl-
edge element. In this context, a program family encompasses
a set of programs which can be treated similarly because they
share some common GC characteristics. For example, a set
of program families might be defined based on the duration
of the MaGCs so that one policy can be used for those
programs which tend to suffer MaGCs of small duration (e.g.
few hundreds milliseconds), as these MaGCs do not represent
a major performance issue; while a different policy can be used
for programs which tend to suffer MaGCs of longer duration.

Additionally, each program family has two other attributes:
(1) An evaluation criterion to determine if the application
behaviour falls within that family. For instance, in our previous
example, a possible evaluation criterion might be the compari-
son of the average MaGC duration of the monitored application
against the duration ranges of each defined program family. (2)
A policy which defines the rules to use for MaGC forecasting
and load balancing. For example, families might use different
approaches to determine the MiGC history required to forecast
the MaGCs which are used to decide how best to balance the
workload, or different families might require distinct levels of
forecast accuracy.

From a process perspective, the proposed autonomic man-
ager has a core process which coordinates the other MAPE-K



Fig. 5. Adaptive GC-Aware Load Balancing Strategy - Process

elements. This process is depicted in Figure 5. It is triggered
when the load balancing starts. As an initial step, it uses a
default policy (e.g., all the available MiGC history might be
used to forecast the MaGCs). This initial policy is used for all
the application nodes. Next, the loop specified in the monitor
and analyse phases starts for all the application nodes (in
parallel), until the load balancing ends: A new set of data
samples is collected, based on the program GC characteristics
used to define the set of available program families (e.g.,
GC and memory snapshots). After the collection occurs, the
analyser process checks if the current program family suits the
GC characteristics of the underlying program. If it is not the
case, the evaluation criteria of the other program families is

assessed to identify the new program family, which is then used
until the next evaluation phase occurs. These actions retrieved
their configurations from the database of program families
(represented as dashed arrows in Figure 5). Furthermore, any
exceptions are internally handled and reported.

IV. EXPERIMENT #1: ASSESSMENT OF FORECAST

ACCURACY

Here, the objective was to identify which program GC
characteristics could work better for defining an initial set
of program families. To achieve this, we evaluated the effec-
tiveness of our MaGC forecast algorithm (proposed on [15])
against a broad set of Java programs and experimental config-
urations with the aim of analysing the conditions in which the
algorithm performed better. The following sections describe
this experiment and its results. Due to space constraint, we only
present the most relevant results (as this experiment involved
the execution of 69,000 different experimental configurations).

Java Benchmarks. The DaCapo4 benchmark 9.12 and
the SPECJVM 5 benchmark 2008 were chosen as application
sets because they offer a wide range of different program
behaviours to test (23 between the two benchmarks). Moreover,
they are two of the most widely used Java benchmarks in
the literature. As the DaCapo benchmark offers different
test workloads per program6, the largest workload for each
program was used to stress the GC as much as possible. Also
their number of iterations were set in such a way that MaGCs
were triggered for all the tested heap sizes. This information
is summarized in Table I. Similarly, the SPECJVM programs
were configured to trigger MaGCs. It involved setting the
iteration time of each program to 60 minutes. As the sunflow
program is present in both benchmarks, it was run only once.
Finally, 5 different heap sizes were tested per program (100,
200, 400, 800 and 1600MB) with the aim of diversifying more
the evaluated GC behaviours (as the heap size is a major factor
affecting the GC behaviour [3]).

TABLE I. DACAPO CONFIGURATIONS

Workload Size Program #Iters

huge

h2 10
tomcat 960
tradebeans 10
tradesoap 10

large

avrora 4000
batik 120
eclipse 10
jython 10400
pmd 200
sunflow 640
xalan 10400

default
fop 10400
luindex 10400
lusearch 10400

GC Strategies. Among the three most commonly used GC
strategies in the industry7, we selected the two which tend to
suffer the longest pauses [13]: Serial (sGC) and Parallel (pGC).

MaGC Forecast Algorithm. An extensive range of FWS
values was tested: [10..3000] in increments of 10. Moreover,
a value of 100ms was selected as Sampling Interval, assuming

4http://dacapobench.org/
5http://www.spec.org/jvm2008/
6http://www.dacapobench.org/benchmarks.html
7http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html



that no more than one MiGC would occur within that time-
frame (hence not missing to sample any MiGC).

Environment. All tests were done in a VM with 4 virtual
CPUs, 3GB of RAM, and 50GB of HD; running Linux Ubuntu
12.04L, and OpenJDK JVM 7u25-2.3.10. Additionally, the
JVM was configured to initialise its heap to its maximum size
to keep it constant during the experiments, and the calls to
programmatically request a MaGC were disabled.

