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ABSTRACT

A statistical cloud classification and cloud mask algorithm is developed based on Advanced Microwave

Sounding Unit (AMSU-A and -B) microwave (MW) observations. The visible and infrared data from the

Meteosat Third Generation-Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) are used to

train the microwave classifier. The goal of the MW algorithms is not to fully reproduce this MSG-SEVIRI

cloud classification, as the MW observations do not have enough information on clouds to reach this level of

precision. The objective is instead to obtain a stand-alone MW cloud mask and classification algorithm that

can be used efficiently in forthcoming retrieval schemes of surface or atmospheric parameters from micro-

wave satellite observations. This is an important tool over both ocean and land since the assimilation of the

MW observations in the operational centers is independent from the other satellite observations.

Clear sky and low, medium, and opaque–high clouds can be retrieved over ocean and land at a confidence

level of more than 80%. An information content analysis shows that AMSU-B provides significant in-

formation over both land and ocean, especially for the classification of medium and high clouds, whereas

AMSU-A is more efficient over ocean when discriminating clear situations and low clouds.

1. Introduction

Cloud detection and classification are generally based

on satellite visible and infrared observations. First, these

wavelength domains show a very high degree of sensi-

tivity to the presence of clouds, with good spatial reso-

lution. Second, these observations are available from

geostationary satellites, making it possible to track cloud

developments with frequent measurements of the same

locations. For instance, visible and thermal infrared ob-

servations from polar orbiters and geostationary meteoro-

logical satellites have been combined by the International

Satellite Cloud Climatology Project (ISCCP) to provide

global cloud information dataset since 1983, every 3 h, with

an ;30-km spatial resolution (Rossow and Schiffer 1999).

To obtain global uniformity in the ISCCP climatology,

which is built from observations from several instruments,

the number of channels has been limited to one visible

(VIS) and one infrared (IR) window. A serial threshold

technique is used to detect clouds; furthermore, a radiative

transfer code and ancillary data such as temperature and

humidity profiles are used to retrieve the cloud-top pres-

sure and cloud optical thickness (Rossow et al. 1985).
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The information obtained from additional VIS and/or

IR channels can improve the cloud detection, the separa-

tion of broken clouds from thin cirrus, and/or the differ-

entiation of multilayered clouds from midlevel clouds. This

has been pointed out by many authors (Saunders 1986;

Desbois et al. 1982; Coakley 1983; Inoue 1985; Baum et al.

1997; Jin and Rossow 1997). Different approaches have

used the information from these spectral bands, for ex-

ample, physically based threshold techniques (Derrien and

Gléau 2005, 2010), clustering techniques without a priori

knowledge (Sèze and Pawlowska 2001; Ambroise et al.

2000), and neuronal and fuzzy logic approaches (Baum

et al. 1997; Miller and Emery 1997). Recently, the multi-

spectral capabilities of the new generation of VIS and IR

imagers, such as the Moderate Resolution Imaging Spec-

troradiometer (MODIS) on board the Terra and Aqua

platforms or the Spinning Enhanced Visible and Infrared

Imager (SEVIRI) on board the Meteosat geostationary

satellite have been investigated. These new observations

have shown large improvements in their cloud detection

and the cloud property retrieval (Ackerman et al. 1998;

Frey et al. 2008; Derrien and Gléau 2010). Furthermore,

active measurements from the Cloud–Aerosol Lidar with

Orthogonal Polarization (CALIOP) instrument lidar on

board the Cloud–Aerosol Lidar and Infrared Pathfinder

Satellite Observations (CALIPSO) platform of the A-Train

constellation have been used to evaluate the VIS and IR

passive measurements algorithms (Holz et al. 2008; Sèze

et al. 2009).

Microwave observations are less sensitive to thin

clouds than visible or infrared measurements. However,

contrarily to visible and infrared observations, which

only sense radiation scattered or emitted from the top of

the clouds, microwave radiation can propagate through

clouds. As a consequence, microwave observations have

a better ability to sense the total cloud layer and have the

potential to estimate cloud water and ice contents. At

frequencies below ;80 GHz, the microwave signal is

essentially dominated by emission and absorption by

liquid clouds and rain and is little affected by the pres-

ence of ice. At higher frequencies, the scattering effect

on frozen particles increases. Ice particles modify the

upwelling radiation by scattering photons away from the

satellite sensors, causing a brightness temperature de-

pression. Over ocean, cloud liquid water paths are rou-

tinely estimated from the cloud emissions measured

between 19 and 85 GHz by imagers such as the Special

Sensor Microwave Imager (SSM/I) or the Advanced

Microwave Scanning Radiometer (AMSR) (Alishouse

et al. 1990; Greenwald et al. 1993; Ferraro et al. 1996;

O’Dell et al. 2008). Over land, the problem is more

complicated. The land surface emissivity is usually close

to unity, making atmospheric features difficult to identify

against such a background because of the limited con-

trast. In addition, the land surface emissivity is variable in

space and time and difficult to model. However, efforts

have been made to estimate cloud liquid water over land,

using a priori information on the surface properties

(Aires et al. 2001). From observations above ;80 GHz,

cloud ice information has been extracted, from both

imagers such as SSM/I and water vapor sounders such as

the Advanced Microwave Sounding Unit-B (AMSU-B)

(Greenwald and Christopher 2002; Hong and Heygster

2005; Weng et al. 2003).

Passive microwave sounders such as AMSU-A and -B

are operationally used to estimate temperature and

water vapor atmospheric profiles (Radnoti et al. 2010).

The quality of the retrieval partly depends on the

knowledge of cloud presence and nature (Engelen and

Stephens 1999). Cloud information could be extracted

from visible and infrared observations. However, this

implies that the observations are coincident in time and

space, which is not often practical, especially in opera-

tional assimilation systems with sequential assimilation

of the different instruments. The numerical weather

prediction centers do not use IR–VIS information for

the assimilation of MW observations.

The objective of this study is to develop a cloud clas-

sification directly from the microwave observations.

