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Abstract. Fluid reductions of the Vlasov-Ampère equations that preserve the

Hamiltonian structure of the parent kinetic model are investigated. Hamiltonian

closures using the first four moments of the Vlasov distribution are obtained, and

all closures provided by a dimensional analysis procedure for satisfying the Jacobi

identity are identified. Two Hamiltonian models emerge, for which the explicit closures

are given, along with their Poisson brackets and Casimir invariants.
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1. Introduction

The Vlasov-Ampère set of equations is a suitable framework for describing the dynamics

of systems interacting through electrostatic forces. In this work, we focus on the study

of electrostatic plasmas even though the results may be applied to more general systems

described in part by the Vlasov equation. We consider a one-dimensional plasma made

of electrons of unit mass and negative unit electric charge, evolving in a neutralizing

background of static ions. The evolution of the distribution function of the electrons

f , defined on phase space with coordinates (x, v), and electric field E is given by the

Vlasov-Ampère equations,

∂tf = −v∂xf + Ẽ∂vf, (1)

∂tE = −4π̃, (2)

where Ẽ and ̃ are the fluctuating parts of the electric field E and the current density

j = −
∫
vf dv respectively. We assume vanishing boundary conditions at infinity in the

velocity v so that integrals such as the charge and current densities are well-defined. In

this work, we limit ourselves to the study of systems of unit length in the spatial domain

x with periodic boundary conditions. The fluctuating part of the electric field is defined

by Ẽ = E −
∫ 1

0
E dx. The system is fully nonlinear, but has a form that builds in the

preservation of the spatial average of E and maintains momentum conservation.

The use of fluid reductions to describe the dynamics of a plasma is ubiquitous

in plasma physics. Indeed, this usually allows one to decrease the complexity of the

problem at hand and to gain physical insight into the phenomenon under investigation

since the dimension of phase space is reduced. Fluid reductions of the Vlasov-Ampère

equations are done by introducing fluid quantities such as the fluid moments

Pn =

∫
vnf(x, v, t) dv. (3)

The associated dynamical equations are then obtained by multiplying Eq. (1) by vn and

integrating with respect to the velocity. This leads to

∂tPn = −∂xPn+1 − nPn−1Ẽ, (4)

∂tE = 4πP̃1, (5)

for all n ∈ N. In order for this system to be reduced, one has to truncate the

infinite sequence of Eq. (4). Truncating this system at order N , that is considering

(P0, P1, . . . , PN , E) as dynamical field variables, one can see from Eq. (4) that the time

evolution of PN depends on PN+1. As a consequence, it is necessary to express PN+1 in

terms of (P0, P1, . . . , PN , E) in order to close Eqs. (4) and (5) and thereby obtain a fluid

reduction.

Many models have been proposed based on as many closures with various

requirements (see, e.g., Refs. [1, 2, 3, 4]). A usual procedure consists in assuming a

particular form for the distribution function f (e.g., Dirac, Maxwellian,. . . ) depending

on a finite number of parameters, and expressing the closure with respect to these
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parameters [5]. Alternatively, closures have been constructed in order to recover certain

kinetic effects [6, 7, 8, 9, 10, 11, 12]. In any event, a reduction by closure should

be such that, if the parent model possesses a Hamiltonian structure [13, 14, 15, 16],

then the resulting fluid model should also have one, after discarding all the terms

that are supposed to provide dissipation. A closure procedure ignoring this aspect

could potentially lead to the introduction of some nonphysical dissipation [17, 18].

Consequently, here we use a procedure that preserves the Hamiltonian structure of the

parent kinetic (Vlasov-Ampère) system, which is one of its most important structural

features. Specifically, in this work we present a model for the first four fluid moments of

the distribution function, namely the density ρ, the fluid velocity u, the pressure P and

the heat flux q. This allows us to account for the time evolution of the heat flux, which

is of great importance for the study of transport phenomena inside the plasma. For such

a model with four moments, one has to find a closure for the fifth order moment of the

distribution function, namely P4. Here, we determine all the closures, obtained from

a procedure based on dimensional analysis, that preserve the Hamiltonian structure of

the parent model [19, 14] given by Eqs. (1) and (2). We show that there are only two

such Hamiltonian closures. The equations of motion of one of these two models are

identical to the ones obtained with a bi-delta reduction [20, 21, 22], i.e., assuming that

the Vlasov distribution has the form

f(x, v, t) = ω1δ(v − µ1) + ω2δ(v − µ2),

where ω1,2 and µ1,2 depend on space and time. It should be noted here that we obtain

these equations without any assumption on the special form of the distribution function.

We provide the explicit expressions of the Hamiltonian and the Poisson bracket for the

two Hamiltonian models. In addition, we derive the global Casimir invariants, which are

specific invariants resulting from the knowledge of the Poisson bracket. These conserved

quantities can be used, e.g., to ensure the validity of a numerical simulation of the

equations of motion.

The paper is organized as follows. In Sec. 2 we describe the methodology used for

the derivation of the two Hamiltonian reduced models. We start from the definitions

of the appropriate variables, namely, the reduced fluid moments. Subsequently, we

introduce our method, based on dimensional analysis, which leads to models that obey

the Jacobi identity. We show that there are only two such models. In Sec. 3, we

analyze the two resulting Hamiltonian closures, providing explicit expressions for their

Hamiltonians, Poisson brackets, and Casimir invariants.

2. Method

2.1. Reduced moments

Our purpose is to build a Hamiltonian fluid model for the first four moments of the

distribution function, namely the density ρ, the fluid velocity u, the pressure P , the heat

flux q and the electric field E. These models will be referred to as 4+1 field models,
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where the 4 refers to the four first moments of the Vlasov distribution (or equivalently

to ρ, u, P and q) and the 1 refers to the electric field E. We begin by considering the

Poisson structure of the parent model with (f, E) as dynamical field variables. It was

shown in Ref. [23] that the system of Eqs. (1)-(2) possesses a Hamiltonian structure

with Poisson bracket

{F,G} =

∫
f
[
∂xFf∂vGf − ∂xGf∂vFf + 4π(F̃E∂vGf − G̃E∂vFf )

]
dxdv, (6)

where Ff (resp. FE) denotes the functional derivative of F with respect to f (resp. E).

In addition, Bracket (6) is bilinear and satisfies the Leibniz rule and the Jacobi identity.

The Hamiltonian of the system is given by

H =

∫
f
v2

2
dxdv +

∫
E2

8π
dx, (7)

where the first term accounts for the kinetic energy of the particles and the second

one corresponds to the energy of the electric field. Together with Bracket (6), this

Hamiltonian leads to Eqs. (1) and (2) by using ∂tf = {f,H} and ∂tE = {E,H}.

We recall that such a bracket has Casimir invariants, i.e., functionals C that Poisson-

commute with any other functionals of the Poisson algebra, {C, F} = 0 for all F .

Bracket (6) has the following global (i.e., independent of the coordinates x and v)

Casimir invariants

C1 =

∫
ϕ(f) dxdv,

C2 =

∫
E dx,

for any scalar function ϕ, and a local Casimir invariant

CL = ∂xE + 4π

∫
fdv,

which is equivalent to Gauss’s law.