Metrics. Three main metrics were calculated: Firstly, the
Forecast Error (FE) [15], which is the ratio of the absolute
forecasting error (difference between the forecast time and
the time of the real MaGC event) as a proportion of the
time elapsed since the previous MaGC. It is usually expressed
as a percentage to be comparable among different programs.
Secondly, the average number of MiGCs that occurred between
MaGCs (MiGCAVG). This metric captures the relationship
between the allocation needs of an application and the heap
size (major factors influencing the GC, as proved by [12]
and [19] respectively). The smaller the MiGCAVG is, the
more MaGCs are triggered, in which case the application
more frequently exhausts its Old Generation memory. If the
value is close to zero (e.g., 5 or less), the application is close
to an Out-Of-Memory exception. On the contrary, a value
far from zero (e.g., 1,000 or more) indicates that the Old
Generation is infrequently exhausted. Finally, the coefficient of
variation8 (MiGCCV ) was also calculated. This metric, which
is the standard deviation of the MiGCAVG expressed as a
percentage of the average, allows the comparison of different
applications in terms of variability in memory usage.

Experimental Results. Among the possible alternatives to
develop policies to test our load balancing strategy, we have
initially concentrated on automating the selection of the FWS
for two reasons: (1) The results of our previous work [15]
showed that the accuracy of our MaGC forecast algorithm is
particularly sensitive to this configuration, as the FWS delimits
the range of historical data which is used in the forecast process
(as explained in Section II). (2) Even though we achieved a
FE below 10% for all the tested combinations of programs and
heap sizes in this experiment (with an average FE of 4.56%
and a standard deviation of 2.70%), no single FWS achieved
the lowest FE for all programs.

For these reasons, our initial analysis focused on iden-
tifying the optimal FWS (the FWS which achieved the FE
closest to zero) per combination of program and heap size.
This analysis showed us an interesting trending: In general, our
forecast algorithm tends to benefit from having more historical
data available. This causes that the optimal FWS tends to grow
through time. However, this growth was not steady in most
of the cases. On the contrary, the optimal FWS experienced
troughs during the execution of most of the programs (meaning
that in those cases, less history was better to achieve a low FE).

Based on this behaviour, our analysis centred on under-
standing the causes of these troughs. To assess if the troughs
were caused by the variability of the program behaviours (in
terms of memory usage), we analysed the MiGCCV of the
programs. This analysis showed us that there is a relationship
between the FWS troughs and the changes in the number
of MiGCs that occur between the MaGCs (which is the

8http://ncalculators.com/statistics/coefficient-of-variance-calculator.htm

key input used by our MaGC forecast algorithm). Whenever
those changes are “too drastic” (reflected in a high value of
MiGCCV ), using more historical data is not useful because
that history does not properly capture the drastic (several
orders of magnitude) changes in memory behaviour. On the
contrary, if only the most recent history is used in this scenario
(implicitly meaning the usage of a smaller FWS), the forecast
accuracy is drastically improved. Examples of this behaviour
are depicted in Figures 6, 7, and 8: In Figure 6, eclipse-100MB
with sGC, which experienced a high MiGCCV (1.816),
shows multiple troughs during its execution. Meanwhile, batik-
200MB with sGC, which experienced a considerable lower
MiGCCV (0.221), shows a more steady FWS growth trend
(with minimum troughs) in Figure 7. Finally, avrora-100MB
with pGC, which experienced a MiGCCV very close to zero
(0.022), practically shows a steady FWS growth trend in
Figure 8.
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Fig. 8. pGC Avrora-100MB: FWS vs. Time

The above finding led us to consider that functions could
be derived from the observed behaviours (where the frequency
of troughs in the optimal FWS trend is related to the level of
MiGCCV ), and be used as a first set of policies within our



adaptive load balancing strategy. These function-based policies
would then allow the automatic selection of an appropriate
FWS based on the optimal FWS trend.

