
HAL Id: hal-01117196
https://hal.science/hal-01117196v1

Submitted on 3 Mar 2015 (v1), last revised 7 Apr 2016 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving the guiding-center model on a regular hexagonal
mesh

Michel Mehrenberger, Laura S. Mendoza, Charles Prouveur, Eric
Sonnendrücker

To cite this version:
Michel Mehrenberger, Laura S. Mendoza, Charles Prouveur, Eric Sonnendrücker. Solving the guiding-
center model on a regular hexagonal mesh. [Research Report] Institut Camille Jordan, Université
Claude Bernard Lyon 1, France; equipe projet KALIIFFE. 2015, pp.1 - 19. �hal-01117196v1�

https://hal.science/hal-01117196v1
https://hal.archives-ouvertes.fr

ESAIM: PROCEEDINGS AND SURVEYS, Vol. ?, 2015, 1-10

Editors: Will be set by the publisher

SOLVING THE GUIDING-CENTER MODEL

ON A REGULAR HEXAGONAL MESH

Michel Mehrenberger1, Laura S. Mendoza2, 3, Charles Prouveur4 and Eric
Sonnendrücker2,3

Abstract. This paper introduces a Semi-Lagrangian solver for the Vlasov-Poisson equations on a
regular hexagonal mesh. The latter is composed of equilateral triangles, thus it doesn’t contain any
singularities, unlike polar meshes. We focus on the guiding-center model, for which we need to develop
a Poisson solver for the hexagonal mesh in addition to the Vlasov solver. For the interpolation step
of the Semi-Lagrangian scheme, a comparison is made between the use of box-splines and of Hermite
finite elements. The code will be adapted to more complex models and geometries in the future.

Résumé. Dans cet article nous présentons un solveur semi-Lagrangien pour les équations de Vlasov-
Poisson sur un maillage hexagonal régulier. Ce dernier est composé de triangles équilatéraux, ainsi
il ne présente aucune singularité, contrairement au maillage polaire. Nous nous concentrons ici sur

le modèle centre-guide. À cette fin nous avons développé en plus du solveur pour Vlasov, un solveur
de l’équation de Poisson pour maillage hexagonal. Nous comparons les résultats obtenus avec une
interpolation par éléments finis d’Hermite et par des box-splines. Dans l’avenir, ce code sera adapté à
des géométries et modèles plus complexes.

Introduction

There are three kinds of regular pavings of the plane: using squares, triangles or hexagons. When considering
meshes, the dual mesh of a square mesh is a shifted square mesh and the regular triangle mesh is the dual of
the regular hexagonal mesh.

In magnetic fusion applications the embedded magnetic flux surfaces play an important role and introduce
an important anisotropy [2]. For this reason one gets favourable numerical properties when grid points align
on the concentric magnetic flux surfaces. When trying to do this with a mapped cartesian grid, one ends up
with a polar coordinates mesh (when the flux surfaces are circles) or something topologically equivalent. This
yields smaller and smaller cells when getting closer to the center as well as a singularity at the center. This is
numerically far from optimal.

Different strategies have been implemented to avoid these singularities, we can cite among others: the isopara-
metric analysis approach done by J. Abiteboul et al. [1] and A. Ratnani [25] or N. Besse and E. Sonnendrücker’s
work with unstructured meshes [5]. The methods presented in these papers are particularly interesting as not

1 IRMA, Université de Strasbourg, 7, rue René Descartes, 67084 Strasbourg & INRIA-Nancy Grand-Est, projet TONUS,
e-mail: mehrenbe@math.unistra.fr
2 Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching, Germany. e-mail: mela@ipp.mpg.de & sonnen@ipp.mpg.de
3 Technische Universität München, Boltzmannstr. 3, D-85748 Garching, Germany.
4 Université de Lyon, UMR5208, Institut Camille Jordan, 43 boulevard 11 novembre 1918, F-69622 Villeurbanne cedex, France.

e-mail: prouveur@math.univ-lyon1.fr
1

2 ESAIM: PROCEEDINGS AND SURVEYS

only they avoid singularities but also they are extremely flexible and can be easily adapted to more complex
geometries. However, even if these two approaches are different, they share the limitations due to the numerical
complexity, the advection of the derivatives and, the localization of the feet of the characteristics. As for the
Poisson equation, a recent study relevant to our problem was made by T. Nguyen et al. [24] to compare different
solvers on the disk.

Tiling a regular hexagon into triangles yields a mesh of equilateral triangles having all the same area. Such
a mesh was first introduced in [26] for numerical simulations. An application to particle methods is proposed
in [8]. This grid can be easily mapped to a circle by slightly stretching the edges of the hexagon. This yields a
nice mesh of a disk with slightly stretched triangles of almost the same size and there is no singularity in any
point of the domain. Additionally, such a mesh has a structure with three privileged directions, and uniform
steps in each direction, thus it is completely straightforward to localize points within this mesh. The derivatives
along the three directions can also be nicely computed using regular finite differencing along the three directions.
And last but not least, there is a spline construction on this mesh, called box-spline [13]. These splines have a
hexagonal support and are invariant by translations along the three directions of the mesh.

The difficulties mentioned for previous approaches, are not present when dealing with this uniform hexagonal
mesh. Regarding the computational efficiency, all our simulations include an analysis and comparison with more
common methods. Moreover a simple and non singular mapping from this mesh can be used to handle more
complex settings like the surface aligned meshes needed for tokamak simulations. This point will be left for
further studies.

