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Abstract—Remote sensing hyperspectral images (HSI) are
quite often low rank, in the sense that the data belong to
a low dimensional subspace/manifold. This has been recently
exploited for the fusion of low spatial resolution HSI with high
spatial resolution multispectral images (MSI) in order to obtain
super-resolution HSI. Most approaches adopt an unmixing or
a matrix factorization perspective. The derived methods have
led to state-of-the-art results when the spectral information
lies in a low dimensional subspace/manifold. However, if the
subspace/manifold dimensionality spanned by the complete data
set is large, i.e., larger than the number of multispectral bands,
the performance of these methods decrease mainly because the
underlying sparse regression problem is severely ill-posed. In this
paper, we propose a local approach to cope with this difficulty.
Fundamentally, we exploit the fact that real world HSI are
locally low rank, that is, pixels acquired from a given spatial
neighborhood span a very low dimensional subspace/manifold,
i.e., lower or equal than the number of multispectral bands.
Thus, we propose to partition the image into patches and solve
the data fusion problem independently for each patch. This
way, in each patch the subspace/manifold dimensionality is low
enough such that the problem is not ill-posed anymore. We
propose two alternative approaches to define the hyperspectral
super-resolution via local dictionary learning using endmember
induction algorithms (HSR-LDL-EIA). We also explore two
alternatives to define the local regions, using sliding windows
and binary partition trees. The effectiveness of the proposed
approaches is illustrated with synthetic and semi real data.

Index Terms—Hyperspectral imagery, multispectral imagery,
super-resolution, data fusion, dictionary learning, spectral un-
mixing, binary partition tree.

I. INTRODUCTION

IN recent years, there has been a huge improvement on
the spectral and spatial resolutions in the design of remote

sensing sensors. However, it is not possible to acquire im-
ages with relatively high spectral and high spatial resolution
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simultaneously. This is due, on one hand, to the system trade-
off related to data volume and signal-to-noise ratio (SNR)
limitations and, on the other hand, to the specific requirements
of different applications [1]. Consequently, there is a need for
super-resolution techniques that fuse high spectral resolution
images, such as hyperspectral images (HSI), with high spatial
resolution images, such as multispectral images (MSI) or
panchromatic images, in order to obtain high spectral and
spatial (super) resolution images.

Recently, some techniques dedicated to the fusion of HSIs
and MSIs have been proposed. A general trend is to associate
this problem with either linear spectral unmixing [2], which
assumes that the underlying data can be described by a mixture
of a relatively small number of “pure” spectral signatures
corresponding to the materials present in the scene, inferred
by any of the multiple endmembers induction algorithms
(EIA) available on the literature [3], or with the learning
of a spectral dictionary that codifies the information present
on the images. Since both HSIs and MSIs capture the same
scene, the underlying materials (the so-called endmembers) or
the dictionaries should be the same. Therefore, the spectral
information extracted from one of the images should also
be able to explain the other one. Due to the high spectral
resolution of the HSIs, the endmembers or the dictionary are
extracted from these data, and are then used to reconstruct
the MSI. Since MSIs have high spatial resolution, the code
of the dictionary or the spatial fractional abundances for
an endmembers approach provide the high spatial resolution
information to reconstruct the super-resolution HSI.

A. Related work

Zurita et al. [4], introduced one of the first unmixing-based
approaches to the fusion of remote sensing multiband images.
A related approach is proposed in [5], where a very high-
resolution hyperspectral image is estimated from a lower-
resolution hyperspectral image and a high-resolution RGB
image. The method starts by identifying an unmixing matrix
used to represent the hyperspectral spectra and then uses
this matrix in conjunction with the RGB input to compute,
via sparse regression, representation coefficients for the high-
resolution hyperspectral image. This methodology can be
viewed as a factorization of the input into a mixing matrix
and a set of maximally sparse coefficients. An approach with
similar flavour is proposed in [6]. The main difference is that
the mixing matrix is replaced by a dictionary learnt using a
non-negative matrix factorization with sparsity regularization
on the code. In [7], the hyperspectral data is unmixed via the
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K-SVD algorithm, and the multispsectral data is reconstructed
using orthogonal matching pursuit to induce sparsity. The
authors in [1] proposed a method where two dictionaries
were learnt from the two different datasets and, then, used
a dictionary-pair learning method to establish the correspon-
dence between them. A similar and older technique introduced
in [8] alternately unmixes both sources of data to find the
signatures and the abundances of the endmembers.

The main limitation of these dictionary approaches comes
from the difficulties of estimating the code from the MSI.
Since the number of multispectral bands is usually lower
than the number of entries in the dictionary or the number
of induced endmembers, solving the undetermined system of
equations is an ill-posed problem. This issue opens the door to
all sort of sparse regression techniques, many of them recently
introduced in compressive sensing applications [9]. Neverthe-
less, there is still a difficulty: in hyperspectral applications,
the columns of the dictionary or the spectral signatures of the
endmembers tend to be highly correlated, implying that their
mutual coherence is close to 1. This makes the undetermined
system of equations ill-posed even when the codes/fractional
abundances are sparse [3], [10].

Moreover, the spectral responses of both the hyperspectral
and the multispectral sensors are often assumed to be known a
priori (see [8], [11]–[13], for example). However, estimating
this response directly from the data can be advantageous due
to a number of reasons. The information made available by
the manufacturers can be incomplete or hard to precisely
adapt to the problem under analysis. Additionally, atmospheric
conditions, post-processing artefacts, and even the variability
within the observed scene can cause a mismatch between the
real spectral response and the data supplied by the manufactur-
ers [14]. Some works have addressed this question directly. For
example, Yokoya et al. [15] have estimated the relative spectral
response between the Hyperion (HSIs) and ASTER (MSIs)
sensors, which are aboard two different satellites. Recently, the
authors of [16] introduced a method to estimate the spectral
responses by formulating a convex problem.