The idea is to capitalize on the capacities of the new

generation of geostationary instruments (e.g., MSG-

SEVIRI) to precisely characterize the cloud presence

and types. The Satellite Application Facility for Now-

casting (SAFNWC; information online at http://nwcsaf.

inm.es/) cloud classification that is described in the next

section will be used here (Derrien and Gléau 2005,

2010). This cloud classification has been extensively

validated. Collocated MSG-SEVIRI and AMSU-A and

-B observations will then help train a microwave-only

cloud classification. This stand- alone MW cloud classi-

fication and cloud mask algorithm will be designed for

use over both ocean and land. Snowy data are not con-

sidered in this study, the geostationary satellite coverage

of the snow-covered regions is not ideal due to its limited

coverage of the high latitudes. The MW classifier cannot

obtain a similar degree of precision or level of detail as

the SE-VIRI algorithm; in particular, it would be diffi-

cult to treat multilevel clouds or partially cloud-covered

scenes. However, the fact that some cloud signals can-

not be measured by the MW observations means that

they have a low impact on them, implying that they

would have a limited impact on the forthcoming re-

trieval scheme. Furthermore, the MW classifier works at

a coarser horizontal resolution than does the SEVIRI

algorithm. This implies that some averaging appears in

the cloud properties as seen by the MW instrument.
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The satellite datasets are described in section 2. Three

classification methods are tested in section 3. The clas-

sification results are presented in section 4, with special

emphasis on the analysis of the microwave information

content. Finally, section 5 concludes this work.

2. The datasets

a. The SAFNWC cloud classification from
MSG-SEVIRI

The European Space Agency (ESA) and the European

Organization for the Exploitation of Meteorological Sat-

ellites (EUMETSAT) have joined efforts to develop the

Meteosat Second Generation (MSG) mission (Schmetz

et al. 2002). This project capitalizes on the first generation

of spacecraft in the Meteosat weather satellite series but

technical innovations have boosted its performance. The

first satellite of the series, Meteosat-8, was launched in

2003 and entered into service at EUMETSAT in early

2004. The second satellite was launched in 2005 and be-

came Meteosat-9 in July 2006.

The main instrument on MSG is SEVIRI (Govaerts

et al. 2001). This optical imaging radiometer observes the

earth’s atmosphere and surface at 12 different wave-

lengths (compared to the 3 channels of the previous

generation): 4 visible–near-infrared (NIR) channels (0.4–

1.6 mm) and 8 IR channels (3.9–13.4 mm). A very im-

portant feature of SEVIRI is its continuous imaging of

the earth, with a baseline repeat cycle of 15 min (com-

pared to 30 min for previous instruments). The imaging

sampling distance is 3 km 3 3 km at the subsatellite

point (about 6 km 3 6 km at the border of the analysis

domain) for standard channels, and down to 1 km for

the high-resolution visible (HRV) channel.

The two first steps of the SAFNWC algorithm, cloud

detection and classification, rely on multispectral threshold

tests applied at the pixel scale to a set of spectral and tex-

tural features (Derrien and Gléau 2005). The left column of

Table 1 provides the names of the SEVIRI cloud classes.

An important feature of this algorithm is that the threshold

values depend on the illumination and viewing geometry

and the geographical location. They are computed using

ancillary data fields that feed a radiative transfer model

[i.e., the radiative transfer model for the Television and

Infrared Observation Satellite (TIROS) Operational Ver-

tical Sounder (TOVS), RTTOV]. The ancillary data are

composed of atlases (i.e., height map and land–sea mask),

climatological maps of sea surface temperature and conti-

nental reflectance, and numerical weather predictions of

surface temperature, integrated atmospheric precipitable

water, and atmospheric temperature and humidity profiles.

After isolating clear-sky from cloud-contaminated pix-

els, cloudy pixels are classified into two sets: 1) fractional

cloud and high semitransparent cloud and 2) low, medium,

and high thick clouds. A separation between fractional,

high semitransparent cloud (single layer) and high semi-

transparent cloud in a multilayered system is performed.

For thick clouds, ancillary temperature and humidity

profiles help discriminate between low, middle, and high

clouds. This cloud classification scheme aims at retrieving

11 cloud types: clear, very low, low, midlevel, high, very

high, very thin cirrus, cirrus, thick cirrus, cirrus over

another layer, and partly covered pixels.

It is very difficult to reproduce from microwave ob-

servations the level of detail in a cloud classification that

is obtained from instruments such as SEVIRI. It was

thus decided to 1) keep only the clear and the opaque

monolayer cases, 2) eliminate the SEVIRI-derived am-

biguous cloud type, an 3) group the remaining original

SEVIRI classes into four broad classes: clear sky, low

clouds, medium cloud, and high cloud opaque. The cor-

respondence of the SEVIRI and MW cloud classes is

provided in Table 1. Since the SEVIRI algorithm is based

on an empirical approach using channel differences, the

precise determination of the height of each of the cloud

classes is not possible.

The goal of the MW cloud classification will be to

reproduce these four cloud types. Figure 1 provides an

example of such cloud classification for 1 July 2006.

TABLE 1. SEVIRI cloud classes, and corresponding MW four-

nebulosity classes used in this study. Boldface font signify SEVIRI

classes kept in the new MW cloud classes.

Original

cloud class SEVIRI class description

New MW

cloud class

0 Not processed

1 Cloud-free land Clear
2 Cloud-free sea Clear

3 Land contaminated by snow

4 Sea contaminated by snow/ice

5 Very low and cumuliform clouds Low
6 Very low and stratiform clouds

7 Low and cumuliform clouds

8 Low and stratiform clouds Low

9 Medium and cumuliform clouds Medium
10 Medium and stratiform clouds Medium

11 High opaque and cumuliform clouds

12 High opaque and stratiform clouds High
13 Very high opaque and cumuliform

clouds

14 Very high opaque and stratiform clouds High

15 High semitransparent thin clouds

16 High semitransparent meanly

thick clouds

17 High semitransparent thick clouds

18 High semitransparent above

low or medium clouds

19 Fractional clouds (subpixel water clouds)

20 Undefined
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The white areas are for the ambiguous cloud type

situations.

At the time of this study, the available data (SEVIRI

observations along with the derived cloud classification)

covered June–October 2006. These five months will be

used.

b. AMSU-A and -B on NOAA-16

Among other instruments, the National Oceanic and

Atmospheric Administration-16 (NOAA-16) satellite

includes the two MW instruments of interest in this

study: AMSU-A and -B. The general characteristics of

both instruments are provided in Table 2.

The AMSU-A measures the MW radiation for the re-

trieval of atmospheric temperature profiles, with 12

sounding channels between the 50- and 60-GHz O2 bands,

and three other channels at 23.8, 31.4, and 89 GHz. It is

a cross-track scanning radiometer, with 648.38 from nadir

with a total of 30 earth fields of view of 3.38 per scan line,

providing a nominal spatial resolution of 48 km at nadir.

FIG. 1. SEVIRI cloud classification for 1 Jul 2006 in the clear sky and low-, medium-, and

high-cloud classes.

TABLE 2. General instrument characteristics for AMSU-A and -B.