In this work, we focus on adapting the Semi-Lagrangian scheme to this hexagonal mesh. This scheme consists
basically of two steps: computing the characteristics’ origins and interpolating at these points. For the latter,
we compare two different approaches: one using box-splines and the second approach using Hermite Finite
Elements. Both interpolation methods, as well as the mesh, are presented in Section 1. In Section 2, we
present a simple finite difference Poisson solver adapted to the hexagonal mesh. We introduce a guiding-center
approximation of the 2D Vlasov Poisson system [17], and the Semi-Lagrangian scheme to solve it, in Section 3.
Finally, in Section 4, we compare the results of the scheme using box-splines with the ones using Hermite finite
elements. Besides the guiding-center model, the circular advection model is used to compare the numerical
methods.

1. Interpolation on regular hexagonal mesh

1.1. The hexagonal mesh

The hexagonal mesh is obtained by tiling a regular hexagon into equilateral triangles. The mesh obtained
can be generated by three vectors. These unit vectors are

r1 =

(√
3/2

1/2

)
r2 =

(
−
√

3/2
1/2

)
r3 =

(
0
1

)
(1)

The 2D lattice sites are obtained by the product Rk where R = [r1r2] and k = [k1, k2]T ∈ Z. To obtain
exactly the mesh as in Figure 1, we need to define a few extra parameters: an origin, denoted by P0(x0, y0), a
radius L which is the distance between the origin and any external vertex of the hexagon and the number of
cells Nc on any radius.

The mesh is based on uniform hexagons of the first type (see [28]). For local and global notations we will
use the following convention: the point at the center will be the point of index 0. Following the direction r1
the next point will be indexed 1, and the notations will follow in a counter-clockwise motion. And so on, until
all the points of the domain have been indexed. See Figure 1. We will denote Hi the unit hexagon cell that is
centered at the point of global index i.

Besides the fact that the hexagonal mesh contains no singularities, its regularity allows us to localize the
characteristics’ origins for the Semi-Lagrangian scheme by taking three integer values, similarly to what is done
on cartesian grids for which only two integer values are needed. Nevertheless, the accuracy of the method

ESAIM: PROCEEDINGS AND SURVEYS 3

0

r3

r1r2

5

6

1

2

3

4

Figure 1. The hexagonal lattice and the vectors r1, r2, r3 that generate such a mesh

depends heavily on the interpolation method chosen. For example, for a Cartesian grid, it is common to use
cubic splines which have shown to give accurate results in an efficient manner [27]. In our problem, with
the hexagonal lattice, B-splines do not exploit the isotropy of the mesh (for more information see [23]) and
are defined by a convolution in 2D, which cannot be done for our mesh. Therefore, we need to use another
approach. In the following two sub-sections we present two different strategies: one using box-splines and a
second one using Hermite Finite Elements.

1.2. Box-splines quasi-interpolation

There are mainly two families of splines that take advantage of the geometry’s properties: hex-splines and
the three directional box-splines. For a detailed comparison between these two types of splines we will refer
to [11]. Based on the latter, we have chosen to use box-splines, as the results are more stable. And lastly, also
based on the previously cited paper, we decide to use a quasi-interpolation method.

1.2.1. Box-Splines: General Definition

Box-splines are a generalisation of the well known B-splines. They are also piecewise polynomial and they
share some properties, such as: compact support, positiveness, symmetry and partition of unity. But, unlike
B-splines, box-splines are defined from a generator matrix Ξ. Therefore, to construct them on the hexagonal
lattice, we will use the generator vectors r1, r2, r3. The general definition is [10,14]:

Definition 1.1 (Box-splines). Let Ξ be a d×m matrix with non-null columns in Rd. A box-spline χΞ associated
to the matrix Ξ, is a multivariate function χΞ : Rd −→ R. If Ξ is a square invertible matrix, i.e. when m = d
and det(Ξ) 6= 0, we define a box-spline with the formula below

χΞ(x) =

1

|det(Ξ)|
if Ξ−1x ∈ [0, 1)2

0 otherwise
(2)

If Ξ∪ v is a d× (m+ 1) matrix, composed by the m columns vectors from Ξ to which we append the vector
v, we define the box-spline χΞ∪v by recursion:

χΞ∪v(x) =

∫ 1

0

χΞ(x− tv) dt (3)

Remark 1.2. The box-splines can have different degrees in each direction. Thus, there are different definitions
of the degree. We will adopt the definition below.

4 ESAIM: PROCEEDINGS AND SURVEYS

Definition 1.3 (Degree of a Box-spline). Let Ξ be a d × d matrix with non-null columns in Rd such that
the column vectors of Ξ form a generating basis of Rd and are linearly independent. Then, the box-spline of
degree N of generating matrix Ξ, χNΞ , is the box-spline associated to Ξ, where all the generating vectors have
multiplicity N + 1.

Figure 2. On the left: Box-splines representation of Ξ[e1, e2], Ξ[e1, e2, e3], and Ξ[e1, e2, e3, e4].

Where e1 = (0, 1)T , e2 = (1, 0)T , e3 = e1 + e2, and e4 = e1 − e2. On the right: the 2d
projection of the box-splines onto the x plane.

