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a b s t r a c t

For ECG interpretation, the detection and delineation of P and T waves are challenging

tasks. This paper proposes sequential Bayesian methods for simultaneous detection,

threshold-free delineation, and waveform estimation of P and T waves on a beat-to-beat

basis. By contrast to state-of-the-art methods that process multiple-beat signal blocks, the

proposed Bayesian methods account for beat-to-beat waveform variations by sequentially

estimating the waveforms for each beat. Our methods are based on Bayesian signal

models that take into account previous beats as prior information. To estimate the

unknown parameters of these Bayesian models, we first propose a block Gibbs sampler

that exhibits fast convergence in spite of the strong local dependencies in the ECG signal.

Then, in order to take into account all the information contained in the past rather than

considering only one previous beat, a sequential Monte Carlo method is presented, with a

marginalized particle filter that efficiently estimates the unknown parameters of the

dynamic model. Both methods are evaluated on the annotated QT database and observed

to achieve significant improvements in detection rate and delineation accuracy compared

to state-of-the-art methods, thus providing promising approaches for sequential P and T

wave analysis.

1. Introduction

The electrocardiogram (ECG) represents the electrical

activity of the heart, which corresponds to repetitions of

a cardiac cycle, i.e., a heartbeat. Each beat consists of a QRS

complex surrounded by P and T waves that are associated

with the mechanical phases occurring during a cardiac cycle.

Most of the clinically useful information can be derived from

the wave intervals, amplitudes, and morphology. Therefore,

the development of efficient and robust methods for auto-

matic ECG delineation (determining the locations of the peaks

and boundaries of the individual waves) has become a major
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challenge for the biomedical signal processing community.

Among the ECG waves, the QRS complex is relatively easy to

detect and is thus generally used as a reference within the

cardiac cycle. For P and T wave detection and delineation,

most algorithms perform QRS detection first and then define

temporal search windows before and after the QRS location

points in which they assume the P and T waves are located.

Subsequently, an appropriate strategy is used to enhance the

distinctive features of each wave in order to locate the wave

peaks and boundaries.

In the last two decades, a variety of techniques have

been proposed for automatically detecting and delineating

P and T waves [1–8]. These techniques are based on

adaptive filtering [1], low-pass differentiation [2], wavelet

transform [3,4], action potential models [5], pattern recog-

nition [6], extended Kalman filters [7], or evolutionary

optimization [8]. However, because of the low slope and

amplitude of the P and T waves as well as the presence of

noise, interference, and baseline fluctuation, P and T

wave detection and delineation remain challenging tasks.

Furthermore, in addition to the locations of the wave

peaks and boundaries, the shapes and amplitudes of P

and T waves have also been shown to contain important

information about numerous pathologies [9].

A Bayesian model was recently proposed to simulta-

neously solve the P and T wave delineation and waveform

estimation problems [10,11]. This model was based on

prior distributions for the unknown parameters (wave

locations and amplitudes [10] as well as waveform and

local baseline coefficients [11]). Several Gibbs-type sam-

plers were then proposed to estimate the model para-

meters. However, the Bayesian model of [10,11] relied on

a non-overlapped multiple-beat processing window.

More precisely, the shapes of the P and T waves within a

multiple-beat processing window were assumed to be

equal, whereas their amplitudes and locations were

allowed to vary from one beat to another. Due to the

pseudo-cyclostationary nature of the ECG signal, the P and

T waveforms in a given beat are usually similar but not

exactly equal to those of the adjacent beats. Therefore, the

performance of P and T wave delineation can be expected

to improve if the waveforms are estimated in a beat-to-

beat manner that allows for temporal variations of wave-

form morphology across the beats. A beat-to-beat proces-

sing mode is also advantageous for an on-line operation

with reduced memory requirements and rapid adaptation

to changing signal characteristics.

In this paper, we present and study Bayesian methods

that enable simultaneous P and T wave delineation and

waveform estimation on a beat-to-beat basis. First, a beat-

to-beat Bayesian model is proposed which modifies the

multiple-beat-window-based model studied in [10,11] by

introducing dependencies among waveform coefficients.

Instead of assigning a white Gaussian prior to the temporal

sequence of waveform coefficients, we use a prior “with

memory” that depends on the estimates of the previous

beat. A Gibbs sampler with a block constraint, referred to as

block Gibbs sampler (BGS), is then used for estimating the

parameters of the resulting beat-to-beat model. Simula-

tion results show that the proposed sequential model

and processing improve the convergence behavior of the

samplers proposed in [10,11] as well as the accuracy of

estimating the locations, amplitudes, and shapes of the P

and T waves. The improved convergence behavior can be

explained by a considerable reduction of the parameter

dimension, since only one beat is processed at any time

instant instead of multiple beats.

In the second part of this paper, we present a sequential

Monte Carlo method that takes into account all the

information contained in the past rather than only that

of the previous beat. The principle of this method is to

exploit the sequential nature of the ECG signal by defining

an appropriate dynamic model. This model adapts to the

morphology variations across the ECG beats by using a

random walk model for the waveform coefficients. A

particle filter is then employed to estimate the unknown

parameters of the proposed model. Despite the simplicity

of the particle filter principle, its main drawback is its

computational complexity, especially for a large state dimen-

sion. In practice, if the state dimension is high, many random

samples are necessary to achieve a good accuracy of the

estimates. However, this problem can be alleviated for non-

linear models containing a subset of parameters which are

linear and Gaussian, conditional upon the other parameters. In

this case, using the technique of Rao-Blackwellization [12] or

marginalization [13], the linear/Gaussian parameters can be

optimally estimated through standard linear Gaussian filter-

ing. In our case, the state equations are linear with respect to a

subset of the unknown parameters. Thus, we propose to use a

marginalized particle filter (MPF) that generates particles in

the space of the “nonlinear” parameters and runs one Kalman

filter for each of these particles to estimate the “linear”

parameters. A comparison between the proposed sequential

BGS, the proposed MPF, and state-of-the-art methods shows

that both of the proposed methods provide significant

improvements in terms of estimation performance for the

locations, amplitudes, and shapes of the P and T waves.

Moreover, the MPF method typically exhibits a better perfor-

mance than the BGS method for estimating the shapes of the

P and T waveforms, at the price of a higher computational

complexity.

The paper is organized as follows. Section 2 describes the

proposed beat-to-beat Bayesian model for the non-QRS signal

components and a BGS that generates samples distributed

according to the posterior of this Bayesian model. Section 3

presents a dynamic model based on the proposed beat-to-

beat Bayesian framework and an associated MPF. The detec-

tors and estimators used for P and T wave detection, estima-

tion, and delineation are discussed in Section 4. Section 5

reports the results of numerical simulations performed on the

standard annotated QT database [14]. These results allow the

performance of the two proposed methods to be compared

with that of state-of-the-art algorithms. Finally, Section 6

presents conclusions and suggests future work.