Instrument AMSU-A AMSU-B

Scanning Cross track Cross track

Spatial resolution 48 km (at nadir) 16 km (at nadir)

Channel frequencies, in GHz (noise in K) 23.8 (0.30) 89.0 (0.37)

31.4 (0.30) 157.0 (0.84)

50.3 (0.40) 183.31 6 1 (1.06)

52.8 (0.25) 183.31 6 3 (0.70)

53.596 6 0.115 (0.25) 183.31 6 7 (0.60)

54.4 (0.25)

54.94 (0.25)

55.5 (0.25)

57.290 344 (5FLO)* (0.25)

FLO 6 0.217 (0.40)

FLO 6 0.3222 6 0.048 (0.40)

FLO 6 0.3222 6 0.022 (0.60)

FLO 6 0.3222 6 0.010 (0.80)

FLO 6 0.3222 6 0.0045 (1.20)

89.0 (0.50)

* Frequency of Local Oscillator (FLO).
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The swath is approximately 2000 km and the in-

strument realizes one scan in 8 s.

The AMSU-B microwave radiometer is designed to

measure the atmospheric water vapor profile, with three

channels in the H2O line at 183.31 GHz plus two window

channels at 89 and 150 GHz that enable deeper penetra-

tion through the atmosphere down to the earth’s surface.

Each swath is made up of 90 contiguous individual pixels

and scanned every 2.67 s.

AMSU-B pixels at nadir have a diameter of approxi-

mately 16 km and each cross-track pass has 90 of them.

AMSU-B has the same swath width that AMSU-A does,

but the measurements are done in one-third of the time,

allowing for a good synchronization of both instruments.

A 3 3 3 AMSU-B pixel matrix covers each of the

AMSU-A pixels in order to facilitate the synergetic use.

c. Coupling of the AMSU observations with the
SEVIRI-derived cloud classification

To use the datasets jointly, the first step consists of

collocating them in space and time. The AMSU-B pixels

are, by design, very easy to map onto AMSU-A pixels.

The 3 3 3 AMSU-B pixels mentioned in section 2b

are simply averaged and then paired to the associated

AMSU-A pixel. A control step is run to suppress any

missing scan lines. The SEVIRI observations with their

centers inside an AMSU-A pixel are then associated with

it. The spatial resolution of SEVIRI being much higher

than that of AMSU, an ensemble of different SEVIRI

cloud classes can be linked to a single AMSU pixel. How

should one go about mapping these multiple SEVIRI

classes onto each microwave pixel? A lot of work has been

done in this regard. Mixed cloud categories or combined

cloud types could have been considered but the dataset

built here will train the MW cloud classifiers and there is

not enough information in the MW observations to treat

these complex cases. It is then recommended to limit, as

much as possible, the number of ambiguous points (the

heterogeneity of the SEVIRI cloud classification inside the

bigger MW pixels will be considered in section 3c). A few

rules are adopted to filter out these heterogeneous pixels:

d An AMSU pixel is labeled clear only if more than 95%

of the associated SEVIRI classes are clear (different

thresholds were tested and this number was found to

be a good compromise).
d An AMSU pixel is labeled low (medium or high)

cloud only if more than 80% of the associated SEVIRI

classes are low (medium and high).
d All other AMSU pixels are excluded from the training

dataset.

Table 1 provides a correspondence between the SEVIRI

and our microwave cloud classifications.

The purpose of excluding some of the cloud situations

in the training dataset is not to avoid processing these

cases. The goal is to train the classification models with,

as much as possible, ‘‘clean’’ situations so that the clas-

sifier can infer, from this training, unambiguous spectral

signatures. After the training stage, the classifier can be

used on ambiguous situations and it is expected to esti-

mate the ambiguity level. Some of the clouds that are

excluded in the training dataset such as multilevel clouds

and AMSU pixels that are not homogeneous enough can

impact, if they are thick enough, the MW measurements

and therefore the retrievals. The classification algorithm

is able to detect those clouds, although maybe not able

to correctly classify them. The tests outlined in sections

4c and 4d are performed on nonfiltered scenes.

This collocation process allows for the construction of

a dataset of AMSU-A and -B observations classified a

priori, using the SEVIRI-derived cloud classification

over ocean and various types of continental surfaces.

The SEVIRI-derived cloud classification is used as the

reference for the microwave cloud mask and classifica-

tion. The microwave cloud classification will be ‘‘trained’’

on the SEVIRI classification.

d. Microwave surface emissivity information

As discussed in the introduction, microwave obser-

vations from AMSU-A and -B over land can include

a significant contribution from the surface that will

contaminate the cloud analysis. To facilitate the cloud

classification, different surface types are considered.

Instead of using external vegetation–soil information,

a surface classification based on microwave emissivi-

ties has been adopted (Prigent et al. 2008). It is derived

from a monthly mean emissivity climatology calculated

from a decadal (1992–2001) SSM/I emissivity database

(Prigent et al. 2006), a snow flag from the National Snow

and Ice Data Center (NSDC), and a river, lake, and

wetland (Prigent et al. 2007) dataset. An unsupervised

clustering technique is applied to this emissivity clima-

tology for the seven SSM/I channels. A Kohonen topo-

logical map (Prigent et al. 2001) is used to classify all the

surface pixels. The clustering method is applied twice as

follows: once for the snow-free pixels, then for the snow-

covered pixels (the snow and ice information is ex-

tracted from the National Snow and Ice Data Center; ice

pixels are not considered).

This emissivity-derived surface information ensures

that each class represents a different pattern of behavior

in terms of microwave emissivities and that the set of

emissivity classes describes their full variability. The

cloud classification results will be analyzed for each sur-

face type. Table 3 lists the 10 surface types. Five classes

are isolated for the snow-free regions, corresponding to
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vegetation densities, from dense forest (class 1) to desert

surfaces (class 5). Four snow classes are also determined

(classes 6–9). Pixels with more than 10% standing water

are not considered in the clustering scheme and are

grouped into class 10. This class includes areas of rivers or

lakes, as well as regions associated with seasonal wetlands

(Prigent et al. 2007). This class is used to represent large

areas that are inclined to have standing water, in partic-

ular in the North American continent. Figure 2 shows the

results of the climatological classification for June at

a 0.258 3 0.258 equal-area spatial resolution.

The surface class classification is used as a climatology.