B. Contribution

In real-world HSI, it is very likely that in a small spatial
neighbourhood the number of different materials is small, i.e.,
these images are locally low rank. We take advantage of this
property to propose two HSI super-resolution methodologies
by local dictionary learning using endmember induction al-
gorithms (HSR-LDL-EIA). The first one, termed HSR-LDL-
EIA(I), is a straightforward adaptation of the state-of-the-
art HSR by global dictionary learning using an endmember
induction algorithm approach (HSR-GDL-EIA) [5], where the
dictionaries are learnt by estimating a set of endmembers
from patches of the observed hyperspectral image. The second
proposed local method, termed HSR-LDL-EIA(II), extracts the
dictionaries from patches of a spatially upscaled and spectrally
downscaled version of the observed hyperspectral image.

In order to define the set of patches of the image such that
the set of pixels with indices in each patch span a subspace
of lower dimensionality than that of the whole image, we
propose two approaches: one using a square sliding window

of fixed size and a second one using a binary partition tree
(BPT) representation. Sliding windows have been broadly
employed in the local processing of images, while the BPT
representation [17], [18] has recently proved itself to be
meaningful for the partitioning of hyperspectral images using
spectral unmixing information [19].

We show, through experiments using synthetic and real
datasets, that the proposed local approaches outperform the
baseline global approach when the HSI and MSI are locally
low rank. We also explore the impact of using an estimation of
the spectral response instead of using the sensor specifications,
to validate the proposed approaches when the spectral response
is unknown or unreliable.

C. Outline

The remainder of the paper is organized as follows: in
Sec. II, the super-resolution problem is formulated and we
overview the state-of-the-art HSR-GDL-EIA approach. In
Sec. III, the proposed HSR-LDL-EIA methodologies are intro-
duced. In Sec. IV, the patches definition by sliding windows
and a BPT representation are explained. The use of spectral re-
sponse estimators is given in Sec. V. Finally, the experimental
methodology and the results are provided in Sec. VI and VII,
respectively. Sec. VIII gives some conclusion remarks.

II. PROBLEM FORMULATION

Let X ∈ Rnh×n denote a HSI with nh spectral bands
(rows of X) and n = nx × ny pixels (columns of X). We
may interpret X either as a collection of nh 2D images
(or bands) of size nx × ny , each one associated to a given
wavelength interval, or as a collection of n spectral vectors
of size nh, each one associated with a given pixel. In this
work, we are concerned with the estimation of X, which we
term the original HSI, from two degraded observations of X:
a) a low spatial resolution HSI, Yh ∈ Rnh×(n/d2), where
d > 1 denotes a spatial downsampling factor, and b) a MSI,
Ym ∈ Rnm×n, where nm � nh. We assume that Yh is
generated as

Yh = XBM + Nh, (1)

where B ∈ Rn×n is a matrix modelling band independent
sensor blur, M ∈ Rn×(n/d2) is a masking matrix accounting
for spatial downsampling of size d on both spatial dimensions,
and Nh is an additive perturbation. Concerning the MSI, Ym,
we assume the generation model

Ym = RX + Nm, (2)

where the matrix R ∈ Rnm×nh holds in its columns the nh
spectral responses of the multispectral sensor, and Nm is an
additive perturbation.

Let us suppose that it is possible to learn a dictionary D ∈
Rnh×nd from the observed hyperspectral image Yh, and that
the columns X, denoted by xi, for i ∈ S = {1, . . . , n}, may be
sparsely represented as linear combinations of the columns of
D. That is, given xi, i ∈ S, there is a sparse vector αi ∈ Rnd
(i.e., only a few components of αi are non-zero) such that:

xi = Dαi. (3)
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By introducing (3) into (2), we obtain:

Ym = RDA + Nm, (4)

where A ≡ [α1, . . . ,αn], is often termed as code in dictionary
learning and sparse regression applications. If equation (4)
can be solved with respect to A, then we may plug its
solution into (3) and thereby obtain an estimate of X. This
methodology does not need to estimate the spatial blur, as
far as it is constant across bands. This reasoning led to the
conventional dictionary-based methodology for hyperspectral
super-resolution [5]. Given the observed hyperspectral image,
Yh, the first step is to learn the dictionary, D, from it. Then,
the dictionary is projected onto the multispectral domain by a
spectral response, R. The projected dictionary, RD, is used to
estimate the code Â from the observed multispectral image,
Ym. Finally, the dictionary and the code are combined to re-
construct the hyperspectral super-resolution image, X̂ = DÂ.

The success of a dictionary-based approach depends fun-
damentally on the ability to solve (4) with respect to A.
The difficulty in solving this system comes from the fact
that the system matrix RD ∈ Rnm×nd is often fat, i.e.,
nm < nd, yielding an undetermined system of equations.
A typical multispectral sensor has less than 10 bands, quite
often 4 in the wavelength interval [0.4, 2.5] microns where
most hyperspectral sensors operate. The number of entries in
a typical dictionary, nd, is often of the order of a few tens.
Eq. (2) is ill-posed when nm < nd, but it may be solved by
exploiting the sparsity of the codes αi, for i ∈ S. Nevertheless,
in hyperspectral applications, the columns of D tend to be
highly correlated, implying that the mutual coherence between
the columns of RD is close to 1. This makes (2) ill-posed even
when codes αi, for i ∈ S, are sparse [3], [10].

A. HSI Super Resolution via Global Dictionary Learning
using Endmember Induction Algorithms (HSR-GDL-EIA)

A particular implementation of the general dictionary-based
methodology is the one in which the dictionaries are defined
as the set of endmembers induced from the image by some
EIA, hereafter referred to as HSI super resolution via global
dictionary learning using EIAs (HSR-GDL-EIA). Fig. 1 shows
the pseudo-code of the HSR-GDL-EIA algorithm. This algo-
rithm takes as inputs an observed hyperspectral image, Yh, an
observed multispectral image, Ym, the spectral response, R,
and the number of entries in the dictionary, nd. The dictionary,
D, is defined as a set of nd endmembers induced from Yh

by means of an EIA. Then, the code, A, is estimated by the
spectral unmixing of the multispectral image, Ym:

Â := arg min
A≥0
‖Ym −RDA‖2F , (5)

where the inequality A ≥ 0 is to be understood in the
component-wise sense, and ‖·‖F denotes the Frobenius norm.
The constraint A ≥ 0 in (5) is used because, in the linear
mixing model, the codes A represent abundances of materials
which are necessarily non-negative [20]. It is possible to
add the abundances sum-to-one constraint, AT1Tnd = 1n,
but this constraint is usually dropped due to possible scale
model mismatches [3]. We remark that, since our observations

Algorithm HSR-GDL-EIA
Input:
1. Yh, Ym, R, nd
2. D := EIA(Yh, nd)
3. Â := arg minA≥0 ‖Ym −RDA‖2F
4. X̂ := DÂ

Fig. 1. Pseudo-code of the HSI Super Resolution algorithm via Global
Dictionary Learning using Endmember Induction Algorithms (HSR-GDL-
EIA).

are spectral vectors and, thus, non-negative (apart from the
noise contribution), the non-negativity constraint in (5) is
equivalent to a form of constrained `1 regularization and,
therefore, to some kind of sparsity enforcement (see [21] for
details). Finally, the super-resolution HSI is estimated by the
linear combination of the induced set of endmembers and the
estimated fractional abundances.

III. HSI SUPER-RESOLUTION VIA LOCAL DICTIONARY
LEARNING USING ENDMEMBER INDUCTION ALGORITHMS

(HSR-LDL-EIA)

Here, we introduce two HSI super-resolution via local
dictionary learning using EIAs (HSR-LDL-EIA) techniques
conceived to cope with the ill-posedness with origin in the
matrix system RD. The main idea, in the vein of the local
approaches to image restoration, is to decompose the HSI and
MSI into patches and build patch-dependent dictionaries such
that nm ≥ nd in each patch, implying that the image is locally
low rank. Thereby, solving the inverse problem (4) in each
patch is well-posed. The way to actually define the patches
will be presented in Section IV.

A. HSR-LDL-EIA (I)

The first proposed local technique, termed as HSR-LDL-
EIA (I), is a straightforward adaptation of the global approach
introduced in Section II-A to work with patches defined from
the HSI. Let us define a set of patches, Pj , j ∈ {1, . . . , P},
obtained from the observed HSI, Yh. The set of pixels with
indices in each patch, Yh,Pj , hereby denoted as Yh,j with a
little abuse of notation, spans a subspace of lower dimension-
ality than that of Yh. For each patch, Pj , we identify a low
rank dictionary, Dj , from the set of hyperspectral pixels, Yh,j ,
indicated by Pj . Then, the low rank dictionary identified for
the patch is used to estimate the patch code, Âj , from the set
of multispectral pixels, Ym,j , indicated by Pj . The dictionary
and the code are linearly combined to obtain the HSI super-
resolution patch, X̂j . Hence, the conventional HSR-GDL-EIA
approach is independently applied to each patch.Finally, the
HSI super-resolution patches are combined to build the HSI
super-resolution image, X̂.

Fig. 2 presents the pseudo-code of the proposed HSR-
LDL-EIA (I) approach. This is analogous to the HSI-GDL-
EIA approach presented in Section II-A. Here, however, the
dictionaries obtained by an EIA are extracted from the hyper-
spectral patches, Yh,j , instead of from the whole image, Yh.
Having identified the patches dictionaries, Dj , the code A is
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Algorithm HSR-LDL-EIA (I)
Input:
1. Yh, Ym, R, Pj , nd ≤ nm
2. for j = 1 to P
3. Yh,j ← Ih (Pj)
4. Ym,j ← Im (Pj)
5. Dj := EIA(Yh,j , nd)

6. Âj := arg minAj≥0 ‖Ym,j −RDjAj‖2F
7. X̂j := DjÂj

8. X̂ :=
{
X̂j

}
, j = 1, . . . , P

Fig. 2. Pseudo-code of the first proposed HSI Super Resolution algorithm
via Local Dictionary Learning using Endmember Induction Algorithms (HSR-
LDL-EIA (I)).

estimated by solving the following constrained least squares
(CLS) optimization problem:

min
Aj≥0

‖Ym,j −RDjAj‖2F j = 1, . . . , P, (6)

where Aj ∈ Rnd×P and Ym,j ∈ Rnm×P gather the columns
of A and Ym corresponding to the multispectral pixels indi-
cated by Pj , respectively. As in the global approach, the code
is defined as fractional abundances so the positivity constraint,
A ≥ 0, is enforced. The number of estimated endmembers in
the dictionary should be lower or equal than the dimensionality
of the multispectral data, nd ≤ nm, so that the optimization
problem defined in (6) is well posed. This could be achieved
in practice, for instance, by fixing the estimated number of
endmembers on each patch to be equal to the number of
available multispectral bands, nd = nm.

In order to apply the proposed HSR-LDL-EIA (I) approach
the indicator functions, Yh,j ← Ih (Pj) and Ym,j ← Im (Pj)
that map the patches to the observed HSI and MSI, respec-
tively, should be defined. Let Ih = [1, (nx/d)]× [1, (ny/d)] ⊂
N2 denote the spatial support of Yh. Hereafter, the row com-
ponents of a patch index will be denoted by ix ∈ [1, (nx/d)].
The column components will be denoted by iy ∈ [1, (ny/d)].
Thus, the index can be represented as the pair, i = (ix, iy) ∈
Ih. Given Yh with size nh× (n/d2), with n = nxny , a patch
will be defined as a set of indexes lying inside the spatial
support of Yh:

Pj = {il ⊆ Ih}Ll=1 , (7)

where L ∈ N denotes the number of indexes in the j-th patch.
The definition of the function, Ih (Pj), that selects a set of
pixels from the observed hyperspectral image, Yh, using the
indices in the patch, Pj , is straightforward:

Yh,j ← Ih (Pj) = {yh,i ∈ Yh | i ∈ Pj} . (8)

However, in order to define the multispectral mapping func-
tion, Im (Pj), we need to take into account the spatial down-
sampling factor, d. The spatial support of the observed multi-
spectral image, Ym, is given by Im = [1, nx]× [1, ny] ⊂ N2.
Then, for each hyperspectral index, i ∈ Ih, there is a set,
N (i) ⊂ Im, associated to it. These sets are obtained by:

N (i) = [(ix − 1) d+ 1, ixd]× [(iy − 1) d+ 1, iyd] , (9)

and hold the non-overlapping property:

N (iα)
⋂
N (iβ) = ∅, ∀iα, iβ ; α 6= β. (10)

Therefore, the multispectral mapping function is defined as:

Ym,j ← Im (Pj) = {ym,k ∈ Ym | k ∈ N (i) , i ∈ Pj} .
(11)

B. HSR-LDL-EIA (II)

Besides the image rank, the quality of the super-resolution
image can be strongly influenced by the choice of the dictio-
nary. In particular, the elements of the dictionary D should be
consistent with the multispectral image Ym. This means that,
since the elements of D are derived from Yh, to match the
spectral resolution of Ym they should be spectrally downsam-
pled by the sensor’s spectral response, R. Thus, the spectral
downsampling of the dictionary is a critical point in terms of
quality of the super-resolution image. From a practical point of
view, the elements of the spectrally downsampled dictionary,
RD, should be as similar as possible to the endmembers that
can be extracted from the multispectral image. However, a
non-perfect model of the spectral responses of the sensors may
lead to elements of D that could not match the endmembers
extracted from Ym. Moreover, due to the spectral differences
between Yh and Ym, the endmembers extracted from the
hyperspectral image Yh may not correspond to those extracted
from the multispectral image with the same approach.

In order to overcome these problems, we propose a novel
methodology where the dictionary entries are obtained from
a spatially upscaled and spectrally downscaled version of the
observed HSI. The pseudo-code of the proposed HSR-LDL-
EIA (II) approach is presented in Fig. 3. First, we obtain a
spatially upscale version of the observed HSI:

Yf(h) = f (Yh) , (12)

where f (·) is an upscaling function, for example a bi-cubic
interpolation. Then, we spectrally downscale the resulting
image to obtain a spatially upscaled and spectrally downscaled
version of the observed HSI:

Yhm = RYf(h). (13)

In order to be compared with the multispectral image, the
histogram of each band of Yhm is matched with the corre-
sponding band of Ym. Then, Yhm is partitioned into patches
and different sets of endmembers are extracted independently
from each patch, Pj , j ∈ {1, . . . , P}. For each patch Pj , we
identify a mixing matrix Dm,j by means of an EIA algorithm.
After determining the local dictionary Dm,j , the code A is
estimated by solving the following constrained least squares
(CLS) optimization problem:

min
Aj>0

‖Ym,j −Dm,jAj‖2F , (14)

where the dictionary does not need to be spectrally downsam-
pled by the spectral response, R, since it has been induced
from Yhm.

We are taking advantage of that the set of endmembers
induced by certain EIA algorithms, i.e. the Vertex Component
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Algorithm HSR-LDL-EIA (II)
Input:
1. Yf(h), Yhm, Ym, R, Pj , nd ≤ nm
2. for j = 1 to P
3. Yhm,j ← Ihm (Pj)
4. Ym,j ← Im (Pj)
5. kj ,Dm,j := EIA(Yhm,j , nd)

6. Âj := arg minAj≥0 ‖Ym,j −Dm,jAj‖2F
7. Dj ← Yf(h) (kj)

8. X̂j := DjÂj

9. X̂ :=
{
X̂j

}
, j = 1, . . . , P

Fig. 3. Pseudo-code of the second proposed HSI Super Resolution algorithm
via Local Dictionary Learning using Endmember Induction Algorithms (HSR-
LDL-EIA (II)).

Analysis (VCA) [22], are obtained by selecting a subset of
the original pixels. The indexes of these endmembers, kj , are
used to define the dictionary, Dj , from Yf(h). Finally, the
super-resolution hyperspectral patch can be reconstructed by
combining the dictionary Dj with the estimated code Âj :

X̂j := DjÂj . (15)

In this case, the indicator functions, Yhm,j ← Ihm (Pj)
and Ym,j ← Im (Pj), are easily defined since the patches
are obtained from Yhm,j , and both Yhm,j and Ym,j share
the same spatial support I = [1, nx] × [1, ny] ⊂ N2. Then,
a patch will be defined as a set of indexes lying inside the
spatial support I:

P = {il ⊆ I}Ll=1 , (16)

where L ∈ N denotes the number of indexes in the patch.
The definitions of the functions, Ihm (Pj) and Im (Pj), are
similar:

Yhm,j ← Ihm (Pj) = {yhm,i ∈ Yhm | i ∈ Pj} , (17)

Ym,j ← Im (Pj) = {ym,i ∈ Ym | i ∈ Pj} . (18)

IV. LOCAL SPATIAL PATCHES DEFINITION

In this section, we introduce two approaches to obtain the
patches definition from a given image Y with spatial support
I ⊂ N2. The first approach uses a conventional sliding window
to define the patches, while the second approach relies on a
binary partition tree (BPT) representation [17].

A. Patches definition using a sliding window of fixed size

The sliding window methodology has been broadly used in
image processing. It consists in defining a square window of
fixed size, s ∈ N, that identifies a patch of the image, P . The
window slides over the whole image in a standard zig-zag way,
be it with some overlapping or not, eventually covering the
whole image and defining the image patches. Fig. 4 shows the
pseudo-code of the patches definition algorithm using sliding
windows. The algorithm takes as inputs an image, Y, the
sliding window size s > 0, and the overlapping, t, 0 ≤ t < s.
The pseudocode of the patches definition by means of sliding

Algorithm Patches definition using sliding windows
Input:
1. Y, s, t
2. ix = 0, iy = 0, j = 0
3. while ix < nx/d
4. while iy < ny/d
5. Pj = [ix, ix + s]× [iy, iy + s]

⋂
I

6. iy = iy + s− t, j = j + 1
7. ix = ix + s− t

Fig. 4. Pseudo-code of the patches definition algorithm using sliding windows.

windows is presented in Fig. 4. The sliding windows cover
the image in a zig-zag way controlled by the two loops.
Occasionally, a sliding window could partially lie outside the
borders of the image. This issue is addressed by the definition
of the patch as an intersection to the image support:

Pj = [ix, ix + s} × ]iy, iy + s]
⋂
I. (19)

Thus, the number of pixels, L, contained inside a patch will
be upper bounded by the size of the sliding windows, L ≤ s2.