2. Beat-to-beat Bayesian model and block Gibbs sampler

2.1. Signal model for one non-QRS interval

It is common to partition ECGs into QRS complexes and

non-QRS intervals. Non-QRS intervals are located between

the end of a QRS complex and the subsequent QRS onset,



and they potentially contain P and T waves. In this paper,

we assume that the locations of the non-QRS intervals

have been determined by a preliminary QRS detection step

using, e.g., the Pan–Tompkins algorithm [15], and that

baseline wanderings have been removed by, e.g., the

median filtering technique proposed in [16]. As shown in

Fig. 1, the non-QRS interval J n associated with the nth

beat consists of two complementary subintervals: a T

search interval J T;n, which may contain a T wave, and a

P search interval J P;n, which may contain a P wave. The

temporal lengths of the intervals J n, J T;n, and J P;n will

be denoted by Nn, NT;n, and NP;n, respectively. Note that

NT;nþNP;n ¼Nn. The lengths NT;n and NP;n can be deter-

mined by a cardiologist or simply as fixed percentages of

Nn. In this work, we choose NT;n ¼NP;n ¼Nn=2 for simpli-

city. Our goal is to estimate the locations, amplitudes, and

shapes of the P and T waves within their respective search

intervals J T;n and J P;n. Note that only the locations of the

wave peaks are constrained to lie within their respective

search intervals.

2.1.1. Convolution model

The baseline-free signal in the non-QRS interval J n can be

approximated by two pulses representing the P and T waves

(see Fig. 1). Similar to the blind deconvolution problem

in [17,18], the T wave is modeled by the convolution of

an unknown binary “indicator sequence” bT;n ¼ ðbT;n;1…

bT;n;NT;n
ÞT indicating the wave locations (bT;n;k ¼ 1 if there is

a wave at the kth possible location, bT;n;k ¼ 0 otherwise) with

an unknown T waveform hT;n ¼ ðhT;n;% L… hT;n;LÞ
T . Analogous

definitions for the P wave yield bP;n ¼ ðbP;n;1… bP;n;NP;n
ÞT and

hP;n ¼ ðhP;n;%L⋯ hP;n;LÞ
T . Here, the waveform length 2Lþ1 is

chosen as a fixed percentage of Nn that is large enough to

accommodate the actual supports of the P and T waves.

Within each indicator vector bT;n and bP;n, at most one entry is

nonzero because at most one wave may occur in any given

search interval. According to this model, the nth non-QRS

signal component can be expressed as follows:

xn;k ¼ ∑
NT;n

j ¼ 1

hT;n;k% jbT;n;jþ ∑
Nn

j ¼ NT;n þ1

hP;n;k% jbP;n;j%NT;n
þen;k ð1Þ

with kAJ n ¼ f1;…;Nng: Here, en;k denotes white Gaussian

noise with unknown variance s
2
e;n. Furthermore, we have set

hT;n;k ¼ hP;n;k ¼ 0 for k=2f%L;…; Lg.

2.1.2. Waveform expansion

Following [19,20], we represent the P and T waveforms

by a basis expansion using discrete-time versions of

Hermite functions. Thus, the waveform vectors can be

written as

hT;n ¼HαT;n; hP;n ¼HαP;n ð2Þ

where H is a ð2Lþ1Þ ) G matrix whose columns are the

first G Hermite functions (with Gr2Lþ1), suitably

sampled and truncated to length 2Lþ1, and αT;n and αP;n

are unknown coefficient vectors of length G. By using

these expansions, the number of unknown parameters can

be significantly reduced (from 2Lþ1 to G for each wave-

form). More specifically, the ECG signals involved in our

study were sampled with a sampling frequency of 250 Hz.

Considering a heart rate of around 60 beats per minute,

that makes on average 250 samples for each beat. We used

20 Hermite coefficients for each P and T wave plus two

wave location parameters and one noise variation para-

meter. Thus, the ratio between the number of parameters

to be estimated and the available data (used for the

estimation) is approximately 0.2. Note that the amplitudes

of the P and T waves are absorbed into the coefficient

vectors αT;n and αP;n. This is a difference from the model in

[10,11], where the amplitudes were defined for each beat

individually whereas the P and T waveforms were fixed for

multiple beats.

2.1.3. Vector formulation

Using (2), we obtain the following vector representa-

tion of the non-QRS signal in (1):

xn ¼ BT;nHαT;nþBP;nHαP;nþen ð3Þ

where xn ¼ ðxn;1…xn;Nn
ÞT , BT;n is the Nn ) ð2Lþ1Þ Toeplitz

matrix with first row ðbT;n;Lþ1… bT;n;1 0… 0Þ and first col-

umn ðbT;n;Lþ1… bT;n;NT;n
0… 0ÞT , BP;n is the Nn ) ð2Lþ1Þ

Toeplitz matrix with last row ð0… 0 bP;n;NP;n
… bP;n;NP;n %LÞ

and last column ð0… 0 bP;n;1…bP;n;NP;n % LÞ
T , and en ¼ ðen;1…

en;Nn
ÞT is a Gaussian vector with zero mean and covariance

matrix s
2
e;nINn

, with INn
denoting the identity matrix of size

Nn ) Nn.

2.2. Likelihood function, prior, and posterior

According to the parametrization introduced in Section

2.1, the unknown parameters for the nth non-QRS interval

J n are given by the random vector θn9ðb
T
T;n b

T
P;n α

T
T;n

αT
P;n s

2
e;nÞ

T . Note, in particular, that the noise variance s
2
e;n

may vary from one beat to another. Bayesian detection/

estimation relies on the posterior distribution, pðθnjxnÞp

pðxnjθnÞpðθnÞ, where p means “equal up to a positive

factor that does not depend on θn,” pðxnjθnÞ is the like-

lihood function, and pðθnÞ is the prior distribution of θn.

The next two subsections present the likelihood function

and priors considered in this study.

2.2.1. Likelihood function

Using (3) and the fact that en;k is white and Gaussian

with variance s
2
e;n, the likelihood function (viewed as

Fig. 1. Signal model for the beat-to-beat processing scheme.



a function of xn) is obtained as

pðxnjθnÞ ¼N ðBT;nHαT;nþBP;nHαP;n; s
2
e;nINn

Þ ð4Þ

where N ðμ;CÞ denotes the multivariate Gaussian probabil-

ity density function with mean vector μ and covariance

matrix C.

2.2.2. Prior distributions

Wave indicators: The indicators bT;n;k are subject to a

block constraint: within J T;n, there is one T wave (thus1,

JbT;n J ¼ 1) or none (thus, JbT;n J ¼ 0), the latter case being

very unlikely. Therefore, we define the prior of bT;n as

pðbT;nÞ ¼

p0 if JbT;n J ¼ 0

p1 if JbT;n J ¼ 1

0 otherwise

8

><

>:

ð5Þ

where p1 ¼ ð1%p0Þ=NT;n and p0 is chosen very small.

Similarly, within J P;n, there is one P wave or none; there-

fore, the prior of bP;n is defined as in (5), with p1 ¼ ð1%p0Þ=

NP;n. The wave indicator vectors bT;n and bP;n for different

search intervals (i.e., different values of n) are assumed to

be statistically independent.

Waveform coefficients: The waveform coefficient vectors

αT;n and αP;n for the nth non-QRS interval J n are supposed

to depend on the respective coefficient vectors in the

ðn%1Þth non-QRS interval J n%1. Consider the T wave as

an example. The prior of αT;n is defined as

pðαT;njbT;n;αT;n%1Þ ¼
δðαT;n%αT;n%1Þ if JbT;n J ¼ 0

N ðαT;n%1;s
2
αIGÞ if JbT;n J ¼ 1

(

ð6Þ

where δð+Þ is the Dirac delta function. For the variance

s
2
α , we choose a value that yields a reasonable variability of

the waveform coefficients from one interval to another.