This means that the surface type for a satellite field of

view is only determined by its location and month. This is

already an improvement compared to classical surface

type classifications that are constant in time. A potential

improvement would be to estimate the surface class

based on real-time emissivities, but this would be com-

plicated since the estimation of these emissivities is dif-

ficult for cloudy situations; although this is possible (Aires

et al. 2001), the uncertainties are higher.

e. Sensitivity of the microwave observations to
the clouds

To assess the sensitivity of each microwave channel to

the presence of clouds, histograms of the brightness

temperatures (Tb’s) are examined, for the four SEVIRI-

derived cloud classes. Figure 3 shows a representative

subset of these histograms, for land and ocean sepa-

rately, for the whole data period June–October 2006. In

the most transparent channels (23.8, 50.3, and 89 GHz),

the surface contribution to the signal is obvious, with

very different ranges of temperatures over land and

ocean, along with significantly less sensitivity to the

cloud presence and types over land (note that for a given

frequency channel, the histograms are drawn on the

same scales for an easier comparison between land and

ocean cases). Over a high-emissivity surface such as land

(i.e., a radiometrically warm surface), the presence of

clouds tends to decrease the observed Tb’s even at low

frequencies where scattering does not play a significant

role (up to 80 GHz). The opposite occurs over the ra-

diometrically cold ocean, where clouds generally induce

an increase in the Tb’s, especially for the horizontal

polarization. At 89 GHz, scattering by the cloud ice

phase starts to interfere significantly with the signal, and

this is especially visible over land where the decrease of

the Tb’s for high clouds contrasts with the warm back-

ground. This property will make high clouds easier to

identify over land than over ocean with frequencies

around 89 GHz. For more opaque channels, the differ-

ence in the behavior between land and ocean is less clear

and decreases with channel opacity. Note that over both

land and ocean, the histograms at 150 GHz and above

are rather well separated for the medium and high cloud

types, making these channels likely very promising for

the classification of these cloud types.

TABLE 3. Surface-type classes from 1) the NSIDC flag; (2) a lake,

river, and wetland dataset, and (3) SSM/I microwave emissivities.

Class No. Description

1 Arid

2 Low vegetation

3 Medium vegetation

4 Medium/high vegetation

5 High vegetation

6 Snow/ice type 1

7 Snow/ice type 2

8 Snow/ice type 3

9 Snow/ice type 4

10 Including standing water

FIG. 2. Surface emissivity classification for June. Surfaces 1–5 correspond to decreasing

vegetation densities, from dense forest to desert. Surfaces 6–9 are for snow- and ice-covered

pixels. Surface 10 corresponds to pixels that are partly covered by standing water.
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This analysis shows that there is potential for cloud

classification with these microwave observations, but that

one frequency channel alone will not provide all the in-

formation. As a consequence, we suggest a multispectral

analysis. All AMSU-A and -B information will be used

simultaneously. At the end of this study (section 4e), the

potential of different channel groups will also be tested.

3. Classification methods

Let x be a vector of p features (i.e., the microwave

observations in this case). A dataset B5 f(xi, yi);

i 5 1, . . . , Mg of M couples relates these observations xi

to labels yi where y 2 f1, . . . , Ng represents N groups

(i.e., the cloud classes). These N groups are defined

a priori. A supervised classification algorithm is a sta-

tistical procedure that allocates any vector of observa-

tions x onto the N groups.

The training of the classifier is based on the use of the

‘‘training’’ dataset B of previously labeled items. The

goal of the classifier is to reproduce, as well as possible,

the a priori classification in the training dataset and also

to extrapolate this classification to new observations,

outside the training dataset.

In this application, the groups are the N 5 4 cloud

classes (y 5 1 for clear, 2 for low, 3 for medium, and 4 for

high clouds). The a priori classification y is provided by

the transformed SEVIRI classification (section 2a) and

the observations x are the microwave observations from

AMSU-A and -B described in section 2b.

a. Linear and quadratic discriminant analyses

There are two approaches to defining classification

procedures: one based on statistics, in particular Bayesian

statistics, and the other one based on geometric consid-

erations. Both are linked since each statistical hypothesis

FIG. 3. Brightness temperatures histograms for the 4 SEVIRI-derived cloud classes, over

(left) land and (right) ocean for window channels 23.8, 50.3, 89, and 150 GHz; and for sounding

channels at 54.4 and 183.3 63 GHz.
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(e.g., equality of intraclass variance, Gaussian character of

the intraclass variance) uses geometrical considerations

and some statistical optimization.

The linear discriminant analysis (and the Fisher’s

linear discriminant) is a statistical method used to find

the linear combination of the P features that best sep-

arates the N groups. The resulting combination defines

P-hyperplane ‘‘frontiers’’ that separate the points from

each group. In the case where P 5 2, the frontiers are

lines, and in the case where P 5 3, they are planes.

For the quadratic classifier, the frontiers are assumed to

be quadratic in the space of the observations. In the special

case where the observations have two features (i.e., P 5 2),

the surfaces separating the classes are conic sections (i.e.,

a line, a circle or ellipse, a parabola, or a hyperbola).

The representation the capacities of the linear classi-

fier are included in the quadratic classifier (lines can be

special cases of conic sections). It means that the qua-

dratic approach should give equal or better results than

the linear discriminant analysis.

Another important feature to be mentioned is that

these linear and quadratic classifiers also provide the

a posteriori probability for an observation x to be in each

one of the M classes. This will be exploited in the fol-

lowing. It is not the goal of this paper to present thor-

oughly these classical methods; the interested reader can

refer to (Krzanowski 1988; Seber 1984).

b. Neural network method

A neural network (NN) is a nonlinear mapping model.

The multilayered perceptron (MLP) is adopted here

(Rumelhart et al. 1986). The inputs x are the predictors

and they represent any source of information for the

prediction; the outputs y represent the predicted vari-

ables. In our case, x is composed of microwave observa-

tions from the AMSU-A and -B instruments. In the

following, the number of inputs will vary, depending on

the available observations: 20 for AMSU-A and -B, 15 for

AMSU-A only, 5 for AMSU-B only, and 6 for the window

channels (see section 4e). This allows us to test sepa-

rately the contribution of each instrument. Each NN

has a unique hidden layer with 20 neurons. The prediction

y in the NN output is a four-digit binary code that repre-

sents the cloud classes. This coding in the NN output is the

best way to obtain a classifier able to estimate a posteriori

probabilities (Bishop 1996). In this way, and similarly to

the linear and quadratic classifiers, the NN classifier is able

to provide a predicted class y for each new observation x,

along with the a posteriori probability for x to be in each

one of the N 5 4 cloud classes. This is a very interesting

feature that can be used to refine the classification results.