We identified three program families based on their
MiGCCV values: Low (MiGCCV <=0.1), medium
(0.1<MiGCCV <1.0), and high (MiGCCV >=1.0). Then,
for each program and heap size combination, we derived a
trending function from the optimal FWS results. This initial
approach did not work well for the programs in the high
family, and several programs in the medium family, due to
their relatively frequent troughs. The obtained functions were
not representative of the modelled data, as they produced
coefficient of determination (R2) values9 below 0.9 (which is
the threshold commonly accepted in statistics as the minimum
R2 value to consider a trending function representative of
the modelled data). These results led us to adjust our scope:
Instead of concentrating on achieving high forecast accuracy
for all the MaGC events, we focused only on those MaGCs
which follow a similar growth trend as the FWS (hence
benefiting from using the increments in MiGC history), while
leaving the outliers out of the policies. Our hypothesis was
that, even though these imperfect FWS trending functions
might miss to select an appropriate FWS to accurately predict
the MaGCs represented by the removed outliers, the functions
could still be useful to accurately predict a fair percentage of
the MaGCs; information which consequently would allow our
load balancing strategy to improve a system’s performance.

After removing the outliers, we were able to successfully
derive FWS trending functions for all the programs using the
tested heap sizes. An example of these functions (for eclipse-
100MB with sGC) is presented in Figure 9. As it can be
noticed, this function has a R2 value very close to 1.0 (meaning
that it is very representative of the modelled data).
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A final observation of this experiment was that, as long as
the total workload processed in an experimental configuration
does not change (condition which was satisfied for all the con-
figurations using the same program), the variability (in terms
of MiGCCV ) decreases when the heap size increases. This is
because the MaGCs are more homogeneous (in terms of the
number of MiGCs) in such bigger heap sizes. This behaviour
favours our chosen strategy of skipping the outliers, as their
number decreases when the variability decreases. In contrast,
the MiGCAVG increases when the heap size increases. This
is because there is more memory to exhaust before triggering a

9http://www.businessdictionary.com/definition/coefficient-of-determination-
r2.html

MaGC. An example of these behaviours is shown in Figure 10,
which shows the MiGCCV and MiGCAVG trends for the
sunflow program with pGC when using the different heap sizes.
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V. EXPERIMENT #2: ASSESSMENT OF PERFORMANCE

IMPROVEMENTS

Here the objective was to evaluate if our strategy of pro-
gram families (currently based on the MiGCCV and using the
function-based policies described in our previous experiment)
could improve the performance of a distributed system without
the need of manual tuning. Due to space constraint, we only
present the most relevant results (as this experiment involved
the execution of 184 different experimental configurations).

Prototype. To validate our proposed solution, we imple-
mented a prototype using Java 7. Our adaptive load balancing
strategy is built on top of the round-robin algorithm (leveraging
on the modified version that we proposed on [15]) and the
Central Directory10 load balancer. We selected the round-
robin algorithm because it is widely used in the industry. For
example, it is the only load balancing algorithm commonly
supported across all the top public Cloud vendors [16]. Central
Directory was chosen because it is a light-weight load balancer
which is open source and developed in Java, characteristics
which facilitated its integration with our MaGC forecast logic.
Finally, the forecast logic uses Java Management Extension
(JMX)11. This technology was chosen because it is a standard
Java component which can retrieve all the required information
(e.g., GC and memory snapshots).

Experimental Setup. This experiment used a distributed
environment composed of seven VMs: Five application nodes,
one load balancer and one load tester (using Apache JMeter
2.912). All VMs had the characteristics described in Section IV.
The application nodes ran an Apache Tomcat 6.0.35.

All the 23 previously tested programs were used in con-
junction with the two biggest heap sizes (800 and 1600MB)
and the two GC strategies used in Experiment #1 (Section IV).
Regarding the MaGC forecast algorithm, its configuration was
also similar to the one used in Experiment #1 except the FWS,
as our program families took the place of this configuration.
Moreover, two types of runs were performed: The first type
used the normal round-robin algorithm and was considered the

10http://javalb.sourceforge.net/
11http://www.oracle.com/technetwork/java/javase/tech/javamanagement-

140525.html
12http://jmeter.apache.org/
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Fig. 16. TAVG: Performance Improvements

baseline. The second type of run used our proposed adaptive
GC-aware load balancing strategy.

To be able to call a program from within a JMeter HTTP
test script (so that multiple concurrent calls can be invoked),
a wrapper JSP was developed and installed in the Tomcat
instance of each application node. For each program, a JMeter
test script was created, adding some controlled diversity to
the workload. For the DaCapo programs, it involved varying
the workload size among the calls; while for the SPECJVM
programs, it involved varying the execution time. Each JMeter
test run lasted 60 minutes and used 50 concurrent users. Also,
each individual program call was considered a transaction.
Finally, as we were interested in performance, the throughput
(tps) and the response time (ms) were our main metrics and
were collected with JMeter. Additionally, the CPU (%) and
memory (MB) utilisations of the load balancer were collected
with the “top” command.