1.2.2. The quasi-interpolation scheme

Let us describe the method: we are given an initial sample s[k] = f0(Rk), where the points Rk belong
to our hexagonal mesh, and we need to know the values f(x) where x /∈ Rk. We want a spline surface
f(x) =

∑
c[k]χN (x−Rk), where χN are the box-splines of degree N of matrix R and c[k] are the coefficients

associated to them. The reconstruction is defined such that f(x) approximates f0(x) to a certain order M = 2N
or, in other words, the approximation is exact only if f0(x) is a polynomial of degree M − 1 or less. This is
different from the classical interpolation method, where the reconstruction is exact on grid points for all smooth
functions. The c[k] coefficients are the box-splines coefficients, to compute them we cannot longer solve a
matrix-vector system because of the extra degree of freedom given by the quasi-interpolation method. Thus,
the c[k] coefficients are obtained by discrete filtering [12]

c = s ∗ p (4)

where ∗ is the convolution operator, s is the initial sample data and p is a pre-filter which will be defined later
on.

1.2.3. Box-splines coefficients

How we determine the splines coefficients is almost as important as the splines themselves. We recall we have
the formula (4). Based on the literature available (notably [11]) we have chosen for second-order box-splines the
quasi-interpolation pre-filters pIIR2 which seem to give better results within a competitive time. The pre-filter
pIIR2[i] of the point of local index i, for splines of order 2, is defined as follows:

pIIR2[i] =

1775/2304, if i = 0
253/6912, if 0 < i < 7
1/13824, if 6 < i < 19 and i odd
11/6912, if 6 < i < 19 and i even
0 otherwise

(5)

For higher orders, we refer to the previously mentioned papers.

ESAIM: PROCEEDINGS AND SURVEYS 5

1.2.4. Optimizing the evaluation

At the present state we have all the elements for the approximation of a function f with box-splines of degree
N

f̃(x) =
∑
k∈Z2

c[k]χN (x−Rk) (6)

Even if we limit our sum to the vector k that defines our domain, we would like to take advantage of the fact
that the splines χN are only non-zeros in a limited number of points. Therefore we need to know the indices
k such that χN (x −Rx) 6= 0. For this purpose we will use the strategy suggested in [11]: to start we need to

obtain the indices on the coordinate system generated by R: k0 = [buc bvc] where [u v]
T

= R−1x. Thus, for
example, in the case N = 1, we only need 4 terms associated to the encapsulating rhomboid’s vertices: Rk0,
Rk0 + r1, Rk0 + r2 and Rk0 + r1 + r2. Finally we obtain:

f̃(x) = c[k0] χ1(x−Rk0)

+ c[k0 + [1, 0]] χ1(x−Rk0 − r1)

+ c[k0 + [0, 1]] χ1(x−Rk0 − r2)

+ c[k0 + [1, 1]] χ1(x−Rk0 − r1 − r2) (7)

Remark 1.4. As the χ1 spline has a support of radius the unity, one of the elements of (7) is null. But this
formula allows us to keep a short general formula for all points on the mesh without having to compute the
indices of the cell to which x belongs to.

Remark 1.5. For the box-splines of degree 2, there are 12 coefficients to compute (see Figure 3). Numerically,
we can take the encapsulating rhomboid of edge length 3 (instead of 1). Thus, the number of null terms for the
interpolation with χ2 is 4.

1.3. Hermite Finite Elements interpolation

Another type of interpolation method is the Hermite Finite Element interpolation. In which, to interpolate
at a point x of barycentric coordinates (λ1, λ2, λ3) in the triangle T of vertices S1, S2, and S3, we need a finite
element with a local interpolation operator ΠT . This operator can be defined with the product of a set of
degrees of freedom ΣT with a set of basis functions Ξ which depends on the barycentric coordinates.
For this part we define the indices i, j and k with the following relations:

j = i[3] + 1 , k = j[3] + 1.

Here i[3] (respectively j[3]) is the rest of the euclidean division of i (resp. j) by 3.
Several elements have been tested here: The Z9 and Z10 Zienkiewicz elements, the Hsieh-Clough-Tocher

reduced (HCT-r) and complete (HCT-c), and the Ganev-Dimitrov element. These elements can be found in [19]
and [4] . Here we show specifically how the hexagonal structure simplifies the interpolation with these elements.

1.3.1. The Z9 and Z10 Zienkiewicz elements

Z9 approach uses 9 degrees of freedom which are the values at the vertices of the triangle and the values of
the derivatives in the direction of the edges at every vertex.

ΣT = {∀i ∈ [|1; 3|], f(Si), ∂x(Si), ∂v(Si)}

6 ESAIM: PROCEEDINGS AND SURVEYS

Z10 uses one more degree of freedom which is the value at the center of the triangle:

ΣT = {∀i ∈ [|1; 3|], f(Si), ∂x(Si), ∂v(Si); f(C)}

The advantage of using the Z10 element is the gain of one order of precision: it reproduces polynomials of
total degree ≤ 3 whereas with Z9 only polynomials of degree ≤ 2 are reproduced. Let us note that although
adding one degree of freedom seems harmless, adding the cells’ center points represents, for an hexagonal mesh,
a computational cost three times higher. Indeed there are twice as many centers as vertices in an hexagonal
mesh. Therefore the number of computational points is tripled.

Let us define the basis functions needed to interpolate with the element Z9:

φ = λ1λ2λ3

ξi = λ3
i − φ and ξij = λ2

iλj +
φ

2

φi = 3λ2
i − 2ξi and φij = hijξij = hξij

φi is the basis function associated with the value of the function at Si while φij are associated with the derivatives
in the direction of the edges. The fact that T is equilateral is exploited here by replacing hij with h since the
length of [SiSj] is constant. Finally for Z9 we have:

Π(X) =

3∑
i=1

[f(Si).φi +
∑
j 6=i

∂f(Si)

∂
−−→
SiSj

.φij]

In the same manner, let us define the basis functions needed to interpolate with Z10:

φi = 3λ2
i − 2ξi − 9φ

φij = hij(ξij −
3

2
φ) = h(ξij −

3

2
φ)

φ123 = 27φ

therefore for Z10 we have:

Π(X) =

3∑
i=1

[f(Si).φi +
∑
j 6=i

∂f(Si)

∂
−−→
SiSj

.φij] + f(C).φ123

1.3.2. The HCT elements

The HCT elements were tested as well because of their original feature which is to use a division of the triangle
into three sub-triangles. This characteristic is the only difference between the interpolation with the HCT-r
and the Z9 element as they both use the same 9 degrees of freedom. Unsurprisingly, they give quasi-identical
results which is why we won’t detail the interpolation with HCT-r and focus on HCT-c.