The NN is trained to reproduce the behavior de-

scribed by the learning dataset B. Provided that enough

samples (xi, yi) are available, any continuous relationship

as complex as it is can be represented by an MLP

(Hornik et al. 1989; Cybenko 1989). The initial weights of

the NNs are randomly chosen using a uniform distribu-

tion. The method used to perform this training is the

classical back-propagation algorithm (Rumelhart et al.

1986). It is an optimization procedure that is perfectly

adapted to the MLP architecture. It is designed to min-

imize a loss function (i.e., quality criterion), the least

squares differences between the desired and the NN es-

timated outputs. The stopping criterion used to termi-

nate the learning is based on the gradient of the loss

function. The learning procedure uses the following

components:

d a learning dataset to estimate the parameters of the

NN (representing 60% of the original satellite data-

set);
d a generalization dataset (20% of the original dataset)

to estimate the ability of the NN to classify data that

are not present in the learning dataset; the generaliza-

tion errors are used to identify the best NN architec-

ture); and
d a validation dataset (again, representing 20% of the

original dataset) used to obtain reliable error esti-

mates; in section 4, all of the presented statistics will be

estimated with this validation dataset.

The results presented are estimated on the validation

dataset.

c. Uniformization of the learning dataset

A classical difficulty in statistical techniques appears

also in the classification problem. If regimes or classes are

underrepresented in the dataset used to train the classi-

fier, they have a limited incidence on the classifier design

and performance. If the goal of the statistical retrieval is

to perform uniformly well for each of the N classes, the

number of points in each class needs to be uniformized in

the learning dataset. Otherwise, the highly populated

classes will have too much weight and will drive the

classifier. It will predict these classes too often and un-

derestimate the occurrence of the other classes. In this

study, all the of classification training will be performed

with uniformized learning datasets.

4. A cloud classification and mask from MW
observations

In the following sections, the results will be given us-

ing the validation dataset (i.e., data that are not used

during the learning stage or during the NN architecture

optimization). Furthermore, results will be presented on

uniform and nonuniform pixels.
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a. Choosing the classifier model

The three classification methods (section 3) are tested

to reproduce the SEVIRI-derived cloud classification,

using the microwave observations. Since the surface

contribution is large for some of the microwave observa-

tions, land and sea are separated to facilitate the classifi-

cation. The cloud classification over land is first trained

and tested on the entire land dataset. Results are analyzed

over not only all land pixels but also for individual surface

types, as described in section 2d.

The available datasets of section 2 are divided into

a ‘‘learning set’’ to train the classifiers, a ‘‘testing set,’’

and a ‘‘validation set’’ to test the classifiers (see section

3b). Each day of the dataset is randomly chosen to be

part of the learning or the testing set. In this way, the

testing of the algorithms can be undertaken in a partic-

ular day and a map of the results can be obtained. The

division of the three datasets is random for each day.

The confusion matrix is a measure of the classification

error statistics. For an original cloud class, it provides the

percentage of well-classified pixels, together with the

repartition of the misclassified points in the other classes.

A perfect classifier has a diagonal confusion matrix with

100% well-classified statistics, for the clear sky and low-,

medium- and high-cloud classes. The statistics are per-

formed on the datasets described in section 2; that is, the

data have been filtered to take into account only the

homogeneous clear-sky and high, middle, and low

opaque cloud scenes.

Table 4 compares the confusion matrix of the three

classifiers, trained globally over land and ocean sepa-

rately: linear, quadratic, and NN ‘‘global.’’ Snow classes

are suppressed from the analysis. Snow has a very variable

microwave emissivity that is difficult to handle in atmo-

spheric retrievals from microwave observations. In addi-

tion, the use of a geostationary satellite as a reference for

the cloud classification is not ideal for snowy regions, due

to its limited coverage of the high latitudes. Polar orbiters

should be preferred for these specific cases. Furthermore,

some difficulties occur in some regions, for example, in the

central United States and eastern China where snow

pixels are indicated to be present. These misclassified

pixels are related to problems in the NSIDC snow flag that

is used in our classification (section 2d). These difficulties

should be solved in our next version of the surface-type

classifications where only the microwave emissivities will

be used. This work is a first step, but snow-covered regions

could be the subject of a future study.

Regardless of the classification method, clear situa-

tions are easier to identify over ocean than over land,

due to the lack of contrast between the atmospheric and

surface contributions over land. Low-level clouds are

generally more difficult to detect than the higher clouds.

The quadratic classifier performs better than the linear

classifier. The quadratic classifier allows for more com-

plex class frontiers than the linear option. Since linear

classification is a subcase of the quadratic model, linear

results should always be of lower quality than quadratic

ones. The NN classification outperforms both linear and

quadratic classifiers. It is able to represent quadratic

separators so its results should be at least comparable to

the quadratic results. In addition, the highly nonlinear

nature of the NN makes it possible to be ‘‘situation de-

pendent’’: The classifier structure is not the same for very

different conditions. This means that the NN can more

easily adapt itself to different surface conditions. With

the linear and the quadratic models over land, the results

can depend on the surface type (e.g., less than 10% of

well-classified low-level clouds over deserts and more

than 50% over dense forests). With the NN classifiers, the

results are more even for the different land surface types.

Since the NN appears to be the best method, the

classification experiments in the following sections will

be performed using only the NN approach.

It can be noted that even with the NN (global), low

clouds are difficult to identify correctly. This is particu-

larly true over desert (surface type 5), where only 35%

of the initial pixels are correctly classified. Overall, there

is considerable confusion between the clear and the low-

cloud cases. Over a strongly emitting surface, low clouds

that emit at a rather similar temperature do not show any

significant contrast. Sounding channels with weighting

functions peaking rather low are also affected by the

surface contribution and have difficulties when isolating

the low-cloud signal.

To reduce this difficulty, a specialized NN is de-

veloped for each land surface type. A classifier is defined

for each surface type of section 2d. Each observation is

processed either by the general classifier, or by its spe-

cialized classifier (its class is defined using the surface-

type class climatology, so it is determined based on the

location and month of the year). The results of this new

set of classifiers are represented in the last column of

Table 4 (labeled NN by land surf). The rate of well-

classified pixels for the low-cloud class over surface type

5 is increased from 35% to 69%. Surprisingly, some re-

sults are slightly degraded when the NN classifier was

specialized. This degradation can come for various

reasons. One of the reasons is that the classifier is now

dependent on the surface-type classification, which can

be misleading, although the surface information (section

2d) is dynamical and depends on the month of the year,

thus, limiting this problem. The number of points available

for the training of the classifier is reduced, which can be

negative for surface classes that have limited populations
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(the generalization errors are always compared to the

learning errors in order to check if the number of sam-

ples is enough to allow the classifier to learn). The

training of the NN using all points from all of the

surface types can also be more adequate when learn-

ing global sensitivities that can become too subtle

when looking only to one surface type. However, the

overall effect of the specialization of NNs by surface

type is largely positive1 and is adopted in the following

sections.

b. Reducing uncertainty by using the a posteriori
probabilities

The classification techniques tested in this study, in

particular the selected NN approach, can provide esti-

mations of the a posteriori probability of one observa-

tion being in each of the N possible classes: P(y 5 ci/x)

for i 5 1, . . . , N. The class chosen by the classifier is the

most probable class, but these probabilities can also be

used to control the uncertainty of the classification.