Experimental Results. In general terms, our proposed
solution worked well because all experimental configurations
achieved a performance improvement. To have a better under-
standing of the results, we categorised them in three groups,
based on the level of performance improvement achieved:
Small (<=10%), medium (>10% and <=50%) and high
(>50%). This analysis showed that most of the experimental
configurations obtained a performance improvement higher
than 10%. More importantly, our solution achieved a high per-
formance improvement in a fair percentage of the cases: 4% in
terms of RTAVG, 45% in terms of RTMAX , and 34% in terms
of TAVG. This breakdown is shown in Figure 11. The same
exercise was done per GC strategy. In general, similar results
were obtained, meaning that our solution worked irrespectively

of the used GC strategy. These breakdowns are presented in
Figures 12 and 13.

Next, our analysis focused on understanding the conditions
under which our solution works the best. Figures 14, 15 and 16
show the results of this analysis for each performance metric.
In general, the biggest performance gains were obtained in
those programs which suffered longer MaGCs (hence having
the biggest potential performance gains) and low MiGCCV

(condition under which the solution achieved a higher forecast
accuracy and was able to successfully skip all the MaGCs). On
the contrary, the smallest performance gains were obtained in
the following two cases: (1) When the MaGC duration was
short (as there was little potential performance gain to win) or
(2) when the MiGCCV was high (condition under which the
solution missed to predict accurately some MaGCs and it was
not able to skip all the MaGCs). In this analysis, a program
was considered to have short MaGC duration (MaGCD) if it
spent less than 1% of its execution time doing GC work, long
MaGCD if it spent more than 10%, and medium MaGCD if
it did not fall into the previous categories.

An additional analysis was done to evaluate the influence
of the MiGCCV in the achieved performance improvements.
Figure 17 shows the results of this analysis. There, it can
be observed how the percentage of skipped MaGCs gradually
increases (while the MiGCCV decreases) until reaching prac-
tically 100% of skipped MaGCs around a MiGCCV of 0.1.
These results confirm that MiGCCV is an appropriate metric
to be used for classifying the different program behaviours
into families. In this context, a MaGC was considered skipped
if it was forecasted accurately enough that it was possible
to prevent sending transactions to the affected node during



the duration of the MaGC. Under these conditions, the only
transactions affected by the MaGC event were those in the
pipeline to be processed by the node which suffered the
MaGC, transactions which eventually led to the triggering of
the MaGC event.
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Fig. 17. Comparison of Skipped MaGC vs. Experienced MiGCCV

As a minor contribution of this work, the results of this
experiment also allowed us to classify the 23 tested programs
according to their GC characteristics (the MaGCD and the
MiGCCV ). This program classification is shown in Table II.

TABLE II. PROGRAM CLASSIFICATION

MiGCCV
MaGCD

Short Medium Long

Low compiler, jython

avrora, compress,
fop, luindex, lusearch,

mpegaudio, tomcat,
startup, sunflow, xalan

Medium batik, crypto, eclipse,
pmd, tradebeans

h2, scimark,
tradesoap, xml

High derby, serial

Finally, we also compared the resource usages in the
load balancer node to understand the costs of our solution
(compared against the normal round-robin): The average CPU
usage (CPUAVG) increased in the range of 3% and 7%,
while the average memory usage (MEMAVG) increased in
the range of 0.11 and 0.35GB. This memory increase was
caused by the historical data that the forecast logic maintained.
These increments were considered tolerable because the load
balancer node was far from exhausting its resources (reporting
a CPUAVG of 27.3% and a MEMAVG of 1.42GB).

In summary, this experiment proved the performance gains
that our solution can achieve: By avoiding the impact of most
of the MaGC events in the individual nodes, the performance
of the clustered applications was improved (in terms of re-
sponse time and throughput), without human intervention.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a new adaptive GC-aware load bal-
ancing strategy to improve the performance of high-assurance
Java distributed systems. This solution extends our previously
proposed GC-based load balancing strategy (which uses a
static configuration), by adapting the load balancing strategy
to the GC characteristics of the underlying application (hence
avoiding the need of manual configuration). This behaviour al-
lows our solution to use the MaGC forecasts to prevent that the
MaGC events on the individual nodes affect the performance
of the overall system. The results showed that such adaptive
strategy can improve the response time and throughput of
a distributed system: The average response time decreased
22.5% (across all programs), while the average throughput

increased 60.7% (across all programs), both metrics compared
to the round-robin load balancing. Our future work will focus
on exploring other program GC characteristics to broaden our
classification of program behaviours into families, then use that
knowledge to develop more portable load balancing policies
which exploit the behaviour similarities of each family.
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