Note that when there is no T wave in the search interval

(JbT;n J ¼ 0), the prior sets αT;n equal to αT;n%1, i.e., the

waveform coefficients are equal to those in the previous

interval J T;n%1. The prior of the P waveform coefficient

vector αP;n is defined in an analogous way, with αT;n%1

replaced by αP;n%1. These definitions of the priors of αT;n

and αP;n introduce a memory in the statistical model for

the P and T waveforms and, in turn, induce a sequential

processing.

Noise variances: The noise variances s
2
e;n are modeled as

independent random variables distributed according to an

inverse gamma distribution pðs2e;nÞ ¼ IGðξ; ηÞ, where ξ and η

are fixed hyperparameters defining a vague prior (as in [21]).

We note at this point that the Gaussian priors of αT;n

and αP;n are conjugate priors with respect to the Gaussian

likelihood function (4), i.e., the resulting full conditional

distributions (required in the Gibbs sampler) are also

Gaussian [22, p. 97]. A similar remark applies to the

inverse gamma prior of s2e;n. The choice of conjugate priors

yields a considerable simplification of our detection/esti-

mation algorithm.

Joint prior: Since there are no known relations between

ðbT;n;αT;nÞ, ðbP;n;αP;nÞ, and s
2
e;n, all these sets of parameters

are assumed to be a priori statistically independent. There-

fore, the joint prior for the total parameter vector

θn ¼ ðb
T
T;n b

T
P;n α

T
T;n α

T
P;n s

2
e;nÞ

T factors as

pðθnjαT;n%1;αP;n%1Þ ¼ pðαT;njbT;n;αT;n%1Þ pðbT;nÞ

)pðαP;njbP;n;αP;n%1Þ pðbP;nÞ pðs
2
e;nÞ: ð7Þ

2.2.3. Posterior distribution

The posterior distribution of the parameter vector θn is

obtained by using Bayes' rule, i.e.,

pðθnjxn;αT;n%1;αP;n%1ÞppðxnjθnÞpðθnjαT;n%1;αP;n%1Þ ð8Þ

where the right-hand term can be further expressed and

factored using (4) and (7). Because the proposed method

works sequentially and all estimates from the previous

beat are available, we can substitute the estimates α̂T;n%1

and α̂P;n%1 for αT;n%1 and αP;n%1 in pðθnjxn;αT;n%1;αP;n%1Þ

when estimating θn based on (8). Due to the complexity of

the posterior distribution, we propose to use a Monte Carlo

(sample-based) detection/estimation method. More speci-

fically, we propose a BGS that generates samples asymp-

totically distributed according to pðθnjx; α̂T;n%1; α̂P;n%1Þ (see

Section 2.3). From these samples, the discrete parameters

bT;n and bP;n are then detected by means of the sample-

based maximum a posteriori (MAP) detector, and the

continuous parameters αT;n, αP;n, and s
2
e;n are estimated

by means of the sample-based minimum mean square

error (MMSE) estimator, as described in Section 4.

2.3. Block Gibbs sampler for beat-to-beat wave extraction

The proposed BGS for the nth non-QRS interval J n is

summarized in Algorithm 1. Note that the interval index

n is omitted for all parameters to simplify the notation,

while the index n%1 is kept to avoid any ambiguity.

The term “block Gibbs sampler” is used to reflect the

block constraints related to the wave indicator vectors bT

and bP, which are encompassed in the corresponding

priors (see (5)). To see that Algorithm 1 is a valid

Gibbs sampler, note that the sampling steps for bT and

αT are equivalent to jointly sampling bT and αT from

pðbT;αTjbP; α̂T;n%1;αP; s
2
e ; xÞ, and similarly for bP and αP.

Closed-form expressions of the sampling distributions

used in Algorithm 1 are presented and derived in the

technical report [23].

Algorithm 1. Block Gibbs sampler.

Sample bT from pðbTjbP ; α̂T;n%1;αP ; s
2
e ; xÞ

Sample αT from pðαTjbT ;bP ; α̂T;n%1 ;αP ;s
2
e ; xÞ

Sample bP from pðbPjbT ; α̂P;n%1;αT ; s
2
e ; xÞ

Sample αP from pðαPjbT ;bP ; α̂P;n%1 ;αT ; s
2
e ; xÞ

Sample se

2
from pðs2e jbT ;bP;αT ;αP; xÞ

3. Dynamic beat-to-beat Bayesian model and

marginalized particle filter

Section 2 presented a beat-to-beat Bayesian model that

describes dependencies among waveform coefficients. A

prior “with memory” (depending on the previous esti-

mates of the P and T waveforms) was assigned to the

current beat. In this section, elaborating on [24], an MPF

method [25] is proposed to take into account all the1
J + J denotes the ℓ2 norm, i.e., JxJ2 ¼ xTx.



information contained in the past of the current beat to be

processed. First, we present a dynamic model as a basis for

performing simultaneously P and T wave delineation and

waveform estimation on a beat-to-beat basis. This

dynamic model is similar to the Bayesian model intro-

duced in Section 2. However, it adapts to the morphology

variations across the ECG beats by using a random walk

model for the waveform coefficients. Then, following

the sequential Monte Carlo principle, an MPF is used to

estimate the unknown parameters of the proposed model.

The idea is to generate particles only for the states

appearing nonlinearly in the dynamics and run one Kal-

man filter for each of these particles to estimate the

“linear” parameters.

3.1. Dynamic signal model for non-QRS intervals

As in Section 2, we assume that the locations of the

non-QRS intervals have been determined and baseline

wanderings have been removed by a preprocessing stage.

The signal model is the same as in Section 2.1, except for

the following two differences.

First, the model (1) is split into its T and P parts:

xn;k ¼ ∑
NT;n

j ¼ 1

hT;n;k% jbT;n;jþen;k; kAJ T;n ¼ f1;…;NT;ng ð9Þ

xn;k ¼ ∑
NP;n

j ¼ 1

hP;n;k% j%NT;n
bP;n;jþen;k; kAJ P;n ¼ fNT;nþ1;…;Nng:

ð10Þ

Using (2), we obtain the following representation of the

signal vector xT;n ¼ ðxn;1⋯xn;NT;n
ÞT corresponding to the T

wave interval in (9):

xT;n ¼ ~BT;nHαT;nþeT;n ð11Þ

where ~BT;n comprises the first NT;n rows of BT;n defined in

Section 2.1.3. A similar representation can be obtained for

the signal vector xP;n ¼ ðxn;NT;n þ1⋯xn;Nn
ÞT corresponding to

the P wave interval in (10) using ~BP;n, which comprises the

last NP;n rows of BP;n.

Second, the variance of the noise en;k has not been

included in the parameter vector (as in the proposed BGS)

since it would increase significantly the computational com-

plexity of the algorithm. In our simulations, the noise variance

was estimated in a preprocessing step using the BGS

(although other methods could be used as well). Thus,

eT;n ¼ ðen;1… en;NT;n
ÞT and eP;n ¼ ðen;NT;n þ1…en;Nn

ÞT are Gaus-

sian vectors with zero mean and covariance matrix s
2
e INT;n

and

s
2
e INP;n

, respectively, s2e being the estimated noise variance.