When two or more probabilities are comparable, the

situation is ambiguous. To reduce classification ambi-

guities, one can use the classification only when the best

a posteriori probability is higher than a predetermined

threshold (between 1/N and 1). This decrease in un-

certainties improves the accuracy of the classification

but the number of classified points is reduced because

they are too ambiguous.

In Table 5, the confusion matrices are given when no

a posteriori probability filtering is used, and with a poste-

riori thresholds of h 5 0.4 and 0.8. Statistics remain stable

when the threshold is lower than or equal to 0.4. This

means that the classifier usually is able to retrieve a class

with more than 0.4 a posteriori probability. The quality of

the classification statistics improves significantly when

a threshold larger than h 5 0.4 is chosen. The percentage

of well-classified situations (on the diagonal of the con-

fusion matrices) increases by more than 10% when using

a threshold h 5 0.8. From Table 5, it is possible to state

that the classifier can separate quite precisely the ambig-

uous situations from the highly probable ones. Table 5

also provides the number of classified situations, after the

a posteriori probability filtering.

Figure 4 represents, on the left side, the evolution

of the number of situations kept after the a posteriori

filtering, when the threshold h increases, for clear pixels

and low, medium, and high clouds (A, B, C, and D). As

commented upon previously, this number stays relatively

constant for h # 0.4. For higher thresholds, the decrease

is quite linear, which simplifies the choice of the adequate

h. There are some differences between the surface types.

For example, the high-cloud classification is more am-

biguous over ocean than over land, which is contrary to

the case of clear pixels, which are more ambiguous over

land than ocean. Figure 4 also shows on the right side the

evolution of the percentage of well-classified pixels with

an increasing threshold h: For clear and low-, medium-,

and high-cloud pixels (E, F, G, and H). The spread is

more important for low thresholds of h and converges to

higher values when h increases. There is a compromise to

be found between a more precise classification with good

rates of well-classified pixels (larger h) and a large num-

ber of pixels being treated by the classifier (smaller h). No

general rule can be set, and the right compromise de-

pends on the application for which the classification is

being used. In the following, a threshold of h 5 0.4 is

adopted in order to process enough pixels to produce

classification maps for the analysis.

c. Analysis of the resulting classification maps

In Fig. 5, the cloud classifications are tested using

coincident SEVIRI and microwave (i.e., AMSU-A and

AMSU-B) observations on 1 July 2006. This day is not

included in the learning dataset used to train the cloud

classification algorithms (see section 3b). The SEVIRI-

derived four-class classification scheme is shown in Fig.

5a, and the MW-retrieved classification is represented in

Fig. 5b. Note that the first map is not an ‘‘instantaneous’’

map from the SEVIRI observations. It shows the

SEVIRI classification only for the pixels with a space–

time coincidence with the MW observations during the

whole day of 1 July 2006. The maps represent the type of

data that have been included in the learning dataset used

to train the microwave classifier. In particular, the ho-

mogeneity tests in section 2c have been used. Since

SEVIRI has a repeat cycle of 15 min, the temporal co-

incidence with MW observations is kept under 7.5 min.

Some minor differences can be observed with, for ex-

ample, low clouds misclassified by the microwave over

the desert Arabian Peninsula. However, the overall

agreement is good and confirms the good confusion

matrix statistics presented in section 4a.

To investigate the behavior of the MW classifier in

heterogeneous situations (i.e., various cloud types in an

MW field of view), some statistics are performed on

coincident SEVIRI–AMSU observations without the

filtering presented in section 3c. Figure 6 investigates the

SEVIRI cloud classification at 1230 UTC 1 July 2006

(left) together with the AMSU classification (right) for

an orbit that passes over Madagascar at the same time.

The temporal coincidence is not as good as in Fig. 5

where coincidences were kept under 7.5 min. Some

1 This specialization of the land classifiers would be even more

beneficial for the linear and quadratic classifiers (not shown).
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misclassified pixels can be observed in this figure, such as

the presence of low clouds in the Arabic Peninsula al-

ready mentioned. Another difference is observed in

Africa, west of Madagascar, where medium-altitude

clouds do not appear in the microwave classification. It

can be noted in Fig. 5 that no point was located in this

region. It means that these points have been filtered out

by the quality criteria of section 2c; that is, the cloud

classification was too heterogeneous in space. Since the

SEVIRI ensemble of cloud classes inside the AMSU

pixels is ambiguous, the microwave classifier has to in-

tegrate its response spatially. Therefore, low clouds are

found instead of clear sky and medium-altitude clouds.

This problem results from the differences in the hori-

zontal resolutions of the different instruments and can-

not be solved. It should be noted however that even if

middle clouds are misclassified as low, this still repre-

sents a successful cloud detection. This can be of great

use; forthcoming retrieval algorithms may use the clas-

sification to skip these pixels (cloud mask will be pre-

sented in the following section).

In the remainder of this section, the comparative

analysis of the MW and SEVIRI cloud classifications

will consider AMSU classification pixels with an a pos-

teriori threshold quality criteria fixed to 0.4 (see section

4b). The SEVIRI class associated with the AMSU pixel

is the more frequent class among the SEVIRI pixels

falling into the AMSU pixel. If the frequency of this

class fulfills the criteria given in section 2c, the AMSU

pixel is labeled homogeneous otherwise it is labeled

heterogeneous.

Figure 7 gives, for each SEVIRI class over ocean, the

distribution of the MW classes, for the homogeneous

(panel a) and the heterogeneous (panel b) cases. As

expected, over ocean and over land (figure not shown),

the statistics for homogenous cases are in agreement

FIG. 4. (left) Number of classified pixels and (right) percentage of well-classified pixels after a posteriori probability

filtering with an increased threshold. (top to bottom) Statistics are for clear sky and low, medium, and high clouds for

each surface classes (i.e., vegetated, 1–5; with standing water, 10) and for ocean surfaces.
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with the values given in Table 5 considering the 0.4

a posteriori quality test value. Not surprisingly, for het-

erogeneous cases, the agreement between the MW and

SEVIRI classes decreases. However, the well-classified

probabilities remain above 50%. It is important to under-

stand here that this result includes the errors of the MW

classifier; in addition, it includes the spatial dispersion of

the SEVIRI classification inside a bigger MW pixel.