When the patches are defined by overlapping sliding win-
dows, the local approaches presented in Section III must
deal with the fact that some super-resolution pixels could be
estimated from different patches. A simple way of addressing
this issue is to average the estimated super-resolution spectra.
Formally, being x̂i,j the super-resolution pixel i estimated
from patch j, then the super-resolution pixel x̂i is given by:

x̂i =
1∑P

j=1 Ij (x̂i)

P∑
j=1

Ij (x̂i) x̂i,j , (20)

where Ij (x̂i) is an indicator function taking the value 1 if
the pixels x̂i is being estimated from patch Pj , and the value
0 otherwise. Other approaches could be used, for instance,
selecting the median pixel.

B. Patches definition using a BPT representation

The BPT is a hierarchical region-based representation of
an image in a tree structure [17]. In the BPT representation,
the leaf nodes correspond to an initial partition of the image,
which can be the individual pixels, or a coarser segmentation
map. From this initial partition, an iterative bottom-up region
merging algorithm is applied until only one region remains.
This last region represents the whole image and corresponds
to the root node. All the nodes between the leaves and the
root result of the merging of two adjacent children regions.

Two notions are of prime importance when defining a BPT,
the region model, MR, which specifies how a region R is
modelled, and the merging criterion, O(MRα ,MRβ ), which
is a similarity measure between the region models of any
two regions Rα and Rβ . Each merging iteration involves the
search of the two neighbouring regions which achieve the
lowest pair-wise similarity among all the pairs of neighbouring
regions in the current segmentation map. Those two regions
are consequently merged. To build the BPT representation
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Algorithm Patches definition using BPT
Input:
1. Yh, nd, nr
2. T ← BPT (Yh)
3. for all Rj ∈ T
4. Dj := EIA(Yh,j , nd)

5. Âj := arg minAj≥0 ‖Yh,j −DjAj‖2F
6. P ← pruning (T , nr)

Fig. 5. Pseudo-code of the patches definition algorithm using a BPT
representation.

from a hyperspectral image [18], [19], [23], Yh, we use the
first-order parametric model MR:

MR
d
= x̄ =

1

NR

NR∑
i=1

xi, (21)

where NR is the number of pixels on the region; and, in order
to merge regions, the spectral angle distance:

O
(
MRα ,MRβ

) d
= dSAM (x̄α, x̄β) = arccos

(
x̄αx̄β

‖x̄α‖‖x̄β‖

)
.

(22)
Once the BPT representation is built, the BPT is pruned to

achieve a partition of the image such that the regions of the
partition define the image patches, Pj . We propose to use the
unmixing-based pruning strategy introduced in [19]. Let P be
a partition of the image (a pruning of the BPT) and Ω be the
set of all possible partitions. Then, the spectral unmixing of
each region, R, is computed and for each pixel, x ∈ R, its
reconstruction error, εR(x, x̂), is calculated by means of the
average RMSE, where x̂ is the reconstructed pixel using the
unmixing information. The unmixing-based pruning criterion
defines the optimal partition as the one minimizing the overall
average RMSE regularized by the number of regions in the
partition:

P? = arg min
P∈Ω

1

N

∑
R∈P

∑
x∈R

εR(x, x̂) + λ |P| , (23)

where N denotes the number of pixels in the image, and
|P| denotes the number of regions in the partition. Fig. 5
shows the pseudo-code of the patches definition by means of
a BPT representation. Given the image Yh and the number
of endmembers nd, a BPT representation of Yh is built us-
ing (21) and (22). Then, the dictionary and the abundances are
obtained and stored for each region in the BPT representation
in order to later use this information in the pruning of the
BPT (23). The regions in the optimal partition P obtained by
the pruning process define the patches. A user can give as
input an approximate number of regions, nr, that the optimal
partition is expected to contain. Then, the λ value in (23) is
automatically obtained so the number of regions in the optimal
partition is as close to the input parameter nr as possible.

V. ESTIMATION OF THE SPECTRAL RESPONSE

The authors in [16] estimate the spectral response R from
the data by means of an optimization problem:

minimize
R

∥∥RYh −YmBM
∥∥2

+ λRφR(R), (24)

where φR(·) is a quadratic regularizer and λR ≥ 0 is the
respective regularization parameter. Recall that HSIs generally
have a large correlation between bands. Consequently, the
spectral vectors, of size nh, usually “live” in a subspace of
dimension much lower than nh [3]. This implies that, when
using the observed data to estimate the matrix R, it is not
possible to fully estimate it, and only the component of R
parallel to the mentioned subspace can be found. Conveniently,
the orthogonal component of R has essentially no influence
on the result of the image fusion. Due to this, the regularizer
φR(·) is used to deal with the indetermination of this orthogo-
nal component, and to reduce estimation noise. Furthermore, if
information on the spectral coverage of the sensors is available,
this estimate can be improved by taking the correspondence
between bands of the HSIs and MSIs into account. In this
case, the elements of R that correspond to non-overlapping
bands are constrained to be zero.

We estimate the spectral response independently for each
of the MSI bands. Let rTi denote a row vector containing
the ith row of R without the elements that are known to
correspond to hyperspectral bands that do not overlap the ith
multispectral band, Yh,i denote the matrix Yh without the
rows corresponding to those same bands, and Ym,i: denote
the ith row of Ym. The regularizer mentioned previously
is given by

∥∥Hri
∥∥2

, where the product by H computes
the differences between the elements in ri corresponding
to contiguous hyperspectral bands. Note that this choice of
regularizer is connected to the knowledge that the spectral
response of the sensors should be somewhat smooth between
these contiguous hyperspectral bands. Taking this into account,
the solution of (24) is given by

r∗i =
[
Yh,iY

T
h,i + λRH

TH
]−1

Yh,i

[
Ym,i:BM

]T
. (25)

Note that the estimation of R, as presented so far, requires
explicit knowledge of matrix B. Since we do not know B we
adapt the technique described in [16] to deal with this. If both
the observed HSIs and MSIs are blurred with a strong spatial
blur, the effect of B becomes negligible. Following this, the
estimate of the spectral response R is made using (25) on
the spatially blurred versions of the observed data, setting the
kernel of the spatial blur associated with B to a delta impulse.