The HCT-c element uses the same degrees of freedom as HCT-r plus the values of the derivatives in the
normal direction of the edges at the middle of the respective edge, which adds up to twelve degrees of freedom.
Let us now define its interpolation operator.

Let Si be a vertex of the triangle T, then we define respectively li and mi as the length and the middle of
the edge opposite to Si. Let G be the barycenter of T, then Kl is the sub-triangle made with G, Sj and Sk.

ΠKl
(X) =

3∑
i=l

[f(Si).φi +
∂f(Si)

∂
−−→
SiSj

.φij − ni
∂f

∂νi
(mi)Φ⊥,l,i].

ESAIM: PROCEEDINGS AND SURVEYS 7

The basis functions are defined by

Ξl = ΣlΛl,

with

Ξl = (Ψ0
l,i,Ψ

0
l,j ,Ψ

0
l,k,Ψ

1
l,i,k,Ψ

1
l,i,j ,Ψ

1
l,j,i,Ψ

1
l,j,k,Ψ

1
l,k,j ,Ψ

1
l,k,i)

T ,

Λl = (λ3
i , λ

3
j , λ

3
k, λ

2
iλk, λ

2
iλj , λ

2
jλi, λ

2
jλk, λ

2
kλj , λ

2
kλi, λiλjλk)T .

The matrices Σl are defined with the eccentricity of each edge of the triangle T:

j = i[3] + 1 , k = j[3] + 1 , ei =
l2k − l2j
l2i

.

For an equilateral triangle, the eccentricity is null which simplifies a lot Σl.

Σl =

0 0 0 9
2

9
2 0 0 0 0 0

1
2 1 0 −3

2 0 3 3 0 0 3
1
2 0 1 0 −3

2 0 0 3 3 3
−1
12 0 0 5

4
1
2 0 0 0 0 0

1
12 0 0 1

2
5
4 0 0 0 0 0

−7
12 0 0 −1

2
−1
4 1 0 0 0 1

2
3 0 0 −1

4
1
4 0 1 0 0 1

2
2
3 0 0 1

4
−1
4 0 0 1 0 1

2−7
12 0 0 1

4
−1
4 0 0 1 0 1

2
2
3 0 0 1

4
−1
4 0 0 1 0 1

2−7
12 0 0 1

4
−1
4 0 0 1 0 1

2
1
4 0 0 −1

4
−1
2 0 0 0 1 1

The advantage of HCT-c and HCT-r is that they don’t require more points than the lattices of the hexagonal

mesh. This is not the case for the the Z10 approach.

1.3.3. The Ganev-Dimitrov element

The Ganev-Dimitrov element reproduces polynomials of total degree ≤ 4 and uses 15 degrees of freedom
which are the values of the function at the vertices and at the middle of the edges, plus the value of the
derivatives at the vertices in the direction of the other two vertices. The computational cost for this element
is four times higher than the HCT-r interpolation because of the computations needed at the middle of the
edges: there are on average 3 times more edges than vertices. As a matter of fact, the vertices and the middle
of the edges form another hexagonal mesh twice as fine as the original mesh. The reason why we tested such
a computationally expensive element is to observe whether or not the gain in precision is interesting compared
to the extra computing time allocated.
The local interpolation operator is:

ΠKl
(X) =

3∑
i=l

[f(Si).Ψi +
∂f(Si)

∂
−−→
SiSj

.Ψij + f(mi).Ψ
⊥,0
i − ni ∂f

∂νi
(mi)Ψ

⊥,1
i]

The basis function are defined by:

Ξ = ΣΛ,

with:

Ξ = (Ψ1,Ψ2,Ψ3,Ψ1,3,Ψ1,2,Ψ2,1,Ψ2,3,Ψ3,2,Ψ3,1,Ψ
⊥,0
1 ,Ψ⊥,02 ,Ψ⊥,03 ,Ψ⊥,11 ,Ψ⊥,12 ,Ψ⊥,13)T ,

Λ = (λ4
1, λ

4
2, λ

4
3, λ

3
1λ3, λ

3
1λ2, λ

3
2λ1, λ

3
2λ3, λ

3
3λ2, λ

3
3λ1, λ

2
2λ

2
3, λ

2
3λ

2
1, λ

2
1λ

2
2, λ

2
1λ2λ3, λ1λ

2
2λ3, λ1λ2λ

2
3).