The change from the kinetic to the fluid description is done by performing the

change of variables defined by Eq. (3) in Bracket (6) and Hamiltonian (7). The latter

becomes

H =
1

2

∫ (
P2 +

E2

4π

)
dx.

Making use of the chain rule to transform the functional derivatives, Bracket (6) becomes

[24, 25, 26]

{F,G} =

∫
j
[
Pi+j−1(Gj∂xFi − Fj∂xGi) + 4πPj−1(GjF̃E − FjG̃E)

]
dx, (8)

where Fn denotes the functional derivative of F with respect to Pn, and summation is

implicit over the repeated indices i and j. Because we want to construct a Hamiltonian

model for the first four moments of the distribution function, we consider functionals of

the kind F [P0, P1, P2, P3, E]. However, the Poisson bracket (8) of two functionals of this
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kind depends explicitly on two additional moments, namely P4 and P5. In order to close

the system, these two additional moments need to be expressed in terms of Pn≤3 and

E. As a result, the Jacobi identity is no longer satisfied in general, and the resulting

truncated and closed bracket is not of Poisson type. Consequently, the resulting system

is not Hamiltonian, or in other terms, the reduction procedure potentially includes

dissipation. We notice that the closure has to be performed on two moments, P4 and

P5, which slightly differs from what has been stated in the introduction, concerning

the closure performed on the equations of motion directly, where only one additional

moment, P4, needs to be closed. However we shall see in Sec. 2.2 that the expression of

P5 is entirely determined by P4.

We introduce the reduced fluid moments, which we find to be more suitable variables

for our purpose,

ρ =

∫
f dv, u =

1

ρ

∫
vf dv, Sn =

1

ρn+1

∫
(v − u)nf dv, (9)

for all n ≥ 2. The first and second ones correspond respectively to the usual density and

fluid velocity. The higher-order moments are the central fluid moments with a specific

scaling with respect to the density. The change from the usual fluid moments Pn to the

reduced fluid moments (ρ, u, Sn), used hereafter, is invertible so that the results, even

though they are expressed in a different set of coordinates, are equivalent. This change

is given by

ρ = P0, u =
P1

P0
, Sn =

1

P n+1
0

n∑

m=0

(
n

m

)(
−P1

P0

)n−m

Pm,

for all n ≥ 2. The inverse of this transformation is given by

P0 = ρ, P1 = ρu, Pn = ρ

[
un +

n∑

m=2

(
n

m

)
ρmun−mSm

]
.

Explicitly for the first four moments of the distribution function, this change of variables

is given by

ρ = P0, u =
P1

P0
,

S2 =
1

P 3
0

(
P2 −

P 2
1

P0

)
, S3 =

1

P 4
0

(
P3 − 3

P1P2

P0
+ 2

P 3
1

P 2
0

)
,

with the inverse

P0 = ρ, P1 = ρu, P2 = ρ
(
u2 + ρ2S2

)
, P3 = ρ

(
u3 + 3ρ2uS2 + ρ3S3

)
.

In terms of the moments, Hamiltonian (7) is

H =
1

2

∫ (
ρu2 + ρ3S2 +

E2

4π

)
dx. (10)

The first part of Hamiltonian (10) accounts for the kinetic energy of the system while

its second part corresponds to the internal energy. The last term, which accounts for

the electric energy, remains unchanged compared to Eq. (7). By considering functionals
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of the kind F [ρ, u, S2, S3, E] and using the chain rule for the functional derivatives (see

Appendix C for more details), Bracket (6) takes the form

{F,G} =

∫ [
Gu∂xFρ − Fu∂xGρ + 4π(GuF̃E − FuG̃E)

−
1

ρ
(GuFi − FuGi)∂xSi + αij

Fi

ρ

Gj

ρ
+ ∂x

(
Fi

ρ

)
βij
Gj

ρ

]
dx, (11)

where Fi denotes the functional derivative of F with respect to Si. From now on and

unless otherwise stated, summation from 2 to 3 over repeated indices is implicit. The

matrices α and β have indices ranging from 2 to 3 such that

α = ∂x

(
2S3 2S4 − 3S2

2

3S4 − 6S2
2 3S5 − 12S2S3

)
, β =

(
4S3 5S4 − 9S2

2

5S4 − 9S2
2 6S5 − 24S2S3

)
. (12)

We notice that ∂xβ = α+αt, a property that ensures that Bracket (11) is antisymmetric.

From Definitions (12) we see that the closure requires reexpression of S4 and S5, i.e.,

one has to express these two reduced moments with respect to the dynamical variables

(ρ, u, S2, S3, E) such that Bracket (11) satisfies the Jacobi identity.

We remark that Bracket (11) has several subalgebras. Trivial ones include F [ρ] (i.e.,

the algebra of functionals of the type F [ρ]), F [u], F [E], F [ρ, E], and non-trivial ones

include F [ρ, u], F [ρ, S2, S3], F [u,E], F [ρ, u, S2, S3], F [ρ, u, E] and F [ρ, S2, S3, E]. The

most interesting one is the subalgebra of functionals F [ρ, S2, S3] for which ρ becomes

a Casimir invariant. The existence of this subalgebra is the reason for considering the

reduced fluid moments Sn.

2.2. The Hamiltonian constraints

In order to be a Poisson bracket, Bracket (11) must satisfy the Jacobi identity,

{F, {G,H}}+ {H, {F,G}}+ {G, {H,F}} = 0.

Here we determine the conditions on S4 and S5 resulting from requiring the Jacobi

identity. We begin by assuming that S4 and S5 depend on ρ, u, S2, S3, E and their

derivatives ∂nxρ, ∂
n
xu, ∂

n
xS2, ∂

n
xS3, ∂

n
xE for n lower than some order ν. Using the result

obtained in Appendix A, we conclude that S4 and S5 do not depend on ρ, u, E and

their derivatives ∂nxρ, ∂
n
xu, ∂

n
xE. In addition, we show in Appendix B that in order for

the Jacobi identity to be satisfied, we need to impose

γljmγkij = γkjmγlij,

for all i, k, l and m ranging from 2 to 3, where the summation is implicit on j, and

γljm(Sk, ∂xSk, . . . , ∂
ν−1
x Sk) =

∂αlj

∂∂νxSm
.

For instance, for l = 2, m = 3, i = 2 and k = 3, we end up with γ233γ323 = 0 since

γ222 = 0 and γ223 = 0 for ν ≥ 2. From Eq. (12), we have 3γ233 = 2γ323, therefore

γ233 = 0, or equivalently

∂S4

∂∂ν−1
x S3

= 0.
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Using Eq. (B.5) leads to

S3
∂α23

∂∂νxS2
= 0.

Since this has to be true for any value of S3, we thus conclude that γ232 = 0, i.e.,

∂S4

∂∂ν−1
x S2

= 0.

