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THE FINITE FOURIER TRANSFORM OF CLASSICAL

POLYNOMIALS

ATUL DIXIT, LIN JIU, VICTOR H. MOLL, AND CHRISTOPHE VIGNAT

Abstract. The finite Fourier transform of a family of orthogonal poly-
nomials An(x), is the usual transform of the polynomial extended by
0 outside their natural domain. Explicit expressions are given for the
Legendre, Jacobi, Gegenbauer and Chebyshev families.

1. Introduction

Compendia of formulas, such as the classical Table of Integrals, Series

and Products by I. S. Gradshteyn and I. M. Ryzhik [3] and the recent NIST
Handbook of Mathematical Functions [8] do not contain a systematic collec-
tion of Fourier transforms of orthogonal polynomials.

Special cases do appear. For instance, [8, formula 18.17.19] contains the
identity

(1.1)

∫ 1

−1
Pn(x)e

ıλxdx = ın
√

2π

λ
J
n+

1
2
(λ),

for the finite Fourier transform of the Legendre polynomial Pn. Here Jα is
the Bessel function defined by

(1.2) Jα(λ) =

∞∑

k=0

(−1)k(λ/2)2k+α

k!Γ(k + α+ 1)
.

A second example is [1, formula 3.3(7), page 123]

(1.3)

∫ 1

−1
Pν(x)e

ıλxdx =
2π sinπν

ν(ν + 1)
e−ıλ

2F2

(
1, 1

−ν, 2 + ν

∣∣∣∣2ıλ
)
.

The more natural situation, where the corresponding kernel appears in the
integrand, is included in the tables. For instance, for the Jacobi polynomial,
[8, 18.17.16] gives
(1.4)∫ 1

−1
(1−x)α(1+x)βP (α,β)

n (x)eıλx dx = Xn(λ;α, β)1F1

(
n+ α+ 1

2n+ α+ β + 2

∣∣∣∣−2ıλ

)
,
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with

(1.5) Xn(λ;α, β) =
(ıλ)neıλ

n!
2n+α+β+1 ×B(n+ α+ 1, n + β + 1)

The work presented here was stimulated by results of A. Fokas et al. [2].
A second motivation was the fact that the authors were unable to find the
finite Fourier transform of classical orthogonal polynomials readily available
in the literature. These results were also developed in [2] and some of them
appear in [5]. The authors wish to thank A. Fokas and T. Koorwinder for
correspondence on the questions discussed here.

The goal of this project is to produce closed-form evaluations of definite
integrals of the form

(1.6) P̂ (λ) :=

∫ b

a
eıλxP (x) dx

for a variety of polynomials P , orthogonal on the interval [a, b]. The func-

tion P̂ (λ) is called the finite Fourier transform of the polynomial P . The
case considered here includes the Legendre polynomial Pn(x), the Jacobi

polynomial P
(α,β)
n (x), from which the Gegenbauer polynomials C

(ν)
n (x) and

both types of Chebyshev polynomials Tn(x) and Un(x) are derived.
Naturally, depending on the representation given of the polynomial P ,

it is possible to obtain a variety of expressions for P̂ . For instance, if an
expression for the coefficients of P is available, the identity in Lemma 1.1

and a simple scaling give directly a double-sum representation for P̂ (λ).

It is convenient to introduce the notation

(1.7) En(x) =

n∑

j=0

xj

j!

for the partial sums of the exponential function. Many of the results may
be expressed in terms of En. The result is elementary and it appears in [3,
formula 2.323].

Lemma 1.1. Let k ≥ 0 be an integer and λ an indeterminate. Then,

(1.8)

∫ 1

−1
xkeıλxdx =

(−1)kk!

(ıλ)k+1

[
eıλEk(−ıλ)− e−ıλEk(ıλ)

]
,

and

(1.9)

∫ 1

0
xkeıλxdx =

(−1)kk!

(ıλ)k+1

[
eıλEk(−ıλ)− 1

]
.

Proof. Integrate by parts. �

Note 1.2. The notation is standard. The symbol (a)n denotes the shifted

factorial, defined by (a)n = a(a + 1) · · · (a + n − 1) and (a)0 = 1. The
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elementary properties

(1)n = n!(1.10)

(a)n =
Γ(a+ n)

Γ(a)
(1.11)

(a+ 1
2)n =

(2a)2n
22n(a)n

(1.12)

(−n)k =
(−1)kn!

(n− k)!
for n, k ∈ N(1.13)

(n+ 1)k =
(n+ k)!

n!
for n, k ∈ N,(1.14)

(−a)n = (−1)n(a− n+ 1)n,(1.15)

are used throughout.