8 ESAIM: PROCEEDINGS AND SURVEYS

Σ =

1 0 0 4 4 0 0 0 0 0 −5 −5 −4 0 0
0 1 0 0 0 4 4 0 0 −5 0 −5 0 −4 0
0 0 1 0 0 0 0 4 4 −5 −5 0 0 0 −4
0 0 0 1 0 0 0 0 0 0 1 0 −1

2
−1
2

1
2

0 0 0 0 1 0 0 0 0 0 0 −1 −1
2

−1
2

1
2

0 0 0 0 0 1 0 0 0 0 0 −1 −1
2

−1
2

1
2

0 0 0 0 0 0 1 0 0 −1 0 0 −1
2

−1
2

1
2

0 0 0 0 0 0 0 1 0 −1 0 0 −1
2

1
2

−1
2

0 0 0 0 0 0 0 0 1 0 −1 0 1
2

−1
2

−1
2

0 0 0 0 0 0 0 0 0 16 0 0 −16 16 16
0 0 0 0 0 0 0 0 0 0 16 0 16 −16 16
0 0 0 0 0 0 0 0 0 0 0 16 16 16 −16
0 0 0 0 0 0 0 0 0 0 0 0 −4 4 4
0 0 0 0 0 0 0 0 0 0 0 0 4 −4 4
0 0 0 0 0 0 0 0 0 0 0 0 4 4 −4

Remark 1.6. Here the derivatives are not computed exactly. They are approximated with finite differences
of order 6 with the values at the mesh points. Results have been found to be better with this order and no
significant improvement was noticed with a higher order difference scheme.

2. The Poisson finite-difference solver

When computing the origins of the characteristics with the semi-Lagrangian method for the Vlasov-Poisson
or guiding center models we need to compute the solution of the Poisson equation

−∆φ = ρ,

φ being the potential and ρ the density. In order to solve this equation, we use a simple a finite differences
scheme. Since the mesh here is hexagonal, a seven point stencil is used as shown in Figure 1. It is composed
of the six vertices of an hexagon plus its center. To compute φ0, the value of φ at the center 0, the remaining
vertices of the hexagon are used. This particular stencil has the property to give a fourth order scheme at little
cost [7]. Here is the previously described scheme:

−(φ1 + φ2 + φ3 + φ4 + φ5 + φ6 − 6φ0) =
3h2

4
ρ0 +

h2

24
(ρ1 + ρ2 + ρ3 + ρ4 + ρ5 + ρ6).

Compared to the second order scheme on the same stencil, we notice the only difference to be the second
term of the equality:

−(φ1 + φ2 + φ3 + φ4 + φ5 + φ6 − 6φ0) = h2ρ0.

Considering the gain of two order of precision at such little cost, we have used this fourth order scheme to
compute φ.

Remark 2.1. One difficulty that arises here is to define an indexing that allows the resolution of a “computational-
friendly” linear system, i.e. a sparse matrix with the non-null terms close to the diagonal to minimise filling in a
Cholesky decomposition. This is done by assigning a number following one hexagonal direction, row after row,
similarly to how one proceeds on a Cartesian mesh. Here however the difference is that the rows are of variable
width resulting in a banded matrix. Therefore the matrix here is not constituted of 7 diagonals which makes
the Poisson computation longer than on a Cartesian mesh. The width of the band is directly proportional to
the number of cells in the hexagonal domain.

ESAIM: PROCEEDINGS AND SURVEYS 9

3. The Backward Semi-Lagrangian Scheme

When solving a Vlasov equation, one usually thinks of Lagrangian methods such as PIC [6]. However these

schemes are prone to numerical noise and converge slowly in 1/
√
N as the number of particles increases, typical

of a Monte Carlo integration. Another option to solve the Vlasov equation, are Eulerian methods like Finite
Difference, Finite Element or Finite Volume methods [3, 15, 29]. The downside of this type of method is that
there is a numerical limit on the time step

With the intent of overcoming the pitfalls of these methods, the Semi-Lagrangian method was introduced, first
in numerical weather prediction (see [20] and articles cited within it), and then for plasma simulations [9, 27]
and is used also for gyrokinetic simulations of plasma turbulence [18, 21]. This scheme consists in fixing a
Eulerian grid in phase-space and following the trajectory of the equation’s characteristics in time to compute
the evolution of the distribution function. The advantages of this scheme are the possibility of taking large
time steps and its stability. However it is still quite costly in high dimensions (5 or 6D phase space) where
PIC method still largely dominate. Lastly, we can point out that there are many types of Semi-Lagrangian
solvers (e.g. depending on the trajectories: Backward or Forward; depending on degrees of freedom on which is
based: grid points, cell average, ...). We have chosen here to use the classical Backward Semi-Lagrangian (BSL)
method.

3.1. Our model

We consider here a 2D linear or non linear advection equation, with a divergence free advection field A,
which can be written in general form

∂ρ

∂t
+ A · ∇xρ(x, t) = 0 (8)

where A is divergence free (i.e. ∇ ·A = 0) and the density ρ is known at the initial time (i.e. ρ(x, 0) = ρ0(x)
is known). The advection field A will either be given and known for all times or it will depend on an electric
potential computed from the solution of a Poisson equation, i.e.

A =

(
−∂φ∂y
∂φ
∂x

)
, with−∆φ = ρ.

This model is known as the guiding center model.
We will apply the backward Semi-Lagrangian scheme to solve both the advection in a given field and the

guiding center model.

3.2. Computing the origin of the characteristics

We consider the model (8) on a 2D hexagonal domain, discretized with the hexagonal mesh. The points of
the lattice are denoted x = (x1, x2). The distribution function ρ(x, t) is known on all grid points at the initial
time t = 0. Let Ax1

and Ax2
be respectively the first and second components of A. We proceed to apply the

BSL method to the Vlasov equation (8): First, we need to compute the origin of the characteristics ending at
the grid points. These are defined for a given time s ∈ R by

dX

dt
= A

X(s) = x

⇐⇒

dX1

dt
= Ax1

dX2

dt
= Ax2

X1(s) = x1, X2(s) = x2

(9)

The solutions (X1, X2) of (9) are called the characteristics associated to the Vlasov equation. Now denoting by
tn = n∆t, for a given time step ∆t, and Xn = X(tn) for any n, and setting s = tn+1. The origin, at time tn, Xn

of the characteristics ending at the grid point Xn+1 = x can then be computed by any ODE solver, typically a

10 ESAIM: PROCEEDINGS AND SURVEYS

Runge-Kutta solver if A is known for all times. In the case of the guiding center model we use a second order
scheme which is the implicit Adams-Moulton scheme of order two to compute the origin of the characteristics.