3.2. Likelihood function, posterior, and prior

Using the modified signal model from Section 3.1,

the likelihood function—now taking into account all beat

indices up to n—factors as

pðx1:njθ0:nÞ ¼ pðxT;1:njbT;0:n;αT;0:nÞ pðxP;1:njbP;0:n;αP;0:nÞ: ð12Þ

Here, e.g., x1:n9ðxT1…xTnÞ
T and θ0:n9ðθT0…θTnÞ

T . As before

(cf. Section 2.2.2), we assume that the T wave parameters

are independent of the P wave parameters. Therefore,

using (12), the joint posterior distribution can be written

pðθ0:njx1:nÞppðbT;0:n;αT;0:njxT;1:nÞpðbP;0:n;αP;0:njxP;1:nÞ:

This allows us to split the estimation problem into two

independent problems related to the P and T waves. In the

following, only the T wave dynamic model and estimation

problem are discussed, and the subscript T is omitted for

notational convenience.

Due to the parametrization (11), the state vector for the

nth T wave interval is given by θn ¼ ðb
T
n αT

nÞ
T . Note that θn is

now short for θT;n, and thus different from the θn used, e.g.,

in Section 2.2. For the indicator vector bn, we use the prior

in (5) with p0 ¼ p1 ¼ 1=ðNT;nþ1Þ. This prior is a uniform

distribution on the set of all possible bn such that Jbn J ¼ 1

or Jbn J ¼ 0. Indicator vectors bn for different beat indices

n are assumed to be statistically independent. Since the

ECG waveforms are usually similar for two consecutive

beats, we propose to assign a random walk prior to the T

waveform coefficient vector αn, i.e.,

αn ¼ αn%1þvn%1 ð13Þ

where αn%1 denotes the T waveform coefficient vector of the

ðn%1Þth beat and the vectors vn ,N 0; s2αIG
& '

are statistically

independent (of each other and of α0:n) additive white

Gaussian noise vectors. This leads to the conditional prior

pðαnjαn%1Þ ¼ N ðαn%1; s
2
αIGÞ, which is the same as in the

second case of (6). Note that here, in contrast to (6), the

coefficient vector changes even if Jbn J ¼ 0. The variance s
2
α

depends on how fast the waveform coefficients are expected

to change with time. Since the non-QRS components are

normalized by dividing by the amplitude of the respective R

peak, we have to account for possible significant variations of

the waveforms with time. We therefore propose to use a large

value of s2α , which corresponds to a non-informative condi-

tional prior of αn. Note that the value of s2α can be further

adjusted by an expert or by calculating the ECG waveform

variance of an example ECG segment in an off-line parameter

selection procedure as in [26]. Because of (13) and the

independence of vn for different n as well as of α0:n, the

waveform coefficient vector αn is conditionally independent,

given αn%1, of all previous coefficient vectors α0:n%2, i.e.,

pðαnjα0:n%1Þ ¼ pðαnjαn%1Þ.

3.3. A marginalized particle filter for beat-to-beat

wave analysis

Our goal is to estimate jointly the discrete-valued

indicator vector bn and the waveform vector αn, i.e., to

estimate the state vector θn. In a Bayesian framework, all

inference is based on the posterior distribution of the

unknown parameters given the set of available observa-

tions, expressed as pðθ0:njx1:nÞ. Particle filters (PFs) are a

class of methods well-suited to perform the estimation of

the hybrid state vector θ0:n. They approximate the target

distribution by an empirical distribution

p̂ðθ0:njx1:nÞ ¼ ∑
Ns

i ¼ 1

wðiÞ
n δðθ0:n%θ

ðiÞ
0:nÞ; where ∑

Ns

i ¼ 1

wðiÞ
n ¼ 1:

The weights wðiÞ
n and the particles θ

ðiÞ
0:n are classically

obtained by sequential importance sampling and a selec-

tion (resampling) step to prevent degeneracy [25].



3.3.1. Development of the MPF

While the classical PFs are fairly easy to implement, a

main drawback is that, in practice, the required number of

particles increases quickly with the state dimension. The MPF

can reduce the number of parameters estimated by the PF

and therefore allows fewer particles to be used. More specifi-

cally, the MPF takes advantage of linear Gaussian sub-

structures in the state parameters θn to decrease the variance

of the state estimates. The key idea is to split θn into two parts

θLn and θNLn , where θLn denotes the state parameters with

conditionally linear dynamics and θNLn denotes the nonlinear

state parameters. We can then marginalize out θLn and

generate particles distributed according to pðθNLn jx1:nÞ using

a PF. The particles are finally used to compute the MAP

estimator of θNLn . In parallel, each particle is associated with a

Kalman filter (KF) that computes recursively the mean and

covariance matrix of the Gaussian distribution pðθLnjθ
NL
n ; x1:nÞ.

It can be observed from (11) that both the discrete

vector bn and the continuous vector αn enter linearly in the

observation xn, given the respective other parameter. Since

only continuous parameters can be handled by the KF, we

choose θLn ¼ αn and θNLn ¼ bn.The KF and the PF correspond

to two factors of the joint posterior according to the

following factorization:

pðb0:n;α0:njx1:nÞ ¼ pðα0:njb0:n; x1:nÞ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

KF

pðb0:njx1:nÞ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

PF

: ð14Þ

The marginal distribution of the discrete parameters is

approximated by

p̂ðb0:njx1:nÞ ¼ ∑
Ns

i ¼ 1

wðiÞ
n δ½b0:n%b

ðiÞ
0:n. ð15Þ

where Ns is the number of particles and δ[.] denotes the

discrete-time unit sample. Then, by inserting (15) in (14)

and summing out b0:n, the posterior distribution of the

continuous parameters can be approximated by

p̂ðα0:njx1:nÞ ¼ ∑
Ns

i ¼ 1

wðiÞ
n pðα0:njb

ðiÞ
0:n; x1:nÞ: ð16Þ

Integrating out α0:n%1 yields

p̂ðαnjx1:nÞ ¼ ∑
Ns

i ¼ 1

wðiÞ
n pðαnjb

ðiÞ
0:n; x1:nÞ: ð17Þ

It can be shown that pðα0:njb
ðiÞ
0:n; x1:nÞ in (16) and pðαnjb

ðiÞ
0:n;

x1:nÞ in (17) are Gaussian. Therefore, (16) and (17) repre-

sent mixtures of Gaussian distributions. Note that one KF is

associated with each particle b
ðiÞ
0:n with i¼ 1;…;Ns. Further-

more, in practice, only the marginal distribution p̂ðαnjx1:nÞ

is updated (rather than p̂ðα0:njx1:nÞ). The MPF recursions

are summarized in Algorithm 2, presented for the T wave

case. The different steps involved in this algorithm are

detailed in the rest of this section.

