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CAFCA group: geometrical analysis of mode stirred chamber versus statistical approach

In the context of CAFCA group 1 (CAFCA means conned ambiance of elds in cavities analysis), we have previously demonstrate that MSC 2 (mode stirred chambers) are not equivalent to anechoic chambers for emission or immunity EMC (electromagnetic compatibility) tests. The purpose of this new paper is to show how can be understood the results obtained in MSC versus their expressions in a geometrical denition. To do that, we rst dene a generic MSC using six Branin's model cross talked and with variable delays. Once this dened, we add a common source then a probe. We consider the probe

suciently thin to neglect its inuence on the modes but large enough to integrate the eld locally. This allows to study this theoretical MSC from the statistical process point of view. We have on one side the geometrical (topological) equation for a MSC and on the other side some statistical approach to use it in EMC immunity. In the article we present the reasoning as they were conducted in live, to communicate the reasoning realized. First part is devoted to construct the system equations, and second part to study it theoretically.
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1 Generic MSC A cavity can be modeled using guided waves short circuited. To consider three polarizations of elds, we need three Branin's structure. the new fact here is to make a structure with generator inside. Figure 1 shows the basic structure we consider. for each LP, the whole MSC can be modeled making:

Z α ⊕ Z β ⊕ Z γ .
If the stirred mechanism is well done, modes are coupled and we have to add coupled coefcients to the previous impedance matrix. Next step is to dene these coecients.

To dene them, it's necessary to detail eld equation. (1)

Note that it is sucient to know the eld in one denition (electrical or magnetic one) to know the other. In particular, the denition of mode in meshes through electric eld plus current in the wall circulations gives all the needed information.

Field modes coupling

When the stirrer return part of the forward energy from a mode to another, it means that its limit condition is no more a short circuit. Knowing that, we have to modify the short-circuit load of one guided waves on the stirrer side in a short-circuit in series with an electromotive force that translates the lost energy. This electromotive force should come from the structure of another polarization. So, to translate the cross talk between modes, we have to add chords between the edges associated with the stirred mechanisms. Figure 2 shows the nal topology coming from the previous discussion. LP Delay Amplitude F ield length x, y α i A {E,B} {x,y}

F L i x, z β i B {E,B} {x,z} G M i y, z γ i D {E,B} {y,z} K N i
For example:

     B {E,B} x = [β ← α] xx A {E,B} x + [β ← α] xy A {E,B} y B {E,B} y = [β ← α] yx A {E,B} x + [β ← α] yy A {E,B} y 
where [β 2 ← α 2 ] ij are the cross mode coecients 3 .

In our case, only side 2 including the stirrer of the volume is a location of coupling between modes.

On each branin, Z c characteristic must be linked with the transmitted power. For a given mode, the characteristic impedance can be obtain by something similar to:

L C 3 All coecients: α i , A, [β j ← α i ] ij depend on frequency 2
We can link the inductance with the magnetic ux φ, and the capacitance with the load q. Replacing them by these expressions we nd:

Z c = φ i V q = φ q Z c ⇒ Z c = φ q
So in general:

Z c = ' S dS • B ' Q dQ • E (2)
But the ux has one common and constant direction of integration, which is the direction of propagation. So that nally, the integrals can be reduced to rst degree ones:

Z c = ¸u du • B ¸v dv • E (3)
Another way, often simplest is to link electromagnetic energies created by the source to the source values: 3 Making equations for one structure

L = 1 i 2 ´ν dνµH 2 C = 1 V 2 ´ν dν E 2 ( 
From gure 1 we can write next equations, numbers referring to edges or mesh numbers (for one direction of the LP).

       e 5 = (E 0 -R 1 (i 2 + i 3 ) + Z c i 3 ) e -α1p e 4 = (E 0 -R 1 (i 2 + i 3 ) + Z c i 2 ) e -α2p e 3 = (V 0 -Z c i 5 ) e -α1p e 2 = (V 0 -Z c i 4 ) e -α2p (6) 
Same for structures of delays β or γ with numbers 11 to 20 and 21 to 30 (one number can be exclude in fact : the source edge, reducing each structure to 4 meshes. But to start, this added number is quite interesting). These 12 equations gives:

1. reported sources values coming from E 0 wave transmitted;

2. interaction impedances deduced from e/i ratios.

To these equations must be add the cross talked between modes. These impedances are real, negatives (inversion of the electric eld and energy conservation). To report 30% of the current amplitude, the impedance is around -0,3xZ c . Note that, anyway, V 0 ≈ 0. Equations (2) include the coupling coecient between sources and modes. It means that E 0 is the eective voltage transmitted to the guided waves after some coupling with a local antenna inside the guided waves.