Figure 7 shows that, for both homogeneous and hetero-

geneous cases, partially cloud-covered pixels are mostly

classified as clear by the AMSU classifier. For thick cirrus,

the most frequent AMSU cloud class is high cloud. How-

ever, the thin cirrus clouds are classified as clear by the

MW classifier in more than 70% of the cases, in agreement

FIG. 5. (a) Classification from SEVIRI and (b) retrieved classification from microwave

observations for 1 Jul 2006.
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with the fact that cirrus clouds are transparent for mi-

crowave measurements when their emissivity is small.

Using the results of Fig. 7, a new SEVIRI classification

has been defined to characterize each of the MW classes

(clear, low, middle, and high), the associated SEVIRI

cloud type, or mixing of cloud types. The thin cirrus and

partially covered classes have been reclassified as clear

and the thick cirrus have been kept as high opaque

cloud. Figure 8 shows the distribution of these new

SEVIRI classes in each MW cloud label. Clear sky from

the MW classifier corresponds to SEVIRI clear sky,

partially covered pixels or thin cirrus in more than 80%

of the cases. High clouds are associated with SEVIRI

high clouds and/or thick cirrus in more than 70% of the

cases. For MW low- and midlevel clouds, there is a dif-

ference in behavior between land and ocean. The MW

classifier detects relatively well the low clouds over

ocean. This is not the case over land: the low- and

midlevel cloud MW classifications are frequently cov-

ered by SEVIRI clear and/or broken clouds and/or thin

cirrus. It can also be noted that the frequencies of the

clear-sky and low-, middle-, and high-cloud MW classes

over ocean are in relatively good agreement with the

equivalent distribution in ISCCP stage DX data over the

same region (Sèze et al. 2009). Low clouds are the more

frequent cloud type over ocean. Over land, the frequent

presence of thin cirrus strongly biases the MW high-

cloud frequency toward low values compared to the

high-cloud frequencies observed with a visible and an

infrared radiometer.

Once the MW cloud classification is trained over the

SEVIRI disk observation, it is possible to extend it to the

global coverage of the NOAA-16 platform. If the clas-

sifier has learned the correct relationships between the

MW observations and the cloud classes, then it should

be possible to use these same relationships in different

geographical locations. Figure 9 represents such an ex-

tension for the same day, 1 July 2006. The multiple orbits

are not coincident in time and there are overlapping

orbits, especially at high latitudes. The spatial structures

of the cloud classes are consistent and show overall re-

alistic continuity at the transition between land and

ocean. Other locations are well retrieved by the micro-

wave classification, even if the time differences become

greater. It is expected that the quality of the classifica-

tion is degraded at high latitudes (.508) as it has been

trained over the SEVIRI observation disk, between

2508 and 1508 in latitude, mostly over Africa. To ex-

tend the cloud classification model to higher latitudes,

snow- and ice-covered pixels should be included in the

dataset B.

d. Cloud mask

The classifier defined in this study retrieves four cloud

classes: clear sky and low, medium, and high clouds. This

classifier can also be used as a cloud mask. Two schemes

are compared in this study: 1) the situation is labeled as

clear if the a posteriori probability (see section 3b) to be

clear is the highest and 2) the a posteriori probabilities of

being low, medium, or high cloud are summed and if this

FIG. 6. (a) Classification from SEVIRI and (b) retrieved classification from AMSU-A and -B

over a NOAA-16 orbit at 1230 UTC 1 Jul 2006.
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total is higher than 0.5, then the situation x is classified as

cloudy (or clear in the opposite situation). It is expected

that the second scheme that sums the a posteriori

probabilities of being a low, medium, or high cloud re-

trieves more cloudy situations than the first scheme.

Similar to Fig. 5 where the cloud classifications where

compared, Fig. 10 represents the cloud masks using

coincident SEVIRI–MW observations on 1 July 2006.

Although some differences are noted (i.e., more clouds

over Madagascar and the Arabian Peninsula), the overall

agreement is good, even over land, confirming the sta-

tistical results.

e. Information content analysis of the microwave
observations

All AMSU-A and -B channels have been used so far in

this study to classify the clouds. What are the respective

FIG. 7. Occurrence frequency vs cloud class for (a) homogeneous

and (b) heterogeneous AMSU pixels for the MW cloud class dis-

tribution for each SEVIRI cloud class over ocean. The frequency of

this class in the AMSU pixel set (orange bar) is also indicated.

FIG. 8. SEVIRI cloud class frequency distribution for each MW

cloud class, over (a) ocean and (b) land. The frequency of this class

in the AMSU pixel set is also provided (orange bar).

FIG. 9. Extension of the MW-derived cloud classification over the globe on 1 Jul 2006.
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weights of the different channels in the classification

results? Which microwave information is the most rele-

vant for each cloud type, the window channels, the

temperature, or the water vapor sounding channels?

To answer these questions, we trained the classifica-

tion model for four configurations: using AMSU-A and

-B as before, using only AMSU-A, using only AMSU-B,

or using only the window channels. Window channels are

FIG. 10. (a) Cloud mask from SEVIRI and (b) cloud mask from AMSU-A and -B on

1 Jul 2006.
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here AMSU-A 23.8, 31.4, 50.3, 89, and 150 GHz, and

AMSU-B channels 89 and 183 GHz. The interested

reader can also test all minus one channel to truly mea-

sure the information content of each channel. A very

interesting test would also consist of using four mutually

exclusive subgroups—1) AMSU-A low-frequency win-

dow channels (excluding 89 GHz), 2) AMSU-A tem-

perature sounding channels, 3) AMSU-B high-frequency

window channels, and (4) AMSU-B water vapor sounding

channels—because the window and sounding channels

from the two instruments respond to different atmospheric

and/or surface signals. This will be the subject of a future

study.

Table 6 compares the confusion matrices for these

four configurations, for ocean and land separately. There

is still one specialized classifier for each surface type but

the statistics are given for all the land pixels to simplify

the presentation of the results. AMSU-A and -B to-

gether provide better statistics than most of these ob-

servations. An exception is the better retrieval of clear

cases over the ocean using only the window channels.