Algorithm 2. Marginalized particle filter.

fInitializationg

for i¼ 1;…;Ns do

Set bðiÞ
0 ¼ 0NT;n)1 , P

ðiÞ
0 ¼ 0G)G , and wðiÞ

0 ¼ 1, and choose a suitable

initialization of the waveform coefficients α̂ ðiÞ
0 (see Section 5.1.1).

end for

fTime recursiong

for n¼ 1;2;… do

for i¼ 1;…;Ns do

fKF and PF propagationg

KF prediction for αðiÞ
n (see (18))

Sample b
ðiÞ
n , Prðbn ¼ βkjb

ðiÞ
0:n%1 ; x1:nÞ (see(19))

KF correction for αðiÞ
n (see (20))

Calculate weights (see (21) and (22))

~w ðiÞ
n ¼wðiÞ

n%1∑kAJ T;n
pðxnjb

ðiÞ
n ¼ βk;b

ðiÞ
0:n%1 ; x1:n%1ÞPrðb

ðiÞ
n ¼ βkÞ

end for

fWeight normalizationg

for i¼ 1;…;Ns do

wðiÞ
n ¼ ~w ðiÞ

n =∑Ns

j ¼ 1
~w ðjÞ
n

end for

fState estimationg

Estimate bn and αn (see (23))

fParticle resamplingg

Calculate N̂eff ¼ 1=∑Ns

i ¼ 1ðw
ðiÞ
n Þ2

if N̂eff r0:7 + Ns then

Resample using systematic sampling scheme [25, p. 11]

end if

end for

3.3.2. Kalman filter prediction

At time n, the previous MMSE state estimate is α̂ðiÞ
n%1 ¼

Efαn%1jx1:n%1;b
ðiÞ
0:n%1g and its covariance matrix is P

ðiÞ
n%1 ¼

Covfαn%1jx1:n%1;b
ðiÞ
0:n%1g. We define the predicted state

vector α̂
ðiÞ
njn%19Efαnjx1:n%1;b

ðiÞ
0:n%1g and its covariance

P
ðiÞ
njn%19Covfαnjx1:n%1;b

ðiÞ
0:n%1g. Using (13), it can be shown

that the prediction step of the KF can be written as

α̂
ðiÞ
njn%1 ¼ α̂

ðiÞ
n%1; P

ðiÞ
njn%1 ¼ P

ðiÞ
n%1þs

2
αIG: ð18Þ

Note that the predicted state vector and its covariance

computed by the KF, α̂ðiÞ
njn%1 and P

ðiÞ
njn%1, will be directly

used to propagate the particles and compute their impor-

tance weights, as explained presently (see (20)).

3.3.3. Importance distribution for the indicators

It is well known that the choice of the importance

distribution is a critical issue in the design of efficient PF

algorithms. To generate samples in relevant regions of the

state space, i.e., corresponding to a high likelihood pðxnjθnÞ,

a natural strategy consists of taking into account informa-

tion from the most recent observations xn. The importance

distribution that is optimal in the sense that it minimizes

the variance of the importance weights is qðbnjb
ðiÞ
0:n%1;

x1:nÞ ¼ pðbnjb
ðiÞ
0:n%1; x1:nÞ [27]. Thus, the optimal importance

distribution for bn is obtained as

Prðbn ¼ βkjb
ðiÞ
0:n%1; x1:nÞppðxnjbn ¼ βk;b

ðiÞ
0:n%1; x1:n%1ÞPrðbn ¼ βkÞ ð19Þ

where βk for kAJ T;n ¼ f1;…;NT;ng is an NT;n ) 1 vector

whose kth entry is 1 and all remaining entries are zero.

Note that β0 is the all-zero vector, which represents the

case where there is no T wave. It can be shown that, for

b0:n given, α0:n and x1:n are jointly Gaussian. It follows that

the distribution pðxnjbn ¼ βk;b
ðiÞ
0:n%1; x1:n%1Þ in (19) is a

Gaussian one. According to (11), its mean x̂
ðiÞ
n;k and covar-

iance matrix S
ðiÞ
n;k

can be computed from the KF prediction

(18) as follows:

x̂
ðiÞ
n;k ¼

~Bn;kHα̂
ðiÞ
njn%1

S
ðiÞ
n;k

¼ ~Bn;kHP
ðiÞ
njn%1H

T ~B
T

n;kþs
2
e INT;n



where ~Bn;k is the matrix ~Bn that corresponds to bn ¼ βk.

Note that contrary to the standard PF, the importance

distribution for the indicators no longer depends on the

coefficient vector α0:n, which has been marginalized out.

On the other hand, it depends on the past sequence b0:n%1.

3.3.4. Kalman filter correction

After receiving the observation xn for beat index n,

the predicted waveform coefficients α̂ðiÞ
njn%1 can be updated

for each generated wave indicator particle b
ðiÞ
n . The KF

correction procedure can be written as

S
ðiÞ
n ¼ ~B

ðiÞ

n HP
ðiÞ
njn%1H

T ð ~B
ðiÞ

n ÞT þs
2
e INT;n

ð20aÞ

K
ðiÞ
n ¼ P

ðiÞ
njn%1H

T ð ~B
ðiÞ

n ÞT ðSðiÞn Þ%1 ð20bÞ

α̂
ðiÞ
n ¼ α̂

ðiÞ
njn%1þK

ðiÞ
n ðxn% ~B

ðiÞ

n Hα̂
ðiÞ
njn%1Þ ð20cÞ

P
ðiÞ
n ¼ ðIG%K

ðiÞ
n
~B
ðiÞ

n HÞP
ðiÞ
njn%1 ð20dÞ

where ~B
ðiÞ

n is the matrix ~Bn that corresponds to bn ¼ b
ðiÞ
n .

3.3.5. PF weight computation

When the optimal importance distribution is used to

propagate the particles, the weights satisfy the following

recursion:

wðiÞ
n pwðiÞ

n%1pðxnjx1:n%1;b
ðiÞ
0:n%1Þ: ð21Þ

Here, pðxnjx1:n%1;b
ðiÞ
0:n%1Þ is the normalization constant of

(19), i.e.,

pðxnjx1:n%1;b
ðiÞ
0:n%1Þ

¼ ∑
kAJ T;n

pðxnjb
ðiÞ
n ¼ βk;b

ðiÞ
0:n%1; x1:n%1ÞPrðb

ðiÞ
n ¼ βkÞ: ð22Þ

4. P and T wave detection, estimation, and delineation

In this section, we discuss sample-based wave detec-

tion, parameter estimation, and wave delineation for the

two proposed methods.

4.1. Block Gibbs sampler

We will denote by S9fb
ðiÞ
T ;b

ðiÞ
P ;αðiÞ

T ;αðiÞ
P ; s2ðiÞe g

Ns

i ¼ 1 the set

of samples produced by our BGS after a burn-in period.

(The burn-in period is the initial period of sampler itera-

tions during which the sampler converges; the samples

produced by the sampler during the burn-in period are not

used for detection/estimation [28, p. 5].)

For detecting and locating P and T waves, we use the

following sample-based blockwise MAP detector for the

wave indicators bT and bP:

b̂T ¼ arg max
iA f1;…;Nsg

pSðb
ðiÞ
T Þ; b̂P ¼ arg max

iA f1;…;Nsg

pSðb
ðiÞ
P Þ:

Here, pSðbTÞ is a sample-based approximation of the

posterior probability pðbTjx; α̂T;n%1; α̂P;n%1Þ. More specifi-

cally, pSðbTÞ is defined as the number of samples b
ðiÞ
T in S

that equal the respective value of bT, normalized by the

total number of samples, Ns. Analogous considerations

apply to pSðbPÞ.

The detection step described above is followed by

sample-based estimation of the waveform coefficients αT

and αP and of the noise variance s
2
e . Let us combine these

parameters into the parameter vector θ,b9 ðαT
T αT

P s
2
e Þ

T .

