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Abstract. This paper presents a new contextual bandit algorithm, NeuralBandit,
which does not need hypothesis on stationarity of contexts and rewards. Several
neural networks are trained to modelize the value of rewards knowing the context.
Two variants, based on multi-experts approach, are proposed to choose online the
parameters of multi-layer perceptrons. The proposed algorithms are successfully
tested on a large dataset with and without stationarity of rewards.

1 Introduction

In online decision problems such as online advertising or marketing optimization, a
decision algorithm must select amoung several actions. Each of these options is asso-
ciated with side information (profile or context) and the reward feedback is limited to
the chosen option. For example, in online advertising, a visitor queries a web page; a
request with the context (web page address, cookies, customer profile, etc.) is send to
the server; the server sends an ad which is displayed on the page. If the visitor clicks on
the ad the server receives a reward. The server must trade-off between the explorations
of new ads and the exploitation of known ads. Moreover, in an actual applications, both
rewards and data distributions can change with time. For instance, the display of a new
ad can change the probability of clicks of all ads, the content of a web page can change
over time. Robustness to non-stationarity is thus strongly recommended.

2 Previous work

The multi-armed bandit problem is a model of exploration and exploitation where one
player gets to pick within a finite set of decisions the one which maximizes the cumu-
lated reward. This problem has been extensively studied. Optimal solutions have been
provided using a stochastic formulation [1,2], a Bayesian formulation [3,4], or using
an adversarial formulation [5,6]. Variants of the initial problem were introduced due
to practical constraints (appearance of a new advertisment after the beginning of learn-
ing [7,8], fixed number of contractual page views [9,10]). However these approaches
do not take into account the context while the arm’s performance may be correlated
therewith.

A naive solution to the contextual bandit problem is to allocate one bandit problem
for each context. A tree structured bandit such as X-armed bandits [11] or a UCT vari-
ant [12] can be used to explore and exploit a tree structure of contextual variables to
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find the leaves which provide the highest rewards [13]. The combinatorial aspect of
these approaches limits their use to small context size. Seldin et al [14] modelize the
contexts by state sets, which are associated with bandit problems. Without prior knowl-
edge of the contexts, it is necessary to use a state per context, which is equivalent to
the naive approach. Dudı́k et al [15] propose an algorithm of policies elimination. The
performance of this algorithm depends on the presence of a good policy in the set. The
epoch-greedy algorithm [16] alternates exploration then exploitation. During explo-
ration, the arms to play are randomly drawn to collect an unbiased training set. Then,
this set is used to train a classifier which will be used for exploitation during the next
cycle. The nature of the classifier remains to be defined for concrete use. In LINUCB
[17,18] and in Contextual Thompson Sampling (CTS) [19], the authors assume a linear
dependency between the expected reward of an action and its context and model the rep-
resentation space using a set of linear predictors. Banditron [20] uses a perceptron per
action to recognize rewarded contexts. Furthermore, these algorithms assume that the
data and the rewards are drawn from stationary distribution, which limits their practical
use. The EXP4 algorithm [6] selects the best arm from N experts advices (probability
vectors). Exploring the link between the rewards of each arm and the context is dele-
gated to experts. Unlike the previous algorithms, the rewards are assumed to be chosen
in advance by an adversary. Thus, this algorithm can be applied to non-stationnary data.