VI. MATERIALS AND EXPERIMENTAL METHODOLOGY

In what follows, we describe the datasets, the experimental
methodology and the quantitative quality measures employed
to compare the proposed HSR-LDL-EIA approaches to the
baseline HSR-GDL-EIA approach.

A. Datasets

We run the experiments over three different datasets. In
the first one we synthesize a super-resolution HSI and then
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Fig. 6. Flow diagram of the experimental methodology, derived from Wald’s
protocol (simulated observations), for synthetic and semi-real datasets.

Fig. 7. False color representations of the synthetic dataset.

we simulate the observed HSI and MSI using a version of
the Wald protocol [24] detailed below. The second and third
datasets are scenes captured by two sensors (one hyperspectral
and another multispectral one) operating at the same spa-
tial resolution. Thus, we consider the captured hyperspectral
images as the super-resolution references and simulate only
the observed hyperspectral images (which we call half-Wald
protocol).

Wald’s protocol [24] is a methodological pipeline developed
for the evaluation of super-resolution approaches. It works by
simulating the observed images from a reference hyperspectral
super-resolution image. We further describe the version of
the Wald protocol, depicted in Fig. 6, that we employed
in the experiments: 1) Once the super-resolution reference

TABLE I
VALUES OF THE pGLOBAL AND pLOCAL VARIABLES FOR EACH DATASET.

Dataset pglobal plocal d
Synthetic 45 3 4

Paris {10,30,50} 3 3
San Francisco 10 3 3

image, X, has been denoised, the observed low-spatial res-
olution hyperspectral image, Yh, is simulated by applying
a Gaussian blurring and then, by downsampling the blurred
image selecting one of each d pixels, where d denotes the
downsampling factor. A Gaussian noise of 30dB is added to
the image to simulate the hyperspectral sensor acquisitions
SNR. 2) The observed high-spatial resolution multispectral
image, Ym, is also simulated by applying a spectral response
matrix to the denoised super-resolution image. A noise of
40dB is added to the image to simulate the multispectral
sensors higher SNR. 3) A super-resolution methodology is
applied to the simulated observations in order to obtain the
estimated hyperspectral super-resolution image, X̂. 4) Finally,
the denoised HSR reference image and the estimated HSR
can be compared to obtain quantitative quality measures of
the applied super-resolution approach.

1) Synthetic dataset: A synthetic image composed of mul-
tiple geometric shapes (ellipses and rectangles) of different
sizes and orientations, where each geometrical element and
the background are formed using a different linear mixture of
5 endmembers randomly extracted from the U.S. Geological
Survey Digital Spectral Library splib061, for a total of 45
different endmembers in the image. Fig. 7 shows a false color
representation of the synthetic dataset. The purpose of this
toy example is to simulate a scenario with perfect conditions
for the proposed super-resolution approaches, that is, a high
global spectral variability and a local low rank. Being the
assumptions valid, the proposed approaches should outperform
the state-of-the-art global approach. In addition, it allows us to
study the impact that the different parameters of the different
strategies to define the patches and the estimation of the
spectral response have in the results.

2) Paris dataset: This dataset consists of images taken
above Paris (see Fig. 13(a)) by two instruments on board of
the Earth Observing-1 Mission (EO-1) satellite, the Hyperion
instrument and the Advanced Land Imager (ALI). Hyperion
is a grating imaging spectrometer providing 242 hyperspectral
bands (from 0.4 to 2.5 µm) with a 30 meter spatial resolution.
The ALI instrument provides 9 spectral bands (from 0.43 to
2.35 µm) with 30-meter resolution. We made use only of the
ALI spectral bands 4, 7 and 9 to make the problem more chal-
lenging [25]2. Since the two sensors are carried by the same
satellite, and the images are acquired simultaneously, then the
super-resolution image will not be affected by differences in
terms of angle of view, atmospheric path, illumination as well
as miss-registration.

1Available at http://speclab.cr.usgs.gov/spectral-lib.html.
2More information is available at http://eo1.gsfc.nasa.gov/, http://eo1.usgs.

gov/sensors/ali and http://eo1.usgs.gov/sensors/hyperioncoverage.
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Fig. 8. Reconstruction errors for the synthetic dataset using the actual spectral
response matrix. The global approach (GDL) is compared to the proposed
local approaches LDL(I) and LDL(II): (top) Average SAM, (middle) Average
ERGAS and (bottom) UIQI index.

3) San Francisco dataset: This dataset (see Fig. 15(a)) was
acquired by Hyperion and ASTER sensors over San Francisco
on 31th July, 2002. On that date, two sensors were in the
same orbit with a 30 min time difference (Hyperion: 10:35 am,
ASTER: 11:05 am). We assume that the observation conditions
for these two images were the same. The Hyperion/VNIR data
with 30 m ground sampling distance and 50 bands (spectral
channels 8 to 57) and ASTER/VNIR data with 15 m ground
sampling distance and three bands were used for the fusion of
hyperspectral and multispectral data.

B. Experimental methodology

We compared the two proposed local super-resolution ap-
proaches, HSR-LDL-EIA (I) and HSR-LDL-EIA (II), to the
baseline global approach, HSR-GDL-EIA. For the proposed
local approaches, we also considered the patches definition

Fig. 9. Reconstruction errors for the synthetic dataset using the spectral
response matrix estimation [16]. The global approach (GDL) is compared
to the proposed local approaches LDL(I) and LDL(II) for SW with s = 60
and t = 0.5s, and BPT with approximately 100 regions: (top) Average SAM,
(middle) Average ERGAS and (bottom) UIQI index.

by either, sliding windows (SW) or a BPT representation. We
also studied the impact of estimating the spectral response
with respect to the use of the actual spectral response. Next,
we detail the implementation aspects required for running the
experiments and the employed quantitative quality measures.