2. Legendre polynomials

This section contains a variety of formulas for the finite Fourier transform
of the Legendre polynomials Pn(x). These are orthogonal polynomials on
the interval [−1, 1], with weight w(x) ≡ 1. The next theorem gives all the
results.

Theorem 2.1. The finite Fourier transform of the Legendre polynomial

Pn(x) is given by one of the four equivalent forms:

P̂n(λ) = 2n
n∑

k=0

(
n

k

)(1
2 (n+ k − 1)

n

)
(−1)kk!

(ıλ)k+1

[
eıλEk(−ıλ)− e−ıλEk(ıλ)

]

= ın
√

2π

λ
Jn+1/2(λ)

= 2

n∑

k=0

(n+ k)!

(n− k)! k!

[
e−ıλEk(2ıλ) − eıλ

]

(−2ıλ)k+1

= 2

n∑

k=0

(n+ k)!

(n− k)! k!

[
(−1)n+ke−ıλ − eıλ

]

(−2ıλ)k+1
.

Proof. The first formula follows from the explicit representation

(2.1) Pn(x) = 2n
n∑

k=0

(
n

k

)(1
2 (n+ k − 1)

n

)
xk

given in ?? and Lemma 1.1. The second expression for P̂n(λ) comes from
their Rodrigues formula

(2.2) Pn(x) =
1

2n n!

(
d

dx

)n

(x2 − 1)n,
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(see [3, Formula 8.910.2]) and it appears as entry 7.242.5 in [3]. Then

(2.3) P̂n(λ) =
1

2nn!

∫ 1

−1
eıλx

(
d

dx

)n

(x2 − 1)n dx

and integrating by parts n-times yields

(2.4) P̂n(λ) =
(−ıλ)n

2nn!

∫ 1

−1
(x2 − 1)neıλx dx.

Entry 3.387.2 of [3] states that

(2.5)

∫ 1

−1
(1− x2)ν−1eıµx dx =

√
π

(
2

µ

)ν−1
2
Γ(ν)J

ν−1
2
(µ).

The result is obtained by choosing µ = λ and ν = n+ 1.

The third form of the finite Fourier transform of the Legendre polynomials
is obtained from their hypergeometric representation

(2.6) Pn(x) = 2F1

(−n n+ 1

1

∣∣∣∣
1− x

2

)
=

n∑

k=0

(−n)k(n+ 1)k
(1)k k!

(
1− x

2

)k

,

that gives

(2.7) P̂n(λ) =
n∑

k=0

(−n)k(n+ 1)k
k!2

∫ 1

−1
eıλx

(
1− x

2

)k

dx.

A change of variables and the formulas (1.14) and (1.15) give

(2.8) P̂n(λ) = 2eıλ
n∑

k=0

(−1)k(n+ k)!

(n− k)!k!2

∫ 1

0
tke−2ıλt dt.

Lemma 1.1 now gives the stated result.

To produce the last form for P̂n(λ), let t = 2ıλ in the third expression
for this transform. Then, after multiplication by tn and some simplification,
the claim is equivalent to the polynomial identity

(2.9)

n∑

k=0

(2n − k)!

k!(n − k)!
(−1)ktk

n−k∑

j=0

tj

j!
=

n∑

k=0

(2n− k)!

k!(n− k)!
tk.

To simplify the sum, let ν = k + j on the left-hand side to show that the
desired identity is equivalent to

(2.10)

n∑

ν=0

[
ν∑

k=0

(−1)k(2n − k)!

k! (n − k)! (ν − k)!

]
tν =

n∑

k=0

(2n − k)!

k! (n− k)!
tk.

Matching coefficients, the result follows from

(2.11)

k∑

j=0

(−1)j(2n− j)!

j! (n − j)! (k − j)!
=

(2n− k)!

k! (n − k)!
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for every 0 ≤ k ≤ n. This is equivalent to the binomial identity given in
Lemma 2.2 below. The proof is complete. �

Lemma 2.2. For n ∈ N and 0 ≤ k ≤ n

(2.12)

k∑

j=0

(−1)j
(
n

j

)(
2n− j

2n− k

)
=

(
n

k

)
.

Proof. The proof uses
(r
k

)
= (−1)k

(k−r−1
k

)
to write

(2.13)

(
2n− j

2n− k

)
=

(
2n − j

k − j

)
= (−1)k−j

(
k − 2n − 1

k − j

)

and then (2.12) is converted into Vandermonde identity

(2.14)

n∑

k=0

(
a

k

)(
b

n− k

)
=

(
a+ b

n

)
.