Concerning S5, Eq. (B.5) for l = i = 3 leads to

βkj
∂S5

∂∂ν−1
x Sj

= 0. (13)

There are two solutions to Eq. (13). The first solution is given by

∂S5

∂∂ν−1
x S2

= 0,
∂S5

∂∂ν−1
x S3

= 0.

The second solution requires det β = 0, which, using Eq. (12), can be written as

S5 = 4S2S3 +
(5S4 − 9S2

2)
2

4S3
.

Since S4 does not depend on ∂ν−1
x S2 and ∂ν−1

x S3, we again have

∂S5

∂∂ν−1
x S2

= 0,
∂S5

∂∂ν−1
x S3

= 0.

In what follows we will see that the second solution does not lead to a Hamiltonian

closure. By induction on ν down to ν = 2 we show that S4 and S5 have to be functions

of S2 and S3 only. These conditions are necessary but not sufficient, i.e., for any functions

S4 and S5 of S2 and S3, Bracket (11) does not satisfy the Jacobi identity in general.

We compute in Appendix C the necessary and sufficient conditions on the closures

for a fluid bracket of the type (11) to satisfy the Jacobi identity. For four fluid moments,

Eqs. (C.9) and (C.10) are

∂S5

∂S2
= 4S3 +

∂S4

∂S3

(
∂S4

∂S2
− 3S2

)
, (14)

∂S5

∂S3

=

(
∂S4

∂S3

)2

+
∂S4

∂S2

, (15)

6S5 = 4S3

(
3S2 +

∂S4

∂S2

)
−
∂S4

∂S3

(
9S2

2 − 5S4

)
. (16)

We see from Eq. (16) that the expression of S5 is fully determined by S4. By introducing

the expression for S5 given by Eq. (16) into Eqs. (14) and (15), we end up with the

following two nonlinear second order partial differential equations:

4S3
∂2S4

∂S2
2

−
∂2S4

∂S2∂S3

(
9S2

2 − 5S4

)
−
∂S4

∂S2

∂S4

∂S3
= 12S3, (17)

4S3
∂2S4

∂S3∂S2
−
∂2S4

∂S2
3

(
9S2

2 − 5S4

)
+ 12S2 =

(
∂S4

∂S3

)2

+ 2
∂S4

∂S2
. (18)

Provided that these two equations are satisfied, Bracket (11) is a Poisson bracket and

the resulting system is Hamiltonian. Solving these equations in general is challenging;
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consequently, in what follows we restrict ourselves to the set of solutions provided by

dimensional analysis [27].

2.3. Closures based on dimensional analysis

We consider all the closures for the fifth-order moment S4 = g(S2, S3) that satisfy the

constraints given by Eqs. (17) and (18) based on a dimensional analysis argument. In

order to proceed, we assume that the closure S4 = g(S2, S3) does not depend on any

further dimensional parameters. This would not be the case for, e.g., diffusion-like

closures (Fourier’s law, Fick’s law, etc...) that introduce phenomenological parameters

resulting from various hypotheses based on characteristic scales of the dynamics of the

system. Indeed, in diffusion processes, diffusion coefficients replace information on the

particle interactions, thus removing small scale dynamics. Instead, we would like our

reduction procedure to be very general and not to depend on the geometry of the system.

Consequently, we seek Hamiltonian closures where S4 = g(S2, S3) do not depend on any

further dimensional parameters.

It can be shown from Eq. (9) that the dimensions of the Sn’s, denoted [Sn], are not

independent. Indeed, for all n ≥ 2 we have [Sn] = An, where A = L2T−1 with L and

T denoting the units of length and time, respectively. As a consequence, the closure

S4 = g(S2, S3) involves three quantities and a unique physical dimension A. Making use

of the Buckingham π theorem [27], there exists two dimensionless quantities, denoted

ζ and ξ, such that S4 = g(S2, S3) reduces to ζ = R(ξ). Therefore, this procedure

eliminates one of the variables in the closure. Defining ζ = S4/S
2
2 and ξ = S3/S

3/2
2 and

inserting these expressions into Eqs. (17)-(18), we get the following two constraints:

3ξR′′(6ξ2 + 9− 5R) +R′(3ξR′ − 18ξ2 +R− 9) + 16ξR = 24ξ, (19)

R′′(6ξ2 + 9− 5R) +R′(R′ − 5ξ) + 4R = 12. (20)

To solve Eqs. (19)-(20), we compute their values for ξ = 0. Defining R0 = R(0),

R′
0 = R′(0), and R′′

0 = R′′(0), Eqs. (19) and (20) become

R′
0(R0 − 9) = 0, (21)

R′′
0(9− 5R0) +R′2

0 + 4R0 = 12. (22)

Equation (21) has two solutions: R′
0 = 0 and R0 = 9. Equation (22) then reads

R′′
0 = 4(3 − R0)/(9 − 5R0) for R′

0 = 0 and R′2
0 = 12(3R′′

0 − 2) for R0 = 9. We now

differentiate Eqs. (19) and (20) with respect to ξ and evaluate them at ξ = 0. This gives

us

R′′
0(9− 7R0) + 2R′2

0 + 8R0 = 12, (23)

R′′′
0 (9− 5R0)− R′

0(3R
′′
0 + 1) = 0. (24)

Using R0 = 9, Eq. (23) together with Eq. (22) leads to R′′
0 = −2/3 and R′2

0 = −48.

As a consequence, this solution is not real and of no interest for our purpose. The

other solutions satisfy (R0, R
′
0, R

′′
0, R

′′′
0 ) = (0, 0, 4/3, 0) and (R0, R

′
0, R

′′
0, R

′′′
0 ) = (1, 0, 2, 0),

where R′′′
0 = R′′′(0). Since the solution is unique for a given set of initial conditions,
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there exist only two solutions to Eqs. (19) and (20). Moreover, one can see that R(−ξ)

is also a solution of these equations. Consequently, the two solutions R are even with

respect to ξ. These two solutions are described in the next section.

3. Hamiltonian fluid models with 4+1 fields

3.1. Model without normal variables

We consider the first solution to Eqs. (19)-(20), corresponding to (R0, R
′
0, R

′′
0, R

′′′
0 ) =

(0, 0, 4/3, 0). As mentioned in Sec. 2.3, the solution R is even. Thus we introduce

R(ξ) = R̄(η), where η = ξ2. Then, Eqs. (19)-(20) become

ξ
[
3ηR̄′′(6η + 9− 5R̄) + R̄′(9 + 3ηR̄′ − 7R̄) + 4R̄− 6

]
= 0, (25)

2ηR̄′′(6η + 9− 5R̄) + R̄′(9 + 2ηR̄′ − 5R̄ + η) + 2R̄− 6 = 0. (26)

By linearly combining these equations to eliminate terms in R̄′′, and introducing the

new variable µ = −(R̄− 3η− 9)/5, we end up with an Abel equation of the second kind

(see, for instance, Ref. [28]):

µµ′ − µ = −
6η + 24

25
,

which has the parametric solution

η(τ) = K
(2− 5τ)2

(3− 5τ)3
− 4, µ(τ) = Kτ

(2− 5τ)2

(3− 5τ)3
, (27)

where K is some constant to be determined. Inserting Eq. (27) into Eqs. (25)-(26)

implies these equations are satisfied if and only if K = 27. This leads to an explicit

expression for the closure ζ = S4/S
2
2 = R(ξ) given by

R(ξ) = 3
[4 + 4t(ξ)2 − t(ξ)(ξ2 − 8)− 8ξ2][2 + 2t(ξ)2 − t(ξ)(ξ2 − 2)− 4ξ2]

[1− 2ξ2 + 3t(ξ) + t(ξ)2]2
, (28)

where

t(ξ) =

(√
ξ2(4 + ξ2)3 − 2− 10ξ2 + ξ4

2

)1/3

.