Furthermore, we define the set I as the set of sample

indices iAf1;…;Nsg such that b
ðiÞ
T ¼ b̂T and b

ðiÞ
P ¼ b̂P. To

estimate θ,b, we use the sample mean

θ̂,b ¼
1

jI j
∑
iAI

θ
ðiÞ
,b

where θ
ðiÞ
,b

9ðα
ðiÞT
T α

ðiÞT
P s

2ðiÞ
e ÞT and jI j denotes the number of

elements in I . This can be interpreted as a sample-based

approximation of the MMSE estimator (note that

the MMSE estimator is given by the posterior mean

Efθ,bjx;bT;bP; α̂T;n%1; α̂P;n%1g). Thus, θ̂,b depends on b̂T,

b̂P, α̂T;n%1, and α̂P;n%1.

The final step is wave delineation (localization of the

peaks and boundaries of the P and T waves). Because of the

convolution model (1), our detection/estimation problem

is affected by a time-shift ambiguity [17,29]. Following

[17], we resolve this ambiguity by performing an appro-

priate time shift after generating the waveform samples in

the block Gibbs sampler. This time shift ensures that the

maximum of the waveform is located at the center k¼ 0

of the waveform support interval f%L;…; Lg and, thus, the

location of a nonzero detected indicator b̂T;k ¼ 1 or b̂P;k ¼ 1

directly indicates the peak of the respective T or P wave. A

detailed description of an algorithm for resolving the time-

shift ambiguity is also provided in [29].

It is broadly accepted that the turning points defined by

the largest local maximum of the curvature of the estimated

waveform on each side of the detected wave peak are good

estimates of the wave boundaries [6,30]. The curvature of

the estimated T waveform ĥT;k is defined as [6]

κT;k9
ĥ
″

T;k

½1þðĥ
0

T;kÞ
2.3=2

; kAf%L;…; Lg

where ĥ
0

T;k and ĥ
″

T;k are discrete-time counterparts of the

first and second derivatives (e.g., ĥ
0

T;k is defined as the

difference ĥT;k% ĥT;k%1). Using the turning points for deli-

neation avoids the use of rigid detection and delineation

thresholds. Fig. 2 illustrates the method by showing

the delineation results obtained for three different T wave

morphologies. Simulation results for the proposed BGS will

be presented in Section 5.

4.2. Marginalized particle filter

In the MPF, the sample-based blockwise MAP estimator

is used for estimating the binary sequence bn, while the

sample-based MMSE estimator is used for estimating the

waveform coefficients αn:

b̂n ¼ arg max
iA f1;…;Nsg

p̂ðb
ðiÞ
n jx1:nÞ; α̂n ¼ ∑

Ns

i ¼ 1

wðiÞ
n α̂

ðiÞ
n : ð23Þ

Here, p̂ðbðiÞ
n jx1:nÞ is obtained by marginalizing (15) and the

estimate α̂n is the mean of the Gaussian mixture (17) with α̂ðiÞ
n

computed recursively using (20c).



The wave delineation consists of determining the

peaks and boundaries of the detected P and T waves. As

mentioned in Section 4.1, because the time-shift ambi-

guity is removed, the nonzero wave indicator estimated

by the MPF directly indicates the center of the corre-

sponding waveform time window. Thus, the peak of the

respective T or P wave is indicated by the location of the

maximum of the estimated waveform. Furthermore, the

wave boundaries can be located by applying the delinea-

tion criterion described in Section 4.1 to the estimated

waveforms.

5. Simulation results

5.1. Simulation setup

Both of the proposed Bayesian wave detection/estima-

tion/delineation methods were evaluated on the QT

database (QTDB), which was previously used in several

other studies [14]. The QTDB provides a reference for

validating automatic wave-boundary estimation meth-

ods. It is a two-channel database containing cardiologist

annotations for at least 30 beats per dataset for both

channels. It includes 105 datasets from the widely used

MIT-BIH arrhythmia database, the European ST-T data-

base, and some other well-known databases. The cardiol-

ogist annotations of the QTDB were performed using two

leads, whereas the proposed delineation methods work

on a single-channel basis. To compare the single-channel

delineation results produced by our methods with the

manual annotations of the QTDB, we chose for each T or P

wave the channel where the detected wave peak location

was closer to the annotated one (as suggested in [4,30]).

In a preprocessing step, the QRS complexes were detected

and the borders of the non-QRS intervals J n were

determined using the Pan–Tompkins algorithm [15].

(The same preprocessing step was performed in [10,11].)

In another preprocessing step, baseline wanderings were

removed. P and T search intervals J T;n and J P;n were then

defined as the first and second half of J n. Both of the

proposed methods sequentially process one non-QRS

interval J n after another.

5.1.1. BGS setup

For each non-QRS interval J n, the BGS generated 100

samples according to the conditional distributions speci-

fied in Algorithm 1. The first 40 samples constituted

the burn-in period, and the remaining 60 were used for

detection/estimation (thus, Ns ¼ 60). The fixed hyperpara-

meters involved in the prior distributions were chosen as

p0 ¼ 0:01, s2α ¼ 0:01, ξ¼ 11, and η¼ 0:5; these values allow

for an appropriate waveform variability from one beat to

another and provide a noninformative prior for the noise

variance s
2
e;n. Note that the non-QRS components were

normalized using the corresponding R peak values to

handle different amplitude resolutions. For the first non-

QRS interval (n¼ 1), the previous waveform coefficient

estimates α̂T;0 and α̂P;0 were initialized with the coefficient

vector α for which h is closest to the 2Lþ1 Hann window

[31], with an amplitude equal to half the R peak amplitude.

The waveform length was chosen as 2Lþ1¼Nn=3, which

is large enough to accommodate the actual support of the

T or P wave.

Because the proposed beat-to-beat BGS method pro-

cesses only one non-QRS interval at any given time, both

its memory requirements and its computational complex-

ity are smaller than those of the window-based method

of [10]. For instance, for the proposed method using 100

sampler iterations, the processing time per beat is approxi-

mately 0.3 s using a nonoptimizedMATLAB implementation

running on a 3.0-GHz Pentium IV computer, compared to

about 2 s for the method of [10]. Note that this computation

time could be further reduced by developing implementa-

tions on digital signal processors.

5.1.2. MPF setup

In the MPF method, the fixed hyperparameters involved

in the prior distributions were chosen as s
2
α ¼ 0:01 and

s
2
e ¼ 0:1. The chosen value of s2α allows for an appropriate

waveform variability from one beat to another. The chosen

value of se
2
was obtained from a previous estimation of the

noise level, using the mean value estimated by the BGS

method, but could be taken from any other noise estimator.

The non-QRS components were again normalized using the

corresponding R peak values to handle different amplitude

Tpeak

Tonset
Tend

Tpeak

Tpeak

Tonset

Tonset

Tend

Tend

Fig. 2. Delineation results obtained for three different T wave morphologies. Solid blue line: estimated T waveform, dotted red line: corresponding

curvature. The crosses indicate the estimated peak and boundary locations. (a) Normal sinus T wave from QT database (QTDB) [14] dataset sel17453

channel 1; (b) ascending T wave from QTDB sele0203 channel 1; (c) biphasic T wave from QTDB sele0603 channel 1. (For interpretation of the references to

color in this figure caption, the reader is referred to the web version of this article.)



resolutions. The waveform vector ĥ0 ¼Hα̂0 was initialized

as in the BGS method.