At first we will formalize the contextual bandit problem and will propose a first
algorithm: NeuralBandit1. Inspired by Banditron [20] it estimates the probabilities of
rewards by using neural networks in order to be free of the hypothesis of linear separa-
bility of the data. Neural networks are universal approximators [21]. They are used in
reinforcement learning [22,23] and can estimate accurately the probabilities of rewards
within actual and complex problems. In addition, the stochastic gradient achieves good
performances in terms of convergence to the point of best generalization [24] and has
the advantage of learning online. In seeking to reach a local minimum, the stochastic
gradient can deal with non-stationarity. This will result in a change of the cost func-
tion landscape over the time. If this landscape changes at a reasonable speed, the al-
gorithm will continue the descent to a new local minimum. The main issue raised by
the use of multilayer perceptrons remains the online setting of various parameters such
as the number of hidden neurons, the value of the learning step or the initalization of
the weight seed. We propose two advanced versions of the algorithm NeuralBandit1 to
adjust these settings using adversarial bandits that seek, among several models initial-
ized with different parameters, the best one. We conclude by comparing these different
approaches to the state-of-the-art on stationnary and on non-stationnary data.

3 Our algorithm: NeuralBandit1

Definition 1 (Contextual bandit). Let xt ∈ X be a contextual vector and (yt,1, ..., yt,K)
a vector of rewards associated with the arm k ∈ [K] = {1, ...,K} and ((x1, y1), ..., (xT , yT ))
the sequence of contexts and rewards. The sequence can be drawn from a stochastic
process or chosen in advance by an adversary. At each round t < T , the context xt is
announced. The player, who aims to maximize his cumulated rewards, chooses an arm
kt. The reward yt,k of the played arm, and only this one, is revealed.



Definition 2 (Cumulated regret). Let H : X → [K] be a set of hypothesis , ht ∈ H
a hypothesis computed by the algorithm A at the round t and h∗t = argmax

ht∈H
yt,ht(xt)

the optimal hypothesis at the same round. The cumulated regret is:

R(A) =

T∑
t=1

yt,h∗
t (xt) − yt,ht(xt)

The purpose of a contextual bandit algorithm is to minimize the cumulative regret.

Each action k is associated with a neural network with one hidden layer which learns
the probability of reward for an action knowing its context. We choose this modelization
rather than one neural network with as many outputs as actions to be able to add or
remove actions easier.

LetK be the number of actions, C the number of neurons of each hidden layers and
Nk
t : X → Y the function associating a context xt to the output of the neural network

corresponding to the action k at the round t. N denotes the number of connections of
each network with N = dim(X)C + C. To simplify the notations, we place the set of
connections in the matrix Wt of size K ×N . Thus, each row of the matrix Wt contains
the weight of a network. ∆t is the matrix of size K ×N containing the update of each
weight between rounds t and t+ 1. The update equation is:

Wt+1 =Wt +∆t

The backpropagation algorithm [25] allows calculating the gradient of the error for
each neuron from the last to the first layer by minimizing a cost function. Here, we use
the quadratic error function and a sigmoid activation function.

Let λ be the learning step, x̂n,kt the input associated with the connection n in the
network k, δn,kt the gradient of the cost function at round t for the neuron having as
input the connection n in the network k and ∆n,k

t the value corresponding to the index
(n, k) of the matrix ∆t. When the reward of an arm is known, we can compute:

∆n,k
t = λx̂n,kt δn,kt

In the case of partial information, only the reward of the arm kt is available. To
learn the best action to play, an approach consists of a first exploration phase, where
each action is played the same number of times in order to train a model, and then
an exploitation phase where the obtained model is used. Thus, the estimator would
not be biased on the most played action. However, this approach would have abysmal
performances in case of non-stationary data. We choose to use an exploration factor
γ, constant over time, allowing continuing the update of the model in the case of non-
stationary data. The probability of playing the action k at round t knowing that k̂t is the
arm with the highest reward prediction is:

Pt(k) = (1− γ)1[k = k̂t] +
γ

K

We propose a new update rule taking into account the exploration factor:



Wt+1 =Wt + ∆̃t , (1)

with ∆̃n,k
t =

λx̂n,kt δn,kt 1[k̂t = k]

Pt(k)

Theorem 1. The expected value of ∆̃n,k
t is ∆n,k

t .