For each experiment, 50 Monte Carlo runs are obtained in
order to estimate the robustness of the competing approaches
with respect to the noise and the stochastic components,
i.e., the spectral unmixing. For each image, I, we performed
denoising by factorizing it via Singular Value Decomposition
(SVD). This denoising step ensures that the actual super-
resolution image is (almost) free of noise, so the evaluation of
the competing methods is done according only to their capacity
to estimate the super-resolution signal. To apply SVD, the
pglobal eigenvectors, Up, with higher eigenvalues were retained.
Then, the image is projected onto the subspace spanned by
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 10. False color images of the angular errors between the actual super-resolution image and the best (top row) and worst (bottom row) super-resolution
hyperspectral images estimated from the syntehtic dataset using: (a,f) HSR-GDL-EIA, (b,g) HSR-LDL-EIA(I)-SW, (c,h) HSR-LDL-EIA(I)-BPT, (d,i) HSR-
LDL-EIA(II)-SW, (e,j) HSR-LDL-EIA(II)-BPT. The color scale goes from 0 degrees error (dark blue) to 10 degrees error (dark red).

Up: I← UT
pUpI. The value of pglobal varies with each image

(see Table I). For the synthetic dataset, pglobal is set to the
number of different spectral signatures used to build the data.
For the remainder datasets, pglobal has been set according to
the estimated intrinsic dimensionality (ID) using the HySime
algorithm [26]. The estimated ID for the Paris dataset is
31, and it is 11 for the San Francisco dataset. To explore
the effect of the pglobal parameter, we run experiments using
pglobal = {10, 30, 50} for the Paris dataset.

Dictionary learning is done by the Vertex Component
Analysis (VCA) algorithm [22]. Due to its stochastic nature,
every time a set of endmembers is estimated, we run VCA
ten times and retain the set of endmembers with maximum
volume among the ten runs [27]. The number of estimated
endmembers depends on each image as well. For the global
HSR-GDL-EIA approach the values given by pglobal are used.
For the proposed local approaches, the values given by plocal
are used instead. The value of plocal is set in each dataset
to the number of available multispectral bands (see Table I).
The setting of this parameter is hence not critical. In order to
solve the optimization problems in (5), (6) and (14), we used
the SUnSAL algorithm [28], which is an instance of the C-
SALSA methodology introduced in [29] to effectively solve
a large number of constrained least-squares problems sharing
the same matrix system. On the datasets where the observed
multispectral image, Ym is simulated we used the spectral
response of the IKONOS sensor. This sensor captures both a
panchromatic (0.45 − 0.90µm) and four multispectral bands
(0.45−0.52, 0.52−0.60, 0.63−0.69 and 0.76−0.90µm) [30].
In the experiments we employed the first three multispectral
bands only.

C. Quantitative quality measures

The competing HSI super-resolution approaches are evalu-
ated by quantitative quality measures obtained comparing the
original image, X, to the estimated super-resolution image,
X̂. We made use of three different image comparison quality

measures [1], [31]: the average spectral angle distance (SAD),
the Universal Image Quality Index (UIQI) [32] and the Er-
reur Relative Globale Adimensionnelle de Synthèse (ERGAS)
quality measure [31].

The SAD measures the average angular spectral reconstruc-
tion error:

avgSAD
(
X, X̂

)
=

1

n

n∑
i=1

εSAD (xi, x̂i) , (26)

where εSAD (xi, x̂i) = arccos
(

xT x̂
‖x‖‖x̂‖

)
is the spectral angle

distance.
The UIQI index measures the average correlation between

the original and the estimated images. Lets x(l), x̂(l) ∈ Rn
denote the l-th band of the original and estimated images
respectively, the band correlation Q index is defined as:

Q
(
x(l), x̂(l)

)
=

σx(l)x̂(l)

σx(l) + σx̂(l)

2µx(l)µx̂(l)

µ2
x(l) + µ2

x̂(l)

2σx(l)σx̂(l)

σ2
x(l) + σ2

x̂(l)

,

(27)
where µx(l) and µx̂(l) denote the mean vectors of the original
and estimated images respectively; σx(l) and σx̂(l) denote the
variances, and σx(l)x̂(l) the covariance. The UIQI is the average
Q index over all the bands:

UIQI
(
X, X̂

)
=

1

nh

nh∑
l=1

Q
(
x(l), x̂(l)

)
. (28)

The ERGAS evaluates both spectral and spatial divergences:

ERGAS
(
X, X̂

)
=

100

S

√√√√ 1

nh

nh∑
l=1

(
εRMSE

(
x(l), x̂(l)

)
µx(l)

)2

,

(29)
where S denotes the spatial ratio between the observed hyper-
spectral and the observed multispectral images, x(l), x̂(l) ∈ Rn
denote the l-th band of the original and estimated images,
respectively, and µx(l) ∈ R denotes the mean value of the
original l-th spectral band, x(l).
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Fig. 11. Reconstruction errors for the Paris dataset using the estimated spectral response matrix [16]. The global approach (GDL) is compared to the proposed
local approaches LDL(I) and LDL(II): (top) Average SAM, (middle) Average ERGAS and (bottom) UIQI index; (a,d,g) pglobal = 10, (b,e,h) pglobal = 30,
and (c,f,i) pglobal = 50.

VII. EXPERIMENTAL RESULTS

A. Results for the synthetic dataset

Fig. 8 shows the boxplots of the quality measures calculated
from the 50 Monte Carlo runs of the competing global and
local approaches using either the SW or the BPT patches def-
inition. For the sliding windows, we experimentally selected a
window size of s = 60, that is a 60× 60 pixels window, with
three different overlapping factors: t = [0, 0.2s, 0.5s]. For the
BPT approach, the approximately expected number of regions
in the optimal partitions have been set to: nr = [25, 50, 100].
The actual spectral response matrix, R, is assumed to be
known. Results show that, as expected, the local approaches
clearly outperform the global baseline approach, taking advan-
tage of the local low rank.