An important issue with PF methods is the number of

particles. Using the estimated parameters, we recon-

structed the non-QRS part of the signal (based on the

noiseless parts of models (9) and (10)) and compared it to

the original signal non-QRS part. This allowed us to

compute a normalized mean square error (NMSE) to assess

the quality of the estimation. Table 1 shows the NMSE

versus the number of particles Ns. As can be seen, benefit-

ing from the optimal importance distribution derived in

Section 3.3.3, good estimation performance can be

obtained with a moderate number of particles. We chose

Ns ¼ 200 particles for all the following simulations in order

to guarantee an NMSE close to %40 dB. For the MPF

method using 200 particles, the processing time per beat

is approximately 0.5 s using a nonoptimized MATLAB

implementation running on a 3.0-GHz Pentium IV

computer.

5.2. Qualitative analysis

In this section, we first show the posterior distributions

as well as estimation and delineation results obtained

by the proposed beat-to-beat BGS method on a typical

example. Then, we present a qualitative comparison of the

proposed BGS and MPF methods with state-of-the-art

methods on several representative ECG segments.

Fig. 3(a) shows two consecutive beats from the QTDB

dataset sele0136. The corresponding sample-based esti-

mates of the marginal posterior probabilities of having a T

Table 1

Normalized mean square error (NMSE) versus number of particles used

in the MPF method.

Ns 10 50 100 200 300

NMSE (dB) %25 %31 %34 %40 %42

Fig. 3. Simulation results obtained with the proposed BGS method. (a) Two consecutive beats from QTDB dataset sele0136; (b) estimated marginal

posteriors PSðbk ¼ 1Þ; (c) estimated P and T waveforms (dotted red line) compared with the original P and T waveforms (blue) and delineation results. (For

interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)



or P wave at a given location k, PSðbT;n;k ¼ 1Þ and

PSðbP;n;k ¼ 1Þ, are depicted in Fig. 3(b). (For kAJ T,

PSðbk ¼ 1Þ equals the probability PSðbTÞ of the specific

hypothesis bT that contains a 1-entry at location k, and

similarly for kAJ P.) Fig. 3(c) shows the actual P and T

waveforms and their estimates obtained by the proposed

BGS method for each search interval, along with the

corresponding delineation results (i.e., the estimated wave

onsets, peaks, and ends, which were determined as

described in Section 4). One can observe noticeable differ-

ences between the two consecutive T waveforms (at time

instants 4.92 s and 6.10 s), as well as between the two

consecutive P waveforms (at time instants 5.64 s and

6.83 s). This confirms the pseudo-cyclostationary nature

of the ECG signal and justifies our introduction of a beat-

to-beat processing scheme that allows for beat-to-beat

variations of the P and T waveforms. The results displayed

in Fig. 3(c) show that the BGS algorithm is able to estimate

these P and T waveforms with good accuracy.

Next, we present a qualitative comparison of the

proposed BGS and MPF methods with the multi-beat

method of [10] (based on a partially collapsed Gibbs

sampler (PCGS)) to highlight the benefits of beat-to-beat

processing. To evaluate the methods under real physiolo-

gical noise conditions, we added muscular activity noise

from the MIT-BIH noise stress test database. The estimated

non-QRS signal components obtained with the different

methods are displayed in Figs. 4 and 5 for eight successive

beats of a segment of QTDB dataset sele0136. The original

ECG signal is also shown for comparison. It can be seen

that the proposed beat-to-beat methods (BGS and MPF)

provide closer agreements with the original ECG signal

when compared to the multi-beat method, especially at

the onsets and ends of the waves, which is a desirable

property for wave delineation. These results show that,

contrary to the multi-beat method of [10], the beat-to-beat

BGS and MPF methods are able to capture the changes

affecting the P and T waveforms. Additional results are

available in a technical report [23]. In particular, both

proposed methods are compared with the method of [7]

(which is based on an extended Kalman filter) and are

shown to be able to handle specific pathologies such as

Fig. 4. Four consecutive segments from QTDB dataset sele0136 (blue) superimposed with their reconstructions using the estimated parameters (dotted

red). (a) PCGS multi-beat method of [10]; (b) proposed beat-to-beat BGS method; (c) proposed beat-to-beat MPF method. (For interpretation of the

references to color in this figure caption, the reader is referred to the web version of this article.)



premature ventricular contractions, a pathology in which

parts of the T waves are crossing the interval border and

the P waves are missing.

5.3. Quantitative analysis

Next, we provide a quantitative performance comparison

of the two proposed methods with the multi-beat method

of [10] and three alternative methods [2,4,5], based on an

exhaustive evaluation performed on the entire QTDB. For a

quantitative analysis of the performance of P and T wave

detection, as in [2,4,5,10,11], we computed the sensitivity (also

referred to as detection rate) Se¼ TP=ðTPþFNÞ and the positive

predictivity Pþ ¼ TP=ðTPþFPÞ, where TP denotes the number

of true positive detections (wave was present and was

detected), FN stands for the number of false negative detec-

tions (wave was present but was missed), and FP for the

number of false positive detections (wave was not present

but was detected). The performance of wave delineation

was measured by the average (denoted as m) and standard

deviation (denoted as s) of the time differences between the

results of the considered method and the corresponding

cardiologist annotations. The indicated time values (in ms)

are based on a sampling frequency of 250 Hz. The quantities

m and s were computed separately for the wave onset times

tP;on and tT;on, the wave peak times tP;peak and tT;peak, and the

wave end times tP;end and tT;end. We note that while the QTDB

includes annotations made by two cardiologists, we consid-

ered only those of the first cardiologist, who provided

annotations for at least 30 beats per dataset.

Table 2 shows the results for Se, Pþ , and m7s obtained

for the entire QTDB. It can be seen that the two proposed

methods detect the P and T waves annotated by the

cardiologist with high sensitivity: the sensitivity Se is

100% for the T waves and 99.93% or 99.95% for the P

waves. Similarly good results were obtained for the posi-

tive predictivity Pþ , which is between 98.01% and 99.30%

for the T waves and 99.10% or 99.23% for the P waves. Both

the Se values and the Pþ values are typically better than

those obtained with the other methods, including the

recently proposed multi-beat method of [10]. Regarding

the delineation performance, it is seen from Table 2 that

Fig. 5. Four other consecutive segments from QTDB dataset sele0136 (blue) superimposed with their reconstructions using the estimated parameters

(dotted red). (a) PCGS multi-beat method of [10]; (b) proposed beat-to-beat BGS method; (c) proposed beat-to-beat MPF method. (For interpretation of the

references to color in this figure caption, the reader is referred to the web version of this article.)



the two proposed methods delineate the annotated P and T

waves with mean errors jmj not exceeding 4 ms (except for

tT;on) and with smaller standard deviations s than the other

methods (with two exceptions). We note that delineation

error tolerances have been recommended by the CSEWorking

Party [32]. In particular, the standard deviation s for tP;on,

tP;end, and tT;end should be at most 2sCSE, which is listed in the

last row of Table 2. However, a stricter recommendation

proposed in [4] is srsCSE. According to Table 2, the standard

deviations for tP;end achieved by both proposed methods and

the standard deviation for tP;on achieved by the proposed MPF

method comply with the loose recommendation. For the tT;end
results, both proposed methods comply with the strict

recommendation. In Table 2, the advantage of the proposed

beat-to-beat methods over the multi-beat method of [10] is

not as clear as in Figs. 4 and 5. This is because only a small part

of the signals evaluated in Table 2 exhibit obvious inter-beat

waveform variations. From Table 2, it is furthermore seen that

the detection and delineation results obtained with the two

proposed methods are quite similar.