Furthermore, by using Eq. (16), S5 is given by S5 = S2S3T (ξ) with

T (ξ) = 2
3ξ2 −R(ξ)2 − 7R(ξ)

R(ξ)− 3ξ2 − 9
. (29)

In summary, the Hamiltonian and the Poisson bracket resulting from this closure are

given respectively by Eq. (10) and Eq. (11) with α and β given by Eq. (12) with

S4 = S2
2R

(
S3

S
3/2
2

)
, (30)

S5 = S2S3T

(
S3

S
3/2
2

)
, (31)
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Figure 1. Color map of S4 (in A4 units as defined in Sec. 2.3) given by Eq. (30) as a

function of S2 (in A2 units) and S3 (in A3 units).
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Figure 2. Color map of S5 (in A5 units as defined in Sec. 2.3) given by Eq. (31) as a

function of S2 (in A2 units) and S3 (in A3 units).

where R and T are given by Eqs. (28)-(29). The dependence of the functions R and

T in their arguments is not trivial. In order to help the reader visualize the closure

relations corresponding to Eqs. (30)-(31), we provide, in Fig. 1 (resp. Fig. 2), color

maps showing the dependence of S4 (resp. S5) on S2 and S3. As a side note, we

remark that as S3 goes toward 0, S4 also goes to 0, as shown in Fig. 1. Thus, with this

closure, non-asymmetric distribution functions cannot exist. Consequently, the physical

relevance of this solution is questionable.

In order to further characterize this Poisson bracket, we investigate its Casimir

invariants. These are functionals C[ρ, u, S2, S3, E] that commute with any other
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functionals F , i.e., {F,C} = 0 for all F . In particular, C commutes with the field

variables. As a consequence, we must impose

{ρ, C} = −∂xCu = 0,

which leads to

C[ρ, u, S2, S3, E] = K1

∫
u dx+D[ρ, S2, S3, E],

where K1 is constant. Imposing that C commutes with u leads to

{u, C} = −∂xDρ − 4πD̃E +
1

ρ
Di∂xSi = 0,

whose solution is given by

D[ρ, S2, S3, E] = K2

∫
ρφ(S2, S3) dx+K3

∫
E dx,

where K2 and K3 are constant. Imposing that C commutes with Si leads to

{Si, C} = −
K1

ρ
∂xSi +K2

αij

ρ
φj −

K2

ρ
∂x (βijφj) = 0, (32)

where φi = ∂φ/∂Si. We then solve the associated homogeneous equation (K1 = 0).

Again making use of the Buckingham π theorem, we assume that there exist a real

number a and a function ψ such that φ = Sa
2ψ(S3/S

3/2
2 ). The resulting equations are

8(a− 1)aξψ + ψ′
(
3− 18a+ 30ξ2 − 24aξ2 − 3R + 10aR− 9ξR′

)

+ 3ξ
(
9 + 6ξ2 − 5R

)
ψ′′ = 0,

2aψ + ψ′(−9ξ + 4aξ + 3R′) + (−9− 6ξ2 + 5R)ψ′′ = 0,

4aψ[3− 9a+ (−1 + 5a)R− 3ξR′] = 3ξ[ψ′(1− 4a+ (−17 + 20a)R

− 8(a− 1)T − 6ξR′ + 6ξT ′)− 3ξ(7 + 5R− 4T )ψ′′],

4aψR′ + ψ′[3− 18a+ 5(−3 + 2a)R + 6T − 6ξR′ + 6ξT ′]

= 3ξ(7 + 5R− 4T )ψ′′.

Combining the first two equations leads to

2a(4a− 1)ξψ + [3(1− 6a+ ξ2 − 4aξ2) + (−3 + 10a)R]ψ′ = 0,

whose solution is given by

ψ(ξ) = ψ0 exp




ξ∫
2ay(4a− 1)

3(6a− 1) + 3y2(4a− 1) +R(y)(3− 10a)
dy


 ,

where ψ0 is a constant. Inserting this expression into the previous equations provides the

necessary constraints a = 0 and ψ(ξ) = ψ0. As a consequence, this model does not have

Casimir invariants of the entropy-type [29], i.e., of the form
∫
ρφ(S2, S3) dx. Moreover,

we can show in a similar way that Eq. (32) has no solution for the nonhomogeneous

case (K1 6= 0), i.e., K1 = 0 is required. The Poisson bracket resulting from this closure

has only two global Casimir invariants, given by

C1 =

∫
ρ dx and C2 =

∫
E dx,

which are also Casimir invariants of the Vlasov-Ampère equations.
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Figure 3. Color map of S4 (in A4 units as defined in Sec. 2.3) given by Eq. (33) as a

function of S2 (in A2 units) and S3 (in A3 units).

3.2. Model with normal variables

The second solution to Eqs. (19)-(20) corresponds to the branch (R0, R
′
0, R

′′
0, R

′′′
0 ) =

(1, 0, 2, 0) found in Sec. 2.3, and is given by

R(ξ) = 1 + ξ2.

This leads to

S4 = S2
2 +

S2
3

S2

, (33)

S5 = 2S2S3 +
S3
3

S2
2

. (34)

These functions are plotted in Figs. 3 and 4. Unlike the model without normal variables,

we can see on Fig. 3 that S4 does not go to 0 as S3 goes to 0. As a consequence, this

model allows asymmetric distribution functions and hence seems to be more physically

relevant. Furthermore, one can notice the difference in the amplitude of the closures

between the two models (up to two orders of magnitude) by comparing Figs. 1 and 2

and Figs. 3 and 4. The Hamiltonian and the Poisson bracket resulting from this closure

are given respectively by Eqs. (10) and (11) with α and β given by Eq. (12) and by

replacing the closures S4 and S5 by Eqs. (33) and (34).

Concerning the global Casimir invariants, we show that this Poisson bracket

possesses five Casimir invariants, as many Casimir invariants as field variables, given by

C1 =

∫
ρ dx, C2 =

∫
E dx,

C3 =

∫
ρ

√
4S3

2 + S2
3

S2

dx, C4 =

∫
ρ

S3√
4S3

2 + S2
3

dx,
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Figure 4. Color map of S5 (in A5 units as defined in Sec. 2.3) given by Eq. (34) as a

function of S2 (in A2 units) and S3 (in A3 units).

C5 =

∫ (
u+

ρ

2

S3

S2

)
dx.