However, it should be noted that when comparing two

classifier, it is misleading to look at the detection level of

only one class, without analyzing what happens to the

other classes.2 Overall, the methodology capitalizes on

the synergy between the two instruments. Over ocean,

window channels play a key role in the discrimination of

the clear cases and in the determination of low cloud

cover. For medium and high clouds, the information

comes mostly from AMSU-B, regardless of the surface.

This could be expected from our sensitivity analysis

(section 2e). Over land, clear cases are better isolated by

high-frequency observations (AMSU-B). AMSU-A, es-

pecially over land, does not provide as much information

as AMSU-B, except for a better retrieval of low cloud

cases3; over ocean it does exceed the potential of AMSU-B

for discriminating between clear cases and low clouds,

but only with a limited margin.

5. Conclusions

A statistical cloud classification and a cloud mask have

been developed based on AMSU-A and -B observations.

The visible and infrared data from MSG-SEVIRI have

been used to train the microwave classifier. Clear sky and

low, medium, and high clouds can be retrieved over

ocean and land at more than an 80% confidence level,

using a neural network classification method when ap-

plied to relatively homogeneous cloud pixels. These re-

sults are very encouraging. Thin clouds have been

suppressed from the study and microwave observations

are not sensitive to this type of clouds (there is no need to

retrieve this type of cloud information here since the

forthcoming MW retrieval of surface or atmospheric

TABLE 6. Cloud classification confusion matrices for the neural network over land and ocean when using AMSU-A plus AMSU-B

observations, AMSU-A only, AMSU-B only, and window channels only. These statistics are performed on relatively homogeneous pixels

(see section 2c). Boldface signify the diagonal line of the confusion matrices.

Land Ocean

Inputs % Clear Low Medium High Clear Low Medium High

AMSU-A plus

AMSU-B

Clear 81.87 14.53 3.06 0.53 87.99 7.46 2.61 1.94

Low 13.31 73.67 12.23 0.79 9.93 79.91 9.54 0.62

Medium 3.15 10.09 80.71 6.05 1.70 9.48 77.56 11.26

High 3.02 7.62 7.62 86.94 2.12 2.69 11.13 84.07

AMSU-A Clear 68.95 15.38 11.14 4.53 80.95 10.71 2.88 5.45

Low 14.19 69.40 15.24 1.18 12.44 72.35 10.92 4.29

Medium 9.97 16.83 63.64 9.56 4.94 11.67 60.25 23.14

High 8.29 7.19 15.77 68.75 7.74 6.48 22.97 62.81

AMSU-B Clear 74.93 21.55 2.65 0.87 77.94 16.40 2.85 2.81

Low 21.73 58.43 18.42 1.42 20.14 66.99 11.43 1.44

Medium 2.48 15.51 74.58 7.43 3.34 11.11 70.92 14.63

High 3.56 3.90 9.85 82.69 3.15 2.62 12.80 81.44
Window

channels

Clear 73.44 20.35 5.42 0.79 89.41 6.57 1.73 2.28

Low 19.45 65.66 14.59 0.30 11.17 76.91 10.12 1.80

Medium 5.77 13.30 73.83 7.09 3.35 14.23 65.78 16.64

High 4.04 4.48 22.32 69.16 4.90 4.51 27.57 63.02
No. of pixels 1 474 280 80 606 45 998 85 022 724 979 528 995 47 128 114 020

2 An extreme case would be a classifier that will always predict

one class; its level of retrieval of this particular class would be

100%, but the level of prediction of the other classes would be 0%.

3 This statement needs to be balanced as low cloud cases are

favored to the detriment of the retrieval of other cloud cases.
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parameters is not sensitive to this type of clouds), but the

microwave characterization of thicker clouds seems to be

possible. The microwave observations have a coarser

horizontal resolution than do those from SEVIRI, and

this explains part of the discrepancy. When the cloud

classification from SEVIRI is heterogeneous inside the

bigger MW pixel, the results are degraded, but these er-

rors are related not only to the misclassification but also

to the spatial variability inside the MW pixels. It has been

shown that using the a posteriori probabilities estimated

by the classifier reduces the ambiguities in the classifi-

cation, but limits the number of scenes to be processed.

As could be expected, the major difficulty is the classi-

fication of thin cirrus and partially cloud-covered pixels.

They are labeled by the MW classifier as clear but also low

and midlevel cloud, especially over land. The low clouds

are difficult to isolate, especially over land, because of the

contamination of the information by the surface contri-

bution. AMSU-B provides significant information over

both land and ocean, especially for the classification of

medium and high clouds, whereas AMSU-A is more ef-

ficient over ocean when discriminating between clear sit-

uations and low clouds.

In the retrieval of atmospheric and surface parameters

from microwave observations, an initial important step is

often the cloud detection, to avoid any retrieval in cloudy

areas because of their contaminating effects or to adapt the

retrieval methodology to the presence of clouds. In oper-

ational numerical weather prediction centers, external

cloud flags from visible and/or infrared sources are not used

for the assimilation of microwave observations. In this

study, a stand-alone microwave cloud classifier has been

developed. It provides reliable results and could be easily

adapted to the particular application under study. The

microwave classifier cannot reach the level of precision or

detail of the SEVIRI-based algorithm, in particular for

complex cloud scenes such as partially cloud-covered pixels

or multilayer clouds. The important point is that if the

microwave observations are not sensitive enough to the

detailed cloud characteristics, then it is not worth taking it

into account in the cloud classifier because this cloud in-

formation has less impact on the satellite measurements,

with a reduced corruption of the retrievals.

This microwave cloud classification can be applied

globally. The SEVIRI cloud classification algorithm of

the NWPSAF (section 2a) is being adapted to other

geostationary satellites to obtain global coverage. Since

the other visible and infrared instruments on board geo-

stationary satellites have fewer channels than SEVIRI,

they cannot offer the same precision in the cloud clas-

sification. The microwave global cloud classification

derived from SEVIRI could help evaluate the other

geostationary algorithms (even if other VIS–IR cloud

classification channels on board polar-orbiting satellites

would be a better choice). The confusion matrices

should be similar for all geostationary satellites, thus

using the microwave classification as a diagnostic tool.

The cloud classification defined in this study can be

used to perform MW retrievals of temperature and

water vapor over the clouds. Another possibility would

be to use the infrared and MW synergy. Since both

spectral domains have a cloud information content (e.g.,

the microwave observations can be used to estimate the

cloud liquid water path), using both of them simulta-

neously would greatly improve cloud characterization.

Such a synergetic approach was used for example in

Minnis et al. (2007) for ice cloud properties in ice-over-

water cloud systems.
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