Xn+1 −Xn

∆t
=

1

2
(An+1 + An).

The difficulty here is that A(tn+1,Xn+1), depends on ρn+1 and is unknown, thus an approximation
∗
A of A at

time tn+1 is made thanks to previous computations:

∗
A = 2 A(tn,Xn+1)−A(tn−1,Xn+1).

The unknown Xn is found by solving:
Xn+1 −Xn

∆t
=

1

2
(
∗
A + An),

Xn+1 = xi.

Remark 3.1. Since we need A(tn−1), the first step is done using the implicit Euler time scheme.

3.3. Updating the distribution function

We know that the density ρ is conserved along these characteristics and therefore we can write for any time
t:

ρ(X(t), t) = ρ(X(s), s) = ρ(x, s). (10)

So in our case, knowing the origin Xn of the characteristics, the new value of ρ at tn+1 is given by

ρn+1(x) = ρn+1(Xn+1) = ρn(Xn) (11)

where ρn is the distribution function at time step tn.
The distribution function ρn is only known on the mesh points, and the origins of the characteristics Xn are

in general not on a mesh point (see figure 3). Therefore, we need an interpolation method to compute ρn at the
characteristic’s origin, i.e. to approximate ρn(Xn) needed in the equation (11) to get the new value ρn+1(x) at
the grid points, using the the known data on the mesh points at its vicinity.

3.4. Localizing the characteristics’ origins

Figure 3. Semi-Lagrangian step: Tracing back characteristics.

ESAIM: PROCEEDINGS AND SURVEYS 11

One of the advantages of the hexagonal mesh is that it is a uniform mesh. Indeed, even if the mesh is not
Cartesian, localizing the characteristics’ origin is computationally very efficient, unlike the case of unstructured
mesh where iterations are generally required. The procedure is as follows. Let (X1, X2) the Cartesian coordinates
of the characteristics’ origin, obtained by solving (9). Then to obtain the hexagonal coordinates (k1, k2) of the
lowest point of the rhomboid encapsulating the point, we simply need to solve the system x = Rk, where R is
the matrix whose columns are the unit vectors given in (1), and take the integer value. Denoting by (rij) the
coefficients of the matrix R, we get

k1 =

⌊
r22X1 − r12X2

r11r22 − r12r21

⌋
=

⌊
1√
3
X1 +X2

⌋
k2 =

⌊
−r21X1 + r11X2

r11r22 − r12r21

⌋
=

⌊
− 1√

3
X1 +X2

⌋ (12)

After obtaining (k1, k2), we know the rhomboid (composed by two cells) containing the characteristics’ origin.
To determine the exact cell on which the origin is located, we only need to verify if the abscissa of the point is
greater than the abscissa of the mesh point at (k1, k2) or not. In the first case the point belongs to the cell at
the right, else to the cell at the left.

3.5. General algorithm

Below, we summarize the full algorithm to compute the distribution function ρn+1 solution of the non-
constant advection equation (8).

Initialization: At time t = 0, we suppose that ρ(x, 0) is given and evaluate it at the grid points.
Time Loop: Incrementation of a given time step ∆t, such that: tn+1 = tn + ∆t

• Compute the characteristics’ origins using an ODE solver for (9), Runge-Kutta or Adams-Moulton
as described above;
• Interpolate the distribution function ρn on that point using the mesh points in the vicinity;

• Update the known values: ρn = ρn+1.
Remark: Boundary conditions will need to be used between the first and the second steps of the time

loop (i.e. before the interpolation step) for characteristics that leave the computational domain. In this
paper we focus only on null Dirichlet boundary conditions.

4. Numerical results

In this section we present the numerical simulations we performed to test our methods. With the aim of
studying the convergence, the dissipation, and the efficiency of the schemes, we first study the circular advection
test case. To study the accuracy of the results, we compare them to a known solution. Then we proceed to the
guiding-center simulation. As there is no model solution for this test case, we study quantities of the system
that we know should be conserved.

4.1. Circular advection

We focus here on the circular advection test case. The model is defined by:

∂tf(x, y, t) + y ∂xf(x, y, t)− x ∂yf(x, y, t) = 0 (13)

Since this equation is not coupled to a Poisson model, we can study in detail the differences between the
interpolation methods previously presented. Additionally, finding the analytical solution is trivial and therefore
we can study the convergence of our schemes. Here, we take a Gaussian pulse as initial distribution function:

f0(x, y) = exp

(
−1

2

(
(x− xc)2

σ2
x

+
(y − yc)2

σ2
y

))
, (14)

12 ESAIM: PROCEEDINGS AND SURVEYS

On a hexagonal mesh centered at the origin of radius 8, we take σx = σy = 1
2
√

2
. Let us set here xc = 2 and

yc = 2. The distance from the pulse to the limit of the domain makes the boundary effects insignificant, thus we
can take a null Dirichlet boundary condition. To study the convergence in space we took Nc = 20, 40, 60, ..., 160.
We recall that Nc is the number of cells on the radius L. With the maximum time of evaluation, tmax, at 6π,
we chose to keep a constant CFL at 2.