From these expressions for the global Casimir invariants, we introduce the normal field

variables ρ, M = u + ρS3/(2S2), Q2 = ρ
√

4S3
2 + S2

3/S2, Q3 = ρS3/
√

4S3
2 + S2

3 and E.

Consequently, Bracket (11) takes the particularly simple (normal) form

{F,G} =

∫ [
GM∂xFρ − FM∂xGρ + 4π(GM F̃E − FMG̃E)− 2G3∂xF2 − 2G2∂xF3

]
dx,

Hamiltonian (10) becomes

H =
1

2

∫ (
ρM2 −M

Q3

Q2
+
ρ

4
Q2

2 +
E2

4π

)
dx,

and the Casimir invariants C3, C4 and C5 become

C3 =

∫
Q2 dx, C4 =

∫
Q3 dx, C5 =

∫
M dx.

As mentioned in Sec. 1, one may be interested in using the pressure P and the heat

flux q as dynamical variables, instead of S2 and S3. Indeed, even though the reduced

moments appear to be very convenient, their physical meaning may not be as clear as

the usual pressure and heat flux quantities. The latter quantities can be expressed in

terms of the reduced moments in the following way:

P = ρ3S2 = P2 −
P 2
1

P0
, q =

ρ4

2
S3 =

P3

2
−

3

2

P1Px2
P0

+
P 3
1

P 2
0

,

in terms of which the closures take the form

S4 =
1

ρ5

(
P 2

ρ
+

4q2

P

)
, S5 =

4q

ρ6

(
P

ρ
+

2q2

P 2

)
.
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Expressed in terms of these variables, Bracket (11) becomes

{F,G} =

∫ [
Gu∂xFρ − Fu∂xGρ +

3P

ρ
(Gu∂xFP − Fu∂xGP )

+ 4π(GuF̃E − FuG̃E) +
2

ρ
(GuFP − FuGP )∂xP +

4q

ρ
(Gu∂xFq − Fu∂xGq)

+
3

ρ
(GuFq − FuGq)∂xq + ρ4ᾱ22FPGP + ρ5ᾱ23FPGq + ρ5ᾱ32FqGP

+ ρ6ᾱ33FqGq + ρ2β̄22GP∂x(ρ
2FP ) + ρ3β̄23Gq∂x(ρ

2FP ) + ρ2β̄32GP∂x(ρ
3Fq)

+ ρ3β̄33Gq∂x(ρ
3Fq)

]
dx,

where

ᾱ = ∂x

(
4q/ρ4 4q2/(ρ5P )− P 2/(2ρ6)

6q2/(ρ5P )− 3P 2/(2ρ6) 6q3/(ρ6P 2)− 3Pq/ρ7

)
,

and

β̄ =

(
8q/ρ4 10q2/(ρ5P )− 2P 2/ρ6

10q2/(ρ5P )− 2P 2/ρ6 12q3/(ρ6P 2)− 6Pq/ρ7

)
.

Hamiltonian (10) takes the simple form

H =
1

2

∫ (
ρu2 + P +

E2

4π

)
dx,

and the equations of motion, obtained from ∂tF = {F,H}, are

∂tρ = −ρ∂xu− u∂xρ,

∂tu = −u∂xu−
1

ρ
∂xP − Ẽ,

∂tP = −u∂xP − 3P∂xu− 2∂xq,

∂tq = −u∂xq − 4q∂xu− 2∂x

(
q2

P

)
+

1

4ρ3
∂x
(
ρ2P 2

)
,

∂tE = 4πρ̃u.

We notice that these equations are identical (at least the ones concerning ρ, u, P and

q) to the equations obtained with a bi-delta reduction [30, 31, 22, 32]. Therefore, as a

by-product of our reduction procedure, we have proved here that the bi-delta reduction

is Hamiltonian. This can also be shown by effecting a chain rule calculation relating the

Vlasov-Poisson bracket [19] to that of fluid streams [33].

A benefit of knowing the Hamiltonian structure of the reduced model is the ability

to use the Poisson bracket to obtain the additional invariants, e.g., Casimir invariants,

that can be tricky to derive directly from the equations of motion. For example, the

global Casimir invariants C3, C4 and C5 for the present system are seen to be

C3 =

∫ √
P

ρ
+
q2

P 2
dx, C4 =

∫
ρ q

√
ρ

P 3 + ρq2
dx, C5 =

∫ (
u+

q

P

)
dx.

We note that these invariants can be used to check the validity of numerical algorithms

used for the integration of the equations of motion.
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3.3. Comparison with Hamiltonian fluid models with 3+1 fields

The same analysis done for 4+1 fields can be carried out for fluid models with 3+1

fields, namely with the field variables (P0, P1, P2, E) or equivalently (ρ, u, S2, E). This

was partly done in Ref. [29] (in the absence of electric field), where it was shown that

Hamiltonian fluid models are given by closures S3 that only depend on S2. This is also

evident from Appendix C, where the conditions given by Eq. (B.7) are automatically

satisfied (since there is only one value for the indices). The fact that the closure for 3+1

Hamiltonian fluid models only depends on S2 is similar to the fact that the closures for

4+1 fluid models are given by S4 and S5 as functions of only S2 and S3.

A specific closure S3(S2), which corresponds to the dimensional analysis performed

in the present work, is given by

S3 = λS
3/2
2 ,

where λ is a dimensionless constant. The Poisson bracket for this closure is

{F,G}3 =

∫ {
Gu∂xFρ − Fu∂xGρ + 4π(GuF̃E − FuG̃E)

−
1

ρ
(GuF2 − FuG2)∂xS2 + 2λS

3/2
2

[
G2

ρ
∂x

(
F2

ρ

)
−
F2

ρ
∂x

(
G2

ρ

)]}
dx.

It should be noted that the dimensional analysis provides a family of models (labeled

by λ). However there are only three fundamentally different models: one for λ = 0 and

the others for λ = ±1, since all of the other models can be rescaled to λ = ±1 by an

appropriate rescaling of S2, e.g., S̄2 = S2/λ
2. Moreover, the two models λ = 1 and

λ = −1 are linked by symmetry [29]. The model for λ = 0 has the two following global

Casimir invariants:

C1 =

∫
ρ dx and C2 =

∫
E dx,

in addition to the family of Casimir invariants

C =

∫
ρκ(S2) dx,

for any scalar function κ. The two Casimir invariants C1 and C2 are identical to the ones

for 4+1 fields. Concerning the model with λ = 1, the Poisson bracket with 3+1 fields

has C1 and C2 as Casimir invariants, and also has two additional Casimir invariants

C3 =

∫
ρS

1/4
2 dx and C4 =

∫ (
u− 2ρS

1/2
2

)
dx.