�

3. Jacobi polynomials

The Jacobi polynomials P
(α,β)
n (x), defined by

(3.1) P (α,β)
n (x) =

1

2n

n∑

k=0

(
α+ n

k

)(
β + n

n− k

)
(x− 1)n−k(x+ 1)k

are orthogonal on [−1, 1] with respect to the weight

(3.2) w(x) = (1− x)α(1 + x)β .

This section contains expressions for their finite Fourier transform. The
hypergeometric representation

(3.3) P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(−n, n+ α+ β + 1

α+ 1

∣∣∣∣
1− x

2

)
,

is used in the calculations.

Theorem 3.1. The finite Fourier transform of the Jacobi polynomials P
(α,β)
n (x)

is given by

̂
P

(α,β)
n (λ) = 2eıλ(α + 1)n

n∑

k=0

(n+ α+ β + 1)k
(n− k)!(α + 1)k

[
e−2ıλEk(2ıλ) − 1

(−2ıλ)k+1

]

= 2

n∑

k=0

(n + α+ β + 1)k
(−2ıλ)k+1(n− k)!

×
[
(−1)n−ke−ıλ(β + k + 1)n−k − eıλ(α+ k + 1)n−k

]
,

for λ 6= 0. For λ = 0,

(3.4)
̂
P

(α,β)
n (0) =

(n+ α+ β + 1)

2

[(
α+ n

n− 1

)
− (−1)n−1

(
β + n

n− 1

)]
.
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Proof. The first statement comes from the hypergeometric form

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(−n, n+ α+ β + 1

α+ 1

∣∣∣∣
1− x

2

)
(3.5)

=
(α+ 1)n

n!

n∑

k=0

(−n)k(n + α+ β + 1)k
(α+ 1)kk!2k

(1− x)k

and use Lemma 1.1 to produce

(3.6)

∫ 1

−1
(1− x)keıλxdx = −eıλ

k!

(ıλ)k+1

[
e−2ıλEk(2ıλ)− 1

]

and then (−n)k = (−1)kn!/(n− k)! to simplify the result.

Now use identity (the case m = 1 of [3, 8.961.4]:

(3.7)
d

dx
P (α,β)
n (x) =

n+ α+ β + 1

2
P

(α+1,β+1)
n−1 (x).

and integrate by parts to obtain

̂
P

(α,β)
n (λ) =

eıλx

ıλ
P (α,β)
n (x)

∣∣∣
1

−1
− (n+ α+ β + 1)

2ıλ

̂
P

(α+1,β+1)
n−1 (λ).

Introduce the notation for the boundary term

(3.8) a(α,β)n =
eıλx

ıλ
P (α,β)
n (x)

∣∣∣
1

−1
.

to write the previous computation as the recurrence

(3.9)
̂
P

(α,β)
n (λ) = a(α,β)n (λ)− (n+ α+ β + 1)

2ıλ

̂
P

(α+1,β+1)
n−1 (λ).

Iteration yields

̂
P

(α,β)
n (λ) =

n∑

k=1

(−1)n−k (n + α+ β + 1)n−k

(2ıλ)n−k
a
(α+n−k,β+n−k)
k (λ)

+ (−1)n
(n+ α+ β + 1)n

(2ıλ)n
̂

P
(α+n,β+n)
0 (λ).

Evaluate the last term is evaluated as a
(α,β)
0 (λ) and use

(3.10) P (α,β)
n (1) =

(
α+ n

n

)
and P (α,β)

n (−1) = (−1)n
(
β + n

n

)

from (3.1) to obtain

(3.11) a(α,β)n =
1

ıλ

[
eıλ

(
α+ n

n

)
− (−1)ne−ıλ

(
β + n

n

)]
.

Some algebraic simplification now gives the stated result. The value for
λ = 0 comes directly from (3.7). �

The next statement represents a hypergeometric rewrite of the last for-
mula in Theorem 3.1.
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Theorem 3.1. The finite Fourier transform of the Jacobi polynomial is

given by

̂
P

(α,β)
n (λ) =

(β + 1)n
ıλn!

(−1)n+1e−ıλ
3F1

(
n+ α+ β + 1,−n, 1

β + 1

∣∣∣∣
−1

2ıλ

)
+

+
(α+ 1)n
ıλn!

eıλ3F1

(
n+ α+ β + 1,−n, 1

α+ 1

∣∣∣∣
1

2ıλ

)
.