Figure 4. Order of convergence

In Figure 4, we plotted the L2 and L∞ norms for different space discretizations. We can see that for coarse
meshes, all the methods are globally the same, with a slightly better accuracy for elements Z10 and Ganev-
Dimitrov. But as the mesh gets finer, we can quickly see that the splines converge quicker to better results.
Only the Ganev-Dimitrov elements are more accurate.

Figure 5. Comparison of performances for the circular advection test case.

In Figure 5 we can see that the performance convergences quite quickly, for all the methods. It is also pretty
obvious that, even if the splines are more accurate, the cost is higher than most of the Hermite Finite Element
methods.

4.2. Guiding-center model - Diocotron instability test case

We consider here a guiding-center approximation of the 2D Vlasov-Poisson system. This also corresponds to
the reduced gyrokinetic model obtained [16] when all quantities are homogeneous in the direction parallel to

ESAIM: PROCEEDINGS AND SURVEYS 13

the magnetic field. Here the magnetic field is set to B =
(
0 0 1

)T
. Then the model reads

∂ρ

∂t
+ E⊥ · ∇xρ(x, t) = 0 (15a)

−∆φ = ∇ · E = ρ(x, t) (15b)

with E = (Ex, Ey) = −∇φ and E⊥ = (−Ey, Ex).
By neglecting the effect of boundary conditions, the guiding center model verifies the following properties:

(1) Positivity of density ρ

0 ≤ ρ(x, y, t).

(2) Mass conservation

d

dt

(∫
D

ρ dxdy

)
= 0.

(3) Lp norm conservation, for 1 ≤ p ≤ ∞

d

dt
||ρ||Lp(D) = 0.

(4) Energy conservation

d

dt

(∫
D

|∇φ|2dxdy
)

= 0.

This model, is commonly used in 2D simulations to study the particle density, as it describes highly magne-
tized plasmas in the poloidal plane of a tokamak.

We chose here to study the diocotron instability [22]. The initial density is given by:

ρ0(x⊥) =

 (1 + ε cos(`θ)) exp (−4(r − 6.5)2), if r− ≤
√
x2 + y2 ≤ r+, with θ = atan2(y, x).

0, otherwise.

As for the parameters, we take ε = 0.001, r− = 5, r+ = 8, ` = 6, dt = 0.1 and the hexagonal step is 14
160 with

a radius of 14 and and an hexagonal parameter Nc = 160. In this part, we won’t test the Z10 approach as it
requires a special resolution of the Poisson equation that has not been implemented. Indeed, computing the
values of the field at the center of the triangles can’t be combined with the resolution at the vertices. Moreover
to even the computational time of each method we chose to take Nc = 80 for the Ganev Dimitrov element as
it results in the computations on a mesh with Nc = 160 (see Section 1.3.3).

Let us note that 6 vortices is the main mode. If we take ` 6= 6, with ε small enough, we still see the mode 6.
With ε big enough, i.e. at least 0.1, the modes different from 6 can be visible for a time but they are not stable
and we see the fusion or the apparition of vortices until there is the sixth mode. For instance, as illustrated
by Figure 6, we can see the ninth mode turning into the sixth mode by fusion of vortices. This instability can
be explained with Figure 7. The influence of the geometry is clear as the potential is not round, but already
deformed as an hexagon. Compared to the results obtained with a polar geometry, our results are different.

Visualisation of the results: The six vortices are developing with time without losing any symmetry. No
obvious differences are visible which makes the diagnostics all the more important to compare the results
computed.

After comparison of the diagnostics we see that the various interpolation methods give close results overall.
They are similar in terms of positivity conservation. We notice that if box-splines conserve better the mass,
the Z9 approach conserves better the L1 norm. Also we note that box-splines and the HCTC element give very
near results whichever the diagnostic considered.

14 ESAIM: PROCEEDINGS AND SURVEYS

Figure 6. Time evolution of the guiding-center model with ε = 0.1, at times = 1, 16, 38, 73 and 109

Figure 7. Potential at time zero for the guiding-center simulation

5. Conclusion

In this paper we tested Semi-Lagrangian schemes adapted to an hexagonal mesh. The strategies differentiated
in the type of interpolation used: on the one hand, we developed an interpolation method based on box-splines
–spline basis specific to the hexagonal mesh– and on the other hand, we introduced an interpolation method
based on Hermite Finite Elements. Furthermore, we presented a Poisson solver based on finite differences on
this mesh. The first simulations were made on the circular advection test case. This allowed to compare the
order of the methods, as well as their efficiency. The splines approach seemed to be more accurate for finer
grids, but at higher cost. Next, we simulated the 2D guiding-center model. The two methods yield comparable

ESAIM: PROCEEDINGS AND SURVEYS 15

Figure 8. Time evolution of the relative error of mass and energy

Figure 9. Relative error of L1 and L2 norms

Figure 10. Time evolution of the density’s minimum

results; more precisely, the HCTC element, in the Hermite case has almost as nice conservation properties as
the splines.

References

[1] J Abiteboul, G Latu, V Grandgirard, A Ratnani, E Sonnendrücker, and A Strugarek. Solving the vlasov equation in complex
geometries. ESAIM: Proceedings, 32:103–117, 2011.

[2] P. Angelino, X. Garbet, L. Villard, A. Bottino, S. Jolliet, Ph. Ghendrih, V. Grandgirard, B.F. McMillan, Y. Sarazin, G. Dif-
Pradalier, et al. Role of plasma elongation on turbulent transport in magnetically confined plasmas. Physical review letters,

102(19):195002, 2009.