Therefore, in total it has four Casimir invariants, i.e., as many as the number of field

variables. The common point between this 3+1 model with λ = 1 and the 4+1 field

model with normal field variables is that both have a generalized velocity as Casimir

invariant. It should also be noticed that the 3+1 fluid model has one Casimir invariant

of the entropy type, i.e., of the form
∫
ρφ(S2, . . . , SN) dx, whereas the 4+1 fluid model

has two of this type.
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4. Summary

In summary, starting from the one-dimensional Vlasov-Ampère equations, we built two

Hamiltonian models with the first four moments of the Vlasov distribution function and

the electric field as dynamical variables. Our reduction method relied on the preservation

of the Hamiltonian structure of the Vlasov-Ampère model. The closures we obtain

were derived from a dimensional analysis argument. We showed that there are only

two Hamiltonian closures obtained by this method. A fundamental difference between

these two models was characterized by their Casimir invariants: one model has only

two global Casimir invariants (preserved from the Vlasov-Ampère system), whereas the

second model has three additional ones, two of the entropy-type and one generalized

velocity.
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Appendix A. Independence of α and β of Bracket (11) on ρ, u, and E

In this appendix, we consider the following bracket defined on functionals of the form

F [ρ, u, S2, . . . , SN , E] for N ≥ 2:

{F,G} =

∫ [
Gu∂xFρ − Fu∂xGρ + 4π(GuF̃E − FuG̃E)−

1

ρ
(GuFi − FuGi)∂xSi

+ αij
Fi

ρ

Gj

ρ
+ ∂x

(
Fi

ρ

)
βij
Gj

ρ

]
dx, (A.1)

where α and β are matrices satisfying βt = β and ∂xβ = α+αt, assuring antisymmetry

of the bracket. Here we assume a priori that α and β depend on both the dynamical

variables ρ, u, Sk (for k ≥ 2) and E, and their derivatives ∂nxρ, ∂
n
xu, ∂

n
xSk and ∂nxE for

n ≥ 1. Repeated indices are implicitly summed from 2 to N , unless specified. We seek

necessary conditions on α and β for Bracket (A.1) to satisfy the Jacobi identity,

{F, {G,H}}+ {H, {F,G}}+ {G, {H,F}} = 0.

In this appendix, we prove that α and β do not depend on the variables ρ, u and E and

their derivatives ∂nxρ, ∂
n
xu and ∂nxE for n ≥ 1.

First we split Bracket (A.1) into two parts

{F,G} = {F,G}J + {F,G}∗,
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where the first part,

{F,G}J =

∫ [
Gu∂xFρ − Fu∂xGρ + 4π(GuF̃E − FuG̃E)−

1

ρ
(GuFi − FuGi)∂xSi

]
dx,

satisfies the Jacobi identity [14, 15]. The Jacobi identity is then equivalent to

{F, {G,H}J}∗ + {F, {G,H}∗}J + {F, {G,H}∗}∗+ 	(F,G,H)= 0, (A.2)

where 	(F,G,H) denotes the summation over circular permutation of any three functionals

F , G and H . Using the lemma stating that only the functional derivatives with respect

to the explicit dependence on the variables need be taken into account for the Jacobi

identity [14], the first term becomes

{F, {G,H}J}∗ =

∫ [
αij

ρ

Fi

ρ

[
Hu∂x

(
Gj

ρ

)
−Gu∂x

(
Hj

ρ

)
+
Gj

ρ
∂xHu −

Hj

ρ
∂xGu

]

+
βij
ρ
∂x

(
Fi

ρ

)(
Gj

ρ
∂xHu −

Hj

ρ
∂xGu

)]
dx, (A.3)

where we have used the fact that β is symmetric. The second term in Eq. (A.2) is

{F, {G,H}∗}J =

∫ [
{G,H}∗u∂xFρ + {G,H}∗ρ∂xFu + 4π({G,H}∗uF̃E − {G,H}∗EF̃u)

−
1

ρ
({G,H}∗uFi − Fu{G,H}∗i )∂xSi

]
dx, (A.4)

where

{G,H}∗ρ =

(
αji

ρ
−
αij

ρ

)
Gi

ρ

Hj

ρ
+
βij
ρ

[
∂x

(
Hj

ρ

)
Gi

ρ
− ∂x

(
Gi

ρ

)
Hj

ρ

]

+ (−1)n∂nx

([
∂αij

∂∂nxρ

Gi

ρ
+

∂βij
∂∂nxρ

∂x

(
Gi

ρ

)]
Hj

ρ

)

{G,H}∗u = (−1)n∂nx

([
∂αij

∂∂nxu

Gi

ρ
+

∂βij
∂∂nxu

∂x

(
Gi

ρ

)]
Hj

ρ

)
,

{G,H}∗k = (−1)n∂nx

([
∂αij

∂∂nxSk

Gi

ρ
+

∂βij
∂∂nxSk

∂x

(
Gi

ρ

)]
Hj

ρ

)
,

{G,H}∗E = (−1)n∂nx

([
∂αij

∂∂nxE

Gi

ρ
+

∂βij
∂∂nxE

∂x

(
Gi

ρ

)]
Hj

ρ

)
.

We consider the terms of the type (Fu, Gi, Hj) in the Jacobi identity (A.2). These terms

only come from Eqs. (A.3) and (A.4). By using successive integrations by parts and

assuming that the boundary conditions are such that the associated boundary integrals

vanish, the Jacobi identity for these terms becomes
∫ {[

∂αij

∂∂nxρ

Gi

ρ
+

∂βij
∂∂nxρ

∂x

(
Gi

ρ

)]
Hj

ρ
∂n+1
x Fu −

Hj

ρ
∂x

(
αij

Gi

ρ

Fu

ρ

)

−αji∂x

(
Gi

ρ

)
Hj

ρ

Fu

ρ
− 4π

[
∂αij

∂∂nxE

Gi

ρ
+

∂βij
∂∂nxE

∂x

(
Gi

ρ

)]
Hj

ρ
∂nx F̃u (A.5)

+

[
∂αij

∂∂nxSk

Gi

ρ
+

∂βij
∂∂nxSk

∂x

(
Gi

ρ

)]
Hj

ρ
∂nx

(
Fu

ρ
∂xSk

)}
dx+ 	(F,G,H)= 0.
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Choosing F =
∫
u dx, G =

∫
ρSl dx and H = ρSm, Eq. (A.5) leads to the necessary

condition

1

ρ
∂xαlm =

αlm

ρ2
∂xρ+

∂αlm

∂∂nxSk
∂nx

(
1

ρ
∂xSk

)
. (A.6)

However, we have by definition

∂xαlm =
∂αlm

∂∂nxρ
∂n+1
x ρ+

∂αlm

∂∂nxu
∂n+1
x u+

∂αlm

∂∂nxSk
∂n+1
x Sk +

∂αlm

∂∂nxE
∂n+1
x E +

∂αlm

∂x
,

where the summation over n is implicit and ∂αlm/∂x denotes the derivative of αlm with

respect to its explicit dependence on x. Eventually, Eq. (A.6) writes

1

ρ

(
∂αlm

∂∂nxρ
∂n+1
x ρ+

∂αlm

∂∂nxu
∂n+1
x u+

∂αlm

∂∂nxSk
∂n+1
x Sk +

∂αlm

∂∂nxE
∂n+1
x E +

∂αlm

∂x

)

=
αlm

ρ2
∂xρ+

∂αlm

∂∂nxSk

∂nx

(
1

ρ
∂xSk

)
. (A.7)

By canceling the only term that depend on ∂ν+1
x ρ in Eq. (A.7), we can show that

∂αlm

∂∂νxρ
= 0.