Proof. The first term in the expression the last formula of Theorem 3.1 is

simplified using (1.14) and (β + k + 1)n−k = (β+1)n
(β+1)k

to obtain

(−1)n−k(n+ α+ β + 1)k(β + k + 1)k
(−2ıλ)k+1(n− k)!

=

(−1)n+1(β + 1)n
2ıλ

(n+ α+ β + 1)k(−n)k(1)k
(β + 1)k

tk

k!

with t = −1/2ıλ. Summing from k = 0 to n gives the first term in the
answer. A similar argument simplifies the second term in Theorem 3.1. �

Note 3.2. Define

(3.12) A(a,b)
n (t) =

(a+ 1)n
n!

3F1

(
n+ a+ b+ 1,−n, 1

a+ 1

∣∣∣∣
1

t

)
.

then the finite Fourier transform of the Jacobi polynomial P
(α,β)
n (x) is given

by

(3.13)
̂
P

(α,β)
n (λ) =

1

ıλ

[
(−1)n+1e−ıλA(β,α)

n (−2ıλ) + eıλA(α,β)
n (2ıλ)

]
.

4. A collection of special examples

This section presents a collection of special cases of the Jacobi polynomials
and their respective finite Fourier transforms.

4.1. Legendre polynomials. These polynomials were discussed in Section
3 and correspond to the special case α = β = 0; that is,

(4.1) Pn(x) = P (0,0)
n (x).

The first formula in Theorem 3.1 reproduces the third formula in Theorem
2.1. Similarly, the second formula in Theorem 3.1 gives the last expression
for the finite Fourier transform of Legendre polynomials in Theorem 2.1.

4.2. Gegenbauer polynomials. These polynomials are also special cases

of P
(α,β)
n (x):

(4.2) C(ν)
n (x) =

(2ν)n
(ν + 1/2)n

P (ν−1/2,ν−1/2)
n (x).



8 A. DIXIT, L. JIU, V. H. MOLL, AND C. VIGNAT

Theorem 4.1. The finite Fourier transform of the Gegenbauer polynomial

C
(ν)
n (x) is given by

Ĉ
(ν)
n (λ) = 2(2ν)ne

ıλ
n∑

k=0

22k
(n + 2ν)k(ν)k
(n− k)!(2ν)2k

[
e−2ıλEk(2ıλ) − 1

(−2ıλ)k+1

]

=
2(2ν)n(ν)n
(2ν)2n

n∑

k=0

22k
(n+ 2ν)k(2ν + 2k)2n−2k

(n− k)!(ν + k)n−k

[
(−1)n−ke−ıλ − eıλ

(−2ıλ)k+1

]

and also

Ĉ
(ν)
n (λ) =

(2ν)n
ıλn!

×
[
(−1)n+1e−ıλ

3F1

(
n+ 2ν,−n, 1

ν + 1
2

∣∣∣∣−
1

2ıλ

)
+

eıλ3F1

(
n+ 2ν,−n, 1

ν + 1
2

∣∣∣∣
1

2ıλ

)]
.

4.3. Chebyshev polynomials. The Chebyshev polynomial are related to
Gegenbauer polynomials by

(4.3) Un(x) = C(1)
n (x) and Tn(x) = lim

ν→0

nC
(ν)
n (x)

2ν
, for n ≥ 1.

These formulas are now used to evaluate the finite Fourier transform of
Chebyshev polynomials.

Theorem 4.1. The finite Fourier transform of the Chebyshev polynomial

is given by

Ûn(λ) = eıλ
n∑

k=0

22k+1k!

(
n+ k + 1

n− k

)[
e−2ıλEk(2ıλ)− 1

(−2ıλ)k+1

]

=

n∑

k=0

22k+1(n+ k + 1)! k!

(2k + 1)! (n − k)!

[
(−1)n−ke−ıλ − eıλ

]

(−2ıλ)k+1

and

T̂n(λ) =

n∑

k=0

(−1)k+1 n2k(n+ k)!k!

(n − k)!(2k)!(n + k)

[
(−1)n−ke−ıλ − eıλ

]

(ıλ)k+1

5. Biorthogonality for the Jacobi polynomials

The sequence of functions { 1√
2
eπıjx : j ∈ Z} forms an orthonormal fam-

ily on the Hilbert space L2[−1, 1]. Therefore, every continuous function f
defined on [−1, 1] may be expanded in the form

(5.1) f(x) =
1√
2

∞∑

j=−∞
aj(f)e

πıjx,

indent where the Fourier coefficients are given by

(5.2) aj(f) =
1√
2

∫ 1

−1
f(x)e−πıjx dx.
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Parseval’s identity [6, Theorem 14] states that

(5.3)

∫ 1

−1
f(x)g(x) dx =

∞∑

j=−∞
aj(f)aj(g).