The proof is straightforward:

E[∆̃n,k
t ] =

∑K
k=1 Pt(k)(

λx̂n,k
t δn,k

t 1[k̂t=k]
Pt(k)

)

= λx̂n,kt δn,kt
= ∆n,k

t

ut
The proposed algorithm, NeuralBandit1, can adapt to non-stationarity by continuing

to learn over time, while achieving the same expected result (in the case of stationary
data) as a model trained in a first phase of exploration.

Algorithm 1: NeuralBandit1
Data: γ ∈ [0, 0.5] et λ ∈]0, 1]
begin

Initialize W1 ∈]− 0.5, 0.5[N×K

for t = 1, 2, ..., T do
Context xt is revealed
k̂t = arg max

k∈[K]

Nk
t (xt)

∀k ∈ [K] on a Pt(k) = (1− γ)1[k = k̂t] +
γ
K

k̃t is drawn from Pt

k̃t is predicted and yt,k̃t is revealed

Compute ∆̃t such as ∆̃n,k
t =

λx̂
n,k
t δ

n,k
t 1[kt=k]

Pt(k)

Wt+1 =Wt + ∆̃t

4 Models selection with adversarial bandit

Performances of neural networks are influenced by several parameters such as the
learning step, the number of hidden layers, their size, and the initalization of weights.
The multi-layer perceptron corresponding to a set of parameters is called model. Using
batch learning, the models selection is done with a validation set. Using online learning,
we propose to train the models in parallel and to use the adversarial bandit algorithm
EXP3 [5,6] to choose the best model. The choice of an adversarial bandit algorithm
is justified by the fact that the performance of each model changes overtime due to the
learning itself or due to the non-stationarity of the data.



Exp3 Let γmodel ∈ [0, 1] be an exploration parameter, wt = (w1
t , ..., w

M
t ) a weight

vector, where each of its coordinate is initialized to 1, and M the number of models.
Let m be the model chosen at time t, and yt,m be the obtained reward. The probability
to choose m at round t is:

Pmodelt(m) = (1− γmodel)
wmt∑M
i=1 w

i
t

+
γmodel

M
(2)

The weight update equation is:

wit+1 = witexp
(
γmodel1[i = m]yt,m

Pmodelt(i)M

)
(3)

NeuralBandit2 (see Algorithm 2) If we consider that a model is an arm, a run of
this model can be considered as a sequence of rewards. The algorithm takes as inputs
a list of M models and a model exploration parameter γmodel. For each element of the
list, one NeuralBandit1 instance is initialized. Each instance corresponds to an arm.
EXP3 algorithm is used to choose the arms over time. After receiving a reward, each
neural network corresponding to the played arm is updated, and the weights of EXP3
are updated.

NeuralBandit3 (see Algorithm 3) The use of the algorithm NeuralBandit2 corre-
sponds to the assumption that there is a model NeuralBandit1 which is the best for
all actions. The algorithm NeuralBandit3 lifts this limitation by associating one EXP3
per action.

NeuralBandit3 has greater capacity of expression than NeuralBandit2 as each action
can be associated with different models. However if the best model in NeuralBandit3
exists in NeuralBandit2, then NeuralBandit2 should find this model faster than Neural-
Bandit3 because it has only one instance of EXP3 with less possibility to update.

5 Experiments

The Forest Cover Type dataset from the UCI Machine Learning Repository is used. It
contains 581.000 instances and it is shuffled. We have recoded each continuous variable
using equal frequencies into five binary variables and we have recoded each categorical
variable into binary variables. We have obtained 94 binary variables for the context, and
we have used the 7 target classes as the set of actions. In order to simulate a datastream,
the dataset is played in loop. At each round, if the algorithm chooses the right class the
reward is 1 or else 0. The cumulated regret is computed from the rewards of an offline
algorithm fitting the data with 93% of classification. The plot of the curves (Figure 1)
are produced by averaging 10 runs of each algorithms with γ = 0.005, γmodel = 0.1.
Each run began at a random position in the dataset. The parameters of each model
(NeuralBandit1) are the combination of different sizes of hidden layer (1, 5, 25, 50, 100)
and different values of λ (0.01, 0.1, 1).