By performing an induction on ν down to ν = 0, we can show that α does not depend on

ρ and its derivatives. Because the dynamical variables are independent, using the same

reasoning we prove that α cannot depend on v, E and their derivatives, nor can it depend

explicitly on x. The same result can be obtained for β by choosing G =
∫
ρSlx dx.

Therefore a necessary (however not sufficient) condition for Bracket (A.1) to satisfy the

Jacobi identity is that α and β do not depend explicitly on x, ρ, u and E, as well as the

derivatives ∂nxρ, ∂
n
xu and ∂nxE for all n ∈ N.

Appendix B. Dependence of α and β of Bracket (11) on Sk

In this appendix, we derive some necessary conditions on the dependence of α and β

(and their derivatives) of Bracket (11) on Sk. Following Appendix A, we consider two

sets of functionals

(F,G,H) =

(∫
ux dx,

∫
ρSl dx, ρSm

)
,

and

(F,G,H) =

(∫
ux dx,

∫
ρSlx dx, ρSm

)
,

which we insert into Eq. (A.5). Thus we find the necessary conditions

αlm = n
∂αlm

∂∂nxSk

∂nxSk, n
∂βlm
∂∂nxSk

∂nxSk = 0, (B.1)

for all l and m, where we recall the implicit summation over repeated indices. We

assume that α and β depend on the derivatives of Sk up to order ν, where

ν = max{n ∈ N s.t. ∂α/∂∂nxS 6= 0 or ∂β/∂∂nxS 6= 0}.



Hamiltonian closures for fluid models with four moments by dimensional analysis 19

From the first of Eqs. (B.1) we have

∂xβlm =
ν∑

n=0

∂βlm
∂∂nxSk

∂n+1
x Sk = αlm + αml =

ν∑

n=0

n

[
∂αlm

∂∂nxSk

+
∂αml

∂∂nxSk

]
∂nxSk. (B.2)

Differentiating Eq. (B.2) with respect to ∂ν+1Sj leads to

∂βlm
∂∂νxSj

= 0.

As a consequence, the highest derivatives of S appear in α; thus ν becomes

ν = max{n ∈ N s.t. ∂α/∂∂nxS 6= 0}.

The Jacobi identity (A.2) reduces to:

{F, {G,H}}+ 	(F,G,H) =

∫ [
αij

Fi

ρ

{G,H}∗j
ρ

+ βij
{G,H}∗j

ρ
∂x

(
Fi

ρ

)]
dx (B.3)

+ 	(F,G,H)= 0.

This identity corresponds to the Jacobi identity for the subalgebra of observables

F [ρ, S2, . . . , SN ]. Expanding Eq. (B.3) gives

{F, {G,H}}+ 	(F,G,H)=

∫ {
αij

ρ

Fi

ρ
(−1)n∂nx

([
∂αkl

∂∂nxSj

Gk

ρ
+

∂βkl
∂∂nxSj

∂x

(
Gk

ρ

)]
Hl

ρ

)

+ (−1)n+1Fi

ρ
∂x

[
βij
ρ
∂nx

([
∂αkl

∂∂nxSj

Gk

ρ
+

∂βkl
∂∂nxSj

∂x

(
Gk

ρ

)]
Hl

ρ

)]

+ ∂nx

[
αlj

ρ

Hl

ρ
+
βlj
ρ
∂x

(
Hl

ρ

)]
∂αik

∂∂nxSj

Fi

ρ

Gk

ρ

−
Fi

ρ
∂x

(
∂nx

[
αlj

ρ

Hl

ρ
+
βlj
ρ
∂x

(
Hl

ρ

)]
∂βik
∂∂nxSj

Gk

ρ

)

+ ∂nx

[
αkj

ρ

Gk

ρ
+
βkj
ρ
∂x

(
Gk

ρ

)][
∂αli

∂∂nxSj

Hl

ρ
+

∂βli
∂∂nxSj

∂x

(
Hl

ρ

)]
Fi

ρ

}
dx.

Choosing consecutively

(F,G,H) =

(
ρSi,

∫
ρSk dx,

∫
ρSl dx

)
,

(F,G,H) =

(
ρSi,

∫
ρSkx dx,

∫
ρSl dx

)
,

and

(F,G,H) =

(
ρSi,

∫
ρSk dx,

∫
ρSlx dx

)
,

we get the following three conditions:[
∂αik

∂∂νxSj
−

∂βik
∂∂ν−1

x Sj

]
αlj + αkj

∂αli

∂∂νxSj
= 0, (B.4)

βkj
∂αli

∂∂νxSj
= 0, (B.5)

βlj
∂βik

∂∂ν−1
x Sj

= 0. (B.6)
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Due to the fact that ∂xβ = α+αt, Eqs. (B.5) and (B.6) are redundant. We assume that

α depends only linearly on ∂νxSk. We show in Appendix C that this is the case for fluid

brackets. As a consequence, we write

αlj(S, ∂xS, . . . , ∂
ν
xS) = Alj(S, ∂xS, . . . , ∂

ν−1
x S) + γljm(S, ∂xS, . . . , ∂

ν−1
x S)∂νxSm.

By inserting this expression into Eq. (B.4), for the Jacobi identity we need to impose

γljm

[
γikj −

∂βik
∂∂ν−1

x Sj

]
+ γkjmγlij = 0,

for all (i, k, l,m) to make the term proportional to ∂νxSm vanish. However, thanks to

Eq. (B.2) we have
∂βik

∂∂ν−1
x Sj

= γikj + γkij.

This eventually leads to the following conditions:

γljmγkij = γkjmγlij. (B.7)

These commutation relations remind us of the conditions for Lie-Poisson brackets based

on Lie algebra extensions to satisfy the Jacobi identity of Ref. [34]. These conditions on

the tensor γ are necessary but not sufficient.

Appendix C. Jacobi identity for fluid models

In this appendix we find necessary and sufficient conditions for the Jacobi identity

for Bracket (11). We start from the one-dimensional Vlasov-Ampère bracket given by

Eq. (6) and perform a change of variables, from f to (ρ, u, Sn≥2) defined by

ρ =

∫
f dv, ρu =

∫
vf dv, ρn+1Sn =

∫
(v − u)n f dv.