[3] Jeffrey William Banks and Jeffrey Alan Furst Hittinger. A new class of nonlinear finite-volume methods for vlasov simulation.
Plasma Science, IEEE Transactions on, 38(9):2198–2207, 2010.

[4] M. Bernadou. Methode d’elements finis pour les problemes de coques minces. Masson editions, 1994.

16 ESAIM: PROCEEDINGS AND SURVEYS

[5] N. Besse and E. Sonnendrücker. Semi-lagrangian schemes for the vlasov equation on an unstructured mesh of phase space.
Journal of Computational Physics, 191(2):341 – 376, 2003.

[6] Charles K. Birdsall and A. Bruce. Langdon. Plasma Physics Via Computer. McGraw-Hill, Inc., New York, NY, USA, 1985.

[7] E. Carlson, H. Sun, D. Smith, and J. Zhang. Third order accuracy of the 4-point hexagonal net grid finite difference scheme
for solving the 2d helmholtz equation, 2003. http://www.cs.uky.edu/~jzhang/pub/PAPER/hexgrid3.html.

[8] Philippe Chatelain and Anthony Leonard. Isotropic compact interpolation schemes for particle methods. Journal of Compu-

tational Physics, 227(6):3244–3259, 2008.
[9] C.Z Cheng and Georg Knorr. The integration of the vlasov equation in configuration space. Journal of Computational Physics,

22(3):330 – 351, 1976.

[10] Laurent Condat and Dimitri Van De Ville. Three-directional box-splines: characterization and efficient evaluation. IEEE Signal
Process. Lett., 13(7):417–420, 2006.

[11] Laurent Condat and Dimitri Van De Ville. Quasi-interpolating spline models for hexagonally-sampled data. IEEE, Transactions

on Image Processing, 16(5):1195–1206, May 2007.
[12] Laurent Condat, Dimitri Van De Ville, and Michael Unser. Efficient reconstruction of hexagonally sampled data using three-

directional box-splines. In ICIP, pages 697–700. IEEE, 2006.
[13] Laurent Condat and Dimitri Van De Ville. New optimized spline functions for interpolation on the hexagonal lattice. In ICIP,

pages 1256–1259. IEEE, 2008.

[14] Carl de Boor, Klaus Höllig, and Sherman Riemenschneider. Box Splines. Springer-Verlag New York, Inc., New York, NY, USA,
1993.

[15] Francis Filbet and Eric Sonnendrücker. Comparison of eulerian vlasov solvers. Computer Physics Communications, 150(3):247–

266, 2003.
[16] Francis Filbet and Chang Yang. Mixed semi-lagrangian/finite difference methods for plasma simulations, September 2014.

https://hal.inria.fr/hal-01068223.

[17] François Golse and Laure Saint-Raymond. L’approximation centre-guide pour l’équation de vlasov-poisson 2d. Comptes Rendus
de l’Académie des Sciences - Series I - Mathematics, 327(10):865 – 870, 1998.

[18] Virginie Grandgirard, Maura Brunetti, Pierre Bertrand, Nicolas Besse, Xavier Garbet, Philippe Ghendrih, Giovanni Manfredi,

Yanick Sarazin, Olivier Sauter, Eric Sonnendrücker, et al. A drift-kinetic semi-lagrangian 4d code for ion turbulence simulation.
Journal of Computational Physics, 217(2):395–423, 2006.

[19] G. Guscaglia and V. Rua. Finite element methods for the stokes system based on a zienkiewicz type n-simplex. Computer

Methods in Applied Mechanics and Engineering, 272:83–99, 2014.
[20] Eugenia Kalnay. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge university press, 2003.

[21] Jae-Min Kwon, Dokkyun Yi, Xiangfan Piao, and Philsu Kim. Development of semi-lagrangian gyrokinetic code for full-f
turbulence simulation in general tokamak geometry. Journal of Computational Physics, 283:518–540, 2015.

[22] Eric Madaule, Sever Adrian Hirstoaga, Michel Mehrenberger, and Jérôme Pétri. Semi-lagrangian simulations of the diocotron

instability. Research report, Inria, July 2013. https://hal.inria.fr/hal-00841504.
[23] R. M. Mersereau. The processing of hexagonally sampled two-dimensional signals. Proceedings of the IEEE, 67(6):930–949,

1979.

[24] Thien Nguyen, Keçstutis Karčiauskas, and Jörg Peters. A comparative study of several classical, discrete differential and
isogeometric methods for solving poisson’s equation on the disk. Axioms, 3(2):280–299, 2014.

[25] Ahmed Ratnani. Isogeometric analysis in plasmas physics and electromagnetism. In Workshop on Higher Order Finite Element

and Isogeometric Methods Program and Book of Abstracts, page 64, 2011.
[26] Robert Sadourny, Akio Arakawa, and Yale Mintz. Integration of the nondivergent barotropic vorticity equation with an

icosahedral-hexagonal grid for the sphere. Monthly Weather Review, 96(6):351–356, 2014/11/21 1968.

[27] Eric Sonnendrücker, Jean Roche, Pierre Bertrand, and Alain Ghizzo. The semi-lagrangian method for the numerical resolution
of the vlasov equation. Journal of computational physics, 149(2):201–220, 1999.

[28] Robert Ulichney. Digital Halftoning. MIT Press, Cambridge, MA, 1987.
[29] S.I Zaki, L.R.T Gardner, and T.J.M Boyd. A finite element code for the simulation of one-dimensional vlasov plasmas. i.

theory. Journal of Computational Physics, 79(1):184 – 199, 1988.