Algorithm 2: NeuralBandit2
Data: γmodel ∈ [0, 0.5] and a list of M models parameters
begin

Initialize M NeuralBandit1 ;
Initialize the EXP3 weight vector w0 with ∀m ∈ [M ] wm0 = 1;
for t = 1, 2, ..., T do

Context xt is revealed;
mt is drawn from Pmodelt (2);
The model mt choose action k̃t;
k̃t is predicted and yt,k̃t is revealed;
Update of each network corresponding to the action k̃t for each model with (1);
Update of the EXP3 weight vector wt with (3);

Algorithm 3: NeuralBandit3
Data: γ ∈ [0, 0.5], γmodel ∈ [0, 0.5]and a list of M model parameters
begin

Initialize K neural networks per model m ;
Initialize K instance of EXP3;
for t = 1, 2, ..., T do

Context xt is revealed;
for k = 1, 2, ...,K do

mk
t is drawn from Pmodelkt

(2);

Action k is scored skt = N
mk

t ,k
t (xt);

k̂t = arg max
k∈[K]

skt ;

∀k ∈ [K] on a Pt(k) = (1− γ)1[k = k̂t] +
γ
K

;
k̃t is drawn from Pt;
k̃t is predicted and yt,k̃t is revealed;
Update of each network corresponding to the action k̃t for each model with (1);
Update of each EXP3 weight vectors with (3);

On stationary data (left part of Figure 1) Banditron achieves a high cumulated regret
(57% of classification computed on the 100.000 last predictions) and is outperformed
by all other contextual bandit algorithms on this dataset. The cumulated regret and
classification rate of LinUCB (72%), CTS (73%) and NeuralBandit3 (73%) are similar
and their curves tend to be the same. NeuralBandit2 has the fastest convergence rate
and achieves a smaller cumulated regret with 76% of classification.

On non-stationary data (right part of Figure 1) Non-stationarity is simulated by
swapping classes with a circular cycle (1 → 2, 2 → 3 ,...,7 → 1) every 500.000 itera-
tions. At each concept drift, curves increase then stabilize. On stationary data LinUCB
and CTS achieve a lowest regret than Banditron but can’t deal with non-stationarity thus
are outperformed by it after the first drift. Banditron converges again near instantanly.



Models selection algorithms need between 75.000 and 350.000 in the worst case to sta-
bilize at each drift. NeuralBandit2 and NeuralBandit3 are more complex models than
Banditron but achieve better performances on this non-stationary datastream. Neural-
Bandit3 seem to be more robust to nonstationarity than NeuralBandit2 on this dataset.
This can be explained by the fact that sometime, one neural network can stay on a bad
local minimum. If this append in NeuralBandit2, the entire model is penalized while in
NeuralBandit3 the algorithm can still use all the other networks.

Fig. 1: The cumulated regret of different contextual bandit algorithms over time on For-
est Cover Type. The left part is on a stationary datastream and the right part on a non-
stationary datastream.

6 Conclusion

We introduced a new contextual bandit algorithm NeuralBandit1. Two variants with
models selection NeuralBandit2 and NeuralBandit3 used an adversarial bandit algo-
rithm to find the best parameters of neural networks. We confronted them to stationary
and non-stationary datastream. They achieve a smaller cumulated regret than Banditron,
LinUCB and CTS. This approach is successful and has the advantage of being trivially
parallelizable. Models differentiation show a significant gain on the Forest Covert Type
dataset with nonstationarity. We also showed empirically that our two models selection
algorithms are robust to concept drift. These experimental results suggest that neural
networks are serious candidates for addressing the issue of contextual bandit. However,
they are freed from the constraint of linearity at the expense of the bound on the regret,
the cost function being not convex.
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