Using the following chain rule expression for the functional derivative with respect to f ,

Ff = F̄ρ +
v − u

ρ
F̄u + F̄n

[
(v − u)n

ρ
−
n + 1

ρ
Sn − n

Sn−1

ρ

(v − u)

ρ

]
,

and after some algebra, we show that the Poisson bracket (6) reduces to Eq. (A.1) with

α and β given by

αnm = n∂xSn+m−1 − nSn−1∂xSm − n(m+ 1)Sm∂xSn−1 − nmSm−1∂xSn, (C.1)

βnm = (m+ n)Sn+m−1 −m(n + 1)SnSm−1 − n(m+ 1)SmSn−1, (C.2)

where n,m ≥ 2 and S1 = 0. The resulting bracket is of Poisson type. Next, we truncate

the matrices α and β such that αmn = 0 and βmn = 0 form > N or n > N . The matrices

α and β depend on Sn for n = 2, . . . , 2N − 1. We restrict ourselves to the case where α

and β are functions of (S2, . . . , SN), i.e., we introduce N−1 closures Sk = Sk(S2, . . . , SN)

for k = N + 1, . . . , 2N − 1. In this truncation/reduction, the bracket is no longer of

Poisson type in general. In this appendix, we establish the necessary and sufficient
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conditions for the Jacobi identity to be satisfied. From Appendix A and Appendix B,

this Jacobi identity is seen to be

{F, {G,H}}+ 	(F,G,H)=

∫ {
∂x

(
Fi

ρ

)
1

ρ
∂x

(
Gk

ρ

)
Hl

ρ

[
βij
∂βkl
∂Sj

− βij
∂αkl

∂∂xSj

− βkj
∂αli

∂∂xSj

]
+
Fi

ρ

1

ρ

Gk

ρ

Hl

ρ

[
αij

∂αkl

∂Sj
+ αlj

∂αik

∂Sj
+ αkj

∂αli

∂Sj

− αij∂x

(
∂αkl

∂∂xSj

)
− αlj∂x

(
∂αik

∂∂xSj

)
− αkj∂x

(
∂αli

∂∂xSj

)]

+
Fi

ρ

1

ρ
∂x

(
Gk

ρ

)
Hl

ρ

[
αij

∂βkl
∂Sj

+ βkj
∂αli

∂Sj

− αij
∂αkl

∂∂xSj

− αlj
∂αik

∂∂xSj

− βkj∂x

(
∂αli

∂∂xSj

)]
+ ∂x

(
Fi

ρ

)
1

ρ

Gk

ρ

Hl

ρ

[
βij
∂αkl

∂Sj
+ αlj

∂βik
∂Sj

− βij∂x

(
∂αkl

∂∂xSj

)
− αlj

∂αik

∂∂xSj
− αkj

∂αli

∂∂xSj

]

+
1

ρ
∂x

(
Hl

ρ

)
Fi

ρ

Gk

ρ

[
βlj
∂αik

∂Sj

− αij
∂αkl

∂∂xSj

+ αkj
∂βli
∂Sj

− βlj∂x

(
∂αik

∂∂xSj

)
− αkj

∂αli

∂∂xSj

]
+ ∂x

(
Fi

ρ

)
1

ρ
∂x

(
Hl

ρ

)
Gk

ρ

[

βlj
∂βik
∂Sj

− βij
∂αkl

∂∂xSj
− βlj

∂αik

∂∂xSj

]
(C.3)

+
1

ρ
∂x

(
Gk

ρ

)
∂x

(
Hl

ρ

)
Fi

ρ

[
βkj

∂βli
∂Sj

− βlj
∂αik

∂∂xSj

− βkj
∂αli

∂∂xSj

]}
dx.

Choosing F = ρSi, G =
∫
ρSk dx and H =

∫
ρSl dx, Eq. (C.3) reduces to

αij

ρ

(∂αlk

∂Sj

− ∂x
∂αlk

∂∂xSj

)
+ ∂x

(
βij
ρ

[
∂x

(
∂αlk

∂∂xSj

)
−
∂αlk

∂Sj

]
−
αkj

ρ

∂βil
∂Sj

)

+
αkj

ρ

∂αil

∂Sj

+
1

ρ

∂αil

∂∂xSj

∂xαkj +
αlj

ρ

∂αki

∂Sj

+
∂αki

∂∂xSj

∂x

(
αlj

ρ

)
= 0. (C.4)

Equation (C.4) can be split into two terms with only one depending on ρ. To make the

term that depends on ρ vanish, we have to impose

βij

[
∂x

(
∂αlk

∂∂xSj

)
−
∂αlk

∂Sj

]
− αkj

∂βil
∂Sj

+
∂αil

∂∂xSj

αkj +
∂αki

∂∂xSj

αlj = 0, (C.5)

for all (i, l, k). In addition, canceling the term in Eq. (C.4) that does not depend on ρ

leads to

αij

(
∂αlk

∂Sj

− ∂x
∂αlk

∂∂xSj

)
+αkj

(
∂αil

∂Sj

− ∂x
∂αil

∂∂xSj

)
+αlj

(
∂αki

∂Sj

− ∂x
∂αki

∂∂xSj

)
= 0,(C.6)

for all (i, l, k). With these constraints, Eq. (C.3) becomes

{F, {G,H}}+ 	(F,G,H)=

∫ {
∂x

(
Fi

ρ

)
1

ρ
∂x

(
Gk

ρ

)
Hl

ρ

[
βij
∂βkl
∂Sj

− βij
∂αkl

∂∂xSj
− βkj

∂αli

∂∂xSj

]
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+ ∂x

(
Fi

ρ

)
1

ρ
∂x

(
Hl

ρ

)
Gk

ρ

[
βlj
∂βik
∂Sj

− βij
∂αkl

∂∂xSj

− βlj
∂αik

∂∂xSj

]
(C.7)

+
1

ρ
∂x

(
Gk

ρ

)
∂x

(
Hl

ρ

)
Fi

ρ

[
βkj

∂βli
∂Sj

− βlj
∂αik

∂∂xSj
− βkj

∂αli

∂∂xSj

]}
dx.

Choosing F = ρSi, G =
∫
ρSk dx and H =

∫
ρSlx dx leads to

−∂x

[
1

ρ

(
βlj
∂βik
∂Sj

− βij
∂αkl

∂∂xSj

− βlj
∂αik

∂∂xSj

)]
= 0,

which has to be satisfied for any ρ, and therefore

βlj
∂βik
∂Sj

− βij
∂αkl

∂∂xSj
− βlj

∂αik

∂∂xSj
= 0, (C.8)

for all (i, l, k). With this additional constraint, Eq. (C.7) is always satisfied, which proves

that Eqs. (C.5), (C.6), and (C.8) are necessary and sufficient conditions for Bracket (11)

to satisfy the Jacobi identity.

By introducing the expressions of α and β given by Eqs. (C.1) and (C.2) into

Eqs. (C.5), (C.6), and (C.8), we end up with the following constraints :

Γiklm = Γilkm, (C.9)

∆ikl = ∆lki, (C.10)

where

Γiklm = δkm

[
(1− i− l)Si+l−2 + jSj−1

∂Si+l−1

∂Sj

]

− δk−1
m

[
(i+ l)Si+l−1 − (j + 1)Sj

∂Si+l−1

∂Sj

]
−
∂Si+l−1

∂Sj

∂Sk+j−1

∂Sm
,

and

∆ikl =
∂Si+k−1

∂Sj

[(l + j)Sl+j−1 − j(l + 1)SlSj − 1− l(j + 1)SjSl−1]

+ l(i+ k)Sl−1Si+k−1 + (l + 1)(i+ k − 1)SlSi+k−2.
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