To further appreciate the differences between the two

proposed methods, we conducted a quantitative compar-

ison of their waveform estimation performance. First, in

order to constitute our ground truth, we visually selected

from the MIT-BIH Normal Sinus Rhythm Database 20

segments of ECG signals, each of duration 10 s, with a

high SNR and no significant arrhythmia. Then, to generate

realistic ECG signals, the ground truth was corrupted by

adding muscular activity noise from the MIT-BIH noise

stress test database with an SNR ranging from 20 to

Table 2

Comparison of the detection and delineation performance of the proposed beat-to-beat BGS and MPF methods with that of the PCGS multi-beat method of

[10], the wavelet transform based method of [4] (WT), the low-pass differentiation based method of [2] (LPD), and the action potential based method of [5].

The variances of these methods are compared with the delineation error tolerance of [32], which is provided in the last row. (N/A: not available).

Method Parameters tP;on tP;peak tP;end tT;on tT;peak tT;end

Beat-to-beat BGS (proposed) Annotations 3176 3176 3176 1345 3403 3403

Se (%) 99.93 99.93 99.93 100 100 100

Pþ (%) 99.10 99.10 99.10 98.01 99.30 99.30

m7s (ms) 3.4714.2 1.175.3 %2.179.8 6.8716.3 %0.874.1 %3.1714.0

Beat-to-beat MPF (proposed) Annotations 3176 3176 3176 1345 3403 3403

Se (%) 99.95 99.95 99.95 100 100 100

Pþ (%) 99.23 99.23 99.23 98.67 99.20 99.20

m7s (ms) 3.178.3 1.275.3 2.779.8 6.5716.3 %0.474.8 %3.8714.2

Multi-beat partially collapsed Gibbs sampler [10] Annotations 3176 3176 3176 1345 3403 3403

Se (%) 99.60 99.60 99.60 100 100 100

Pþ (%) 98.04 98.04 98.04 97.23 99.15 99.15

m7s (ms) 1.7710.8 2.778.1 2.5711.2 5.7716.5 0.779.6 2.7713.5

WT [4] Annotations 3194 3194 3194 N/A 3542 3542

Se (%) 98.87 98.87 98.75 N/A 99.77 99.77

Pþ (%) 91.03 91.03 91.03 N/A 97.79 97.79

m7s (ms) 2.0714.8 3.6713.2 1.9712.8 N/A 0.2713.9 %1.6718.1

LPD [2] Annotations N/A N/A N/A N/A N/A N/A

Se (%) 97.70 97.70 97.70 N/A 99.00 99.00

Pþ (%) 91.17 91.17 91.17 N/A 97.74 97.74

m7s (ms) 14.0713.3 4.8710.6 %0.1712.3 N/A %7.2714.3 13.5727.0

Action potential based method [5] Annotations N/A N/A N/A N/A N/A N/A

Se (%) N/A N/A N/A N/A 92.60 92.60

Pþ (%) N/A N/A N/A N/A N/A N/A

m7s (ms) N/A N/A N/A 20.9729.6 %12.0723.4 0.8730.3

Delineation error tolerance 2sCSE (ms) 10.2 N/A 12.7 N/A N/A 30.6

Fig. 6. Waveform estimation SNR improvement measure SNRimp obtained

with the proposedMPF and BGS methods and the multi-beat PCGSmethod

of [10] versus the input SNR for 20 signal segments selected from the

MIT-BIH Normal Sinus Rhythm database and corrupted by muscular

activity noise.



%5 dB. For a quantitative evaluation, we considered the

SNR improvement measure defined as

SNRimp ¼ 10 log
Jx%cJ

2

Jz%cJ
2

 !

where x is the noisy signal, c is the clean signal, and z is

the estimated signal. This evaluation was carried out only

on the non-QRS intervals (P and T waveforms) of each

signal. In order to obtain a fair performance comparison

between the different algorithms, 20 Monte Carlo runs of

each method were considered for each ECG signal seg-

ment. The output SNR was averaged over the 400 results

for each input SNR (20 runs for each of the 20 signal

segments). In Fig. 6, the means and standard deviations of

the SNR improvement SNRimp are plotted versus the input

SNR. It can be observed that the proposed BGS and MPF

algorithms clearly outperform the PCGS method [10] in

terms of SNR improvement. Furthermore, the MPF algo-

rithm outperforms the BGS algorithm.

6. Conclusion

This paper presented and studied two Bayesian methods

for beat-to-beat P and T wave delineation and waveform

estimation. Instead of using a processing window that con-

tains several successive beats involving the same P and T

waveforms by assumption, the proposed methods account for

beat-to-beat variations of the P and T waveforms by proces-

sing individual beats sequentially (i.e., with memory). First, a

block Gibbs sampler (BGS) method was proposed to estimate

the unknown parameters of the beat-to-beat Bayesian model.

Alternatively, in order to take advantage of all the available

information contained in the past of the beat to be processed,

a dynamic model was proposed. This model exploits the

sequential nature of the ECG signal by using a random walk

model for the waveform coefficients. A marginalized particle

filter (MPF) was then proposed to estimate the unknown

parameters of the dynamic model.

The main features and contributions of this work can

be summarized as follows:

1. Beat-to-beat BGS method
0 The proposed Bayesian model uses the P and T wave-

form estimates of the previous beat as prior informa-

tion for detecting/estimating the current P and T waves.
0 By accounting for the local dependencies in, and the

sequential nature of, ECG signals, the proposed BGS

exhibits a faster convergence than the samplers

used in [10,11].
0 The high accuracy of the proposed technique for P

and T waveform estimation allows a threshold-free

delineation technique to be used.
0 The beat-to-beat processing mode leads to smaller

memory requirements and a lower computational

complexity compared to the multi-beat Bayesian

methods in [10,11].

2. Beat-to-beat MPF method
0 The sequential nature of the ECG signal is exploited

by using a dynamic model within the Bayesian

framework.

0 The proposed MPF method efficiently estimates the

unknown parameters of the dynamic model. Thanks

to the marginalization, a smaller number of particles

is needed for good estimation performance, com-

pared to the classical particle filter.
0 Compared to the BGS method, the MPF method is

potentially advantageous in that it considers all the

available beats in the waveform estimation.

The statistical models used for these two methods are similar,

except for two minor differences: (1) the BGS processes P and

T waves simultaneously, in each non-QRS interval, whereas

the MPF processes them separately; (2) the MPF estimates the

noise variance during a preprocessing step in order to obtain a

reasonable computational complexity.

The proposed beat-to-beat Bayesian methods were

validated using the QT database. A comparison with

the method of [10] and with other benchmark methods

demonstrated that both proposed methods can provide

significant improvements regarding P and T wave detec-

tion rate, positive predictivity, and delineation accuracy.

Moreover, whereas the delineation results obtained with

the two proposed methods are quite similar, the MPF

outperforms the BGS from a waveform estimation point

of view, at the price of a higher computational cost. We

note that the proposed methods are single-lead based ECG

processing methods. They can be extended to multi-lead

ECG signals by including post-processing decision rules to

determine global marks from the single-lead delineation

results [33].

Besides its suitability for real-time ECG monitoring,

another advantage of the proposed beat-to-beat proces-

sing mode is the possibility of analyzing the beat-to-beat

variation and evolution of the P and T waveforms. Poten-

tial clinic applications include T wave alternans (TWA)

detection in intra-cardiac electrograms. This application is

currently under investigation.
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