Fig. 9 shows the results obtained for the competing ap-
proaches over the synthetic dataset when the spectral response
is unknown and has to be estimated from the data. We set the
SW parameters to s = 60 and t = 0.5s, and the expected
number of regions in the BPT partition to be 100. Results show
that the local approaches also outperform the global approach
in a global high rank but locally low rank scenario, when
the spectral response should be estimated from the data. In
this case, it could be appreciated that the BPT-based patches
definition achieves more stable results than the SW one.

The SAD image errors of the best and worst Monte Carlo

runs using the actual spectral response matrix, depicted in
Fig. 10, help to understand the differences between the SW and
the BPT patches definition approaches. The SW produces error
images with grid patterns, specially on the transitions between
the geometrical shapes. However, the patches provided by
the BPT representation form a partition of the image which
is adapted to the homogeneities of the geometrical shapes.
Thus, the error is concentrated on the edges of the geometrical
shapes or on the slim geometrical areas which are difficult
to represent as a single patch. This is more evident in the
error images of the worst runs using the HSR-LDL-EIA(II)
approach. Since the patches are obtained from the spatially
upscaled and spectrally downscaled, Yhm image, the BPT rep-
resentation is more complex than in the global and the HSR-
LDL-EIA(I) approaches, and occasionally fails to achieve low
rank patches (i.e., the background). The SW overlapping factor
does not significantly affect the results, neither the number of
approximate regions in the partition obtained from the BPT
representation once the number of regions is high enough to
achieve low rank regions.

B. Results for Paris and San Francisco datasets

Since both semi-real datasets present smaller objects than
the synthetic data, specially for the urban areas, we experi-
mentally selected a window size of 60 × 60 pixels (s = 60),
and fixed the overlapping factors to t = 0.5s. For the BPT
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Fig. 12. Reconstruction errors for the San Francisco dataset using the esti-
mated spectral response matrix [16]. The global approach (GDL) is compared
to the proposed local approaches LDL(I) and LDL(II): (top) Average SAM,
(middle) Average ERGAS and (bottom) UIQI index.

approach, the approximately expected number of regions in the
optimal partitions have been set to nr = 100. In both datasets,
the spectral response is unknown and has been estimated from
the data. The quality measures obtained for the 50 Monte Carlo
runs of the competing approaches using the semi-real Paris
and San Francisco datasets, are depicted in Figs. 11 and 12,
respectively.

For the latter, the proposed local approaches clearly outper-
form the global approach in all the three quality measures.
For the former, the proposed local approaches outperform the
global baseline approach in terms of angular error. However,
there is a significant difference in terms of ERGAS and Q
index errors, depending on the patches definition approach.
The SW achieves better results than the BPT approach, prob-
ably because the Paris dataset is an urban dataset with many
small details and edges, while the San Francisco dataset has
more natural landscapes, which are easier to capture by the

BPT representation. Again, the HSR-LDL-EIA(II) approach in
combination with the BPT-based patches definition, achieves
worse results than the other local approaches for the semi-
real datasets. This evidences that the BPT representation fails
to obtain a good representation of the low rank patches from
the spatially upscaled and spectrally downscaled image. False
colour images of the best and worst HSR obtained by the
global and the local approaches of the Paris and San Francisco
datasets, are shown in Figs. 13 and 15, respectively. The
pglobal parameter seems to not affect the trend on the results
comparison. This suggests that as far as we do not introduce
noise in the reference super-resolution image by setting pglobal
to a too high value, or we reduce the global information
by setting pglobal to a too small value (close to plocal), the
competing approaches give consistent results.

Figs. 14 and 16, show the angular error images for the best
and worst results obtained using the competing approaches
from the Paris and San Francisco datasets, respectively. Al-
though the visual assessment is more difficult than in the
synthetic dataset, the grid pattern of the SW approach is still
recognizable. The BPT approach presents more homogeneous
error areas than the SW approach, although sometimes failing
to achieve a partition with low rank regions, specially for the
HSR-LDL-EIA(II) approach. It can also be noticed that the
water areas present the higher angular errors, possibly due to
the low spectral response of the water.

VIII. CONCLUSIONS

We have proposed two novel methods for hyperspectral
super-resolution via local dictionary learning using endmem-
ber induction algorithms, termed HSR-LDL-EIA(I) and HSR-
LDL-EIA(II). We have also provided two alternative method-
ologies to define the local patches, either by using sliding
windows (SW) or a BPT-representation. The experimental
results show that the proposed approaches are useful for the
estimation of super-resolution hyperspectral images from lo-
cally low rank complementary hyperspectral and multispectral
observations, even if the actual spectral response is unknown
and should be estimated from the data. The SW patches
definition approach performs well in all the datasets that we
have tested, but it requires to set an appropriate window size
and overlapping factor, although we did not evidence that
the latter was of big relevance in our experiments. The BPT-
based patches definition seems to be less stable than the SW.
However, it naturally adapts to the geometry of the objects
on the scene, once a conservative estimation of the number of
regions in the image is provided.

Further research will focus on improving the results of the
BPT-based approach. A plausible research avenue is to make
use of a set of hierarchical partitions of the image, provided by
the BPT representation, in order to increase the robustness of
the proposed local HSR approaches. We will also foresee the
application of local approaches to other data fusion problems,
i.e., pansharpening.
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Fig. 13. False color images of the best (top row) and worst (bottom row) super-resolution hyperspectral images estimated from the Paris dataset using: (b,h)
HSR-GDL-EIA, (c,i) HSR-LDL-EIA(I)-SW, (d,j) HSR-LDL-EIA(I)-BPT, (e,k) HSR-LDL-EIA(II)-SW, (f,l) HSR-LDL-EIA(II)-BPT. (a,g) Super-resolution
reference image.
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Fig. 14. False color images of the angular errors between the actual super-resolution image and the best (top row) and worst (bottom row) super-resolution
hyperspectral images estimated from the Paris dataset using: (a,f) HSR-GDL-EIA, (b,g) HSR-LDL-EIA(I)-SW, (c,h) HSR-LDL-EIA(I)-BPT, (d,i) HSR-LDL-
EIA(II)-SW, (e,j) HSR-LDL-EIA(II)-BPT. The color scale goes from 0 degrees error (dark blue) to 10 degrees error (dark red).
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