This identity is now made explicit for the case

(5.4) f(x) = P (α,β)
n (x) and g(x) = Q(α,β)

n (x) := (1− x)α(1 + x)βP (α,β)
n (x).

The Fourier coefficients aj(Q
(α,β)
m (x)) are given in (1.4) and aj(P

(α,β)
n (x))

have been evaluated in Theorem 3.1. Parseval’s identity and the orthogo-
nality of Jacobi polynomials give

∞∑

j=−∞
aj(P

(α,β)
n (x))aj(Q

(α,β)
m (x)) =

2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)n!Γ(n + α+ β + 1)
δn,m,

where δn,m is Kronecker’s delta (1 if n = m and 0 if n 6= m). Only the
case n 6= m leads to an interesting relation. A direct calculation shows that

a0(Q
(α,β)
m (x) = 0, so that Parseval’s identity is written as

∑

j∈Z,j 6=0

aj(P
(α,β)
n (x))aj(Q

(α,β)
m (x)) = 0, for n 6= m.

To simplify the previous relation, replace λ = −πj in (1.4) and use Kum-
mer’s identity

(5.5) 1F1

(
u

u+ v

∣∣∣∣z
)

= ez1F1

(
v

u+ v

∣∣∣∣−z

)

to obtain

aj(Q
(α,β)
m ) =

(−1)jjm

m!
2m+α+β+1/2B(m+ α+ 1,m+ β + 1)

1F1

(
m+ β + 1

2m+ α+ β + 2

∣∣∣∣2πıj
)
.

Similiarly, (3.1) with λ = −πj gives

aj(P
(α,β)
n ) =

(−1)j

2πıjn![
(−1)n(β + 1)n 3F1

(
n+ α+ β + 1,−n, 1

β + 1

∣∣∣∣
1

2πıj

)
−

(α+ 1)n 3F1

(
n+ α+ β + 1,−n, 1

α+ 1

∣∣∣∣−
1

2πıj

)]
.

Parseval’s identity now produces the next result.

Theorem 5.1. Define

W (α,β)
n,m (t; j) = (α+1)nj

m−1
3F1

(
n+ α+ β + 1,−n, 1

α+ 1

∣∣∣∣
1

t

)
1F1

(
m+ α+ 1

2m+ α+ β + 2

∣∣∣∣t
)
.
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Then

(5.6) (−1)n
∑

j∈Z, j 6=0

W (β,α)
n,m (2πıj; j) = (−1)m−1

∑

j∈Z, j 6=0

W (α,β)
n,m (2πıj; j).

In particular, if n and m have opposite parity, then

(5.7)
∑

j∈Z, j 6=0

W (β,α)
n,m (2πıj; j) =

∑

j∈Z, j 6=0

W (α,β)
n,m (2πıj; j).

6. An operator point of view

To obtain the finite Fourier transform of a polynomial start with

(6.1)

∫ 1

−1
xkeıλx dx = (−ıD)k(2 sinc λ)

where the sinc function is

(6.2) sinc λ =
sinλ

λ

and D = d
dλ . The action is extended by linearity to obtain

(6.3) P̂ (λ) = P (−ıD)(2 sinc λ).

For instance, for the Chebyshev polynomial

(6.4) Un(x) =
n∑

k=0

(−2)k
(
n+ k + 1

n− k

)
(1− x)k

leads to

Ûn(λ) =

n∑

k=0

(−2)k
(
n+ k + 1

n− k

)
(1 + ıD)k(2 sinc λ)(6.5)

= Un(−ıD)(2 sinc λ).

It is elementary to check that

(6.6)

(
d

dλ

)n

sinc λ = An(λ) sin λ+Bn(λ) cos λ

where An, Bn are polynomials in 1/λ that satisfy the recurrences

An+1(λ) = A′
n(λ)−Bn(λ)

Bn+1(λ) = An(λ) +B′
n(λ),

with initial values A0(λ) = 1/λ and B0(λ) = 0. An explicit expression for
these polynomials can be obtain from

(6.7)

(
d

dλ

)n

sinc λ =
n∑

j=0

n!

(n − j)!

sin(λ+ (n+ j)π2 )

λj+1
.

Details of this approach to finite Fourier transform of orthogonal polynomials
will be given elsewhere.
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