Looking to the eld in the volume

To be able to discuss of the statistic meaning, we must access to some variables similar to the eld in behavior. In each Branin's model we can extract the total wave at any location in the propagation structure. Writing for the rst structure (the same for the two others): e i = ēi e -{α,β,γ}p . If α structure report to x, y LP (β for x, z and γ for y, z) we can write to any z distance (i = {1, 2} in α i and guided length being L 1 , M 1 , N 1 for α 1 , β 1 , γ 1 and L 2 , M 2 , N 2 for α 2 , β 2 , γ 2 ):

e {x,y} (z) = ē4 e -z c p + ē2 e -(L 2 -z) c p (7)
Major volume is between the source and the stirrer (we suppose that the source is near to the left wall, which implies that the left side of propagation is a small distance). So in this side, we can compute the eld in various locations to make a statistical study for various positions of the stirrer. This positions are translated through the α, β, γ coecients values.

Their values depend on L, M, N ones whose by the fact, depend on time.

From equation ( 6), any classical eld information can be retrieved in the volume. But physically, what is done is to measure the eld using a probe. This probe integrates the eld on an eective surface.

Let's ξ be this surface, the probe response R is some-

thing like: R = ¨Sp dS p • E (8)
That's this function we have to consider in our statistic meaning.

Now we have all elements to compute the problem.

From the software we can extracted the deterministic eld values and the statistic of these values. So

we should be able to understand deeply the statistic meaning versus the real modes existence.

5 First software step

To begin, we program one structure of guided waves.

Groups speed

In the Branin's model, exp (-τ p) represents a delay under the Laplace's writing. We have to consider the group speed in the guided waves. Knowing that v g v p = c 2 we obtain for one guided waves:

v g = c 1 - n 2 π 2 c 2 L 2 i ω 2 (9) Then τ = L i v -1 g .

Characteristic impedance

For the characteristic impedance, we use the equivalence line technique. This leads to Z c given by:

Z c = 2 M L µ (10)

Mode number managing

Frequency increasing, the number of the corresponding mode is simply obtained by:

n = E 2 L λ (11) 
where E() is the entire part operator.

Mode amplitude

For a given eld amplitude A 0x , the amplitude including the minimum frequency working high pass lter is given by:

A x = A 0x 1 + f0 f (12)
f 0 being given by c/(2L).

We need a high pass lter to model the cut-o frequency of the guided waves because in the Branin's model, the source is reported to the end of the line, even in the evanescent case. This goes opposite to the theoretical result.

5.5

Coupling with the guided waves

The connection of the source to the guided waves is made through a given coupling impedance. For example if we consider the situation shown gure 3, the generator is directly connected to the frontiers of the guided waves. As the input of the guided waves in a branin is represented by its characteristic impedance, this leads to the graph where the source (a couple of generator and its self impedance R 0 ) is connected to Z c . The input mesh of the branin is so R 0 + Z c . So, an added edge must be used to compute this voltage without this dependence.

New structure to connect the source and losses

To be able to access the voltage across the input line easily, we add a capacitor impedance to obtain next structure (gure 6). 

α = 1 2 R Z c (13) with R ≈ 1 σ N i πf µσ -1 L1 2n -1
the losses are added in the branins through exp (-αL1). Figure 9 shows this last result. 

Simple guided waves with probe

First step consists to add the computation of the intermediate waves. The forward wave at an abscissa z is given by:

v i = (Rcci 2 + Z c i 3 ) e -αz e -z vg p (14)
The backward wave is given by:

v r = (Rcci 4 -Z c i 4 ) e -α[L1-z] e - [L1-z] vg p (15)
The probe, if a passive one, is a single mesh of impedance r p +L p p. The emf induced in the probe by the eld is given (before integration) by h p E where h p is the eective height of the probe. The local electric eld is given by:

E = (v i (z) + v r (z)) N 1
So to take into account the probe we just have to add a mesh (the fth one) and to integrate the coupling impedance:

             z 52 = hp N 1 R cc e -αz e -z vg p z 53 = hp N 1 Z c e -αz e -z vg p z 54 = hp N 1 (R cc -Z c ) e -α[L1-z] e - [L1-z] vg p (16)
The total emf induced on the probe is given by:

e 5 = ˆy+∆y y-∆y dy ˆz∆z z-∆z dzSin nπ y M 1    z 52 i 2 + z 53 i 3 + z 54 i 4    (17)
after some quite long development this leads to next result:

e 5 = ζ (g 52 i 2 + g 53 i 3 + g 54 i 4 ) (18) 
with: 

                                                     ζ = 2 M 1 nπ Sin nπ y0 M 1 Sin nπ ∆y M 1 g 52 =

5.9

Two polarization structure coupled

The modes numbering is easy to link with the loads distribution. For a rectangular guided waves and two polarization associated, say x, y LP and y, x one. The total electric eld is determined by the number of load alternates on each line structure. Figure 11 shows the case of n = 2 for a rectangular guided waves and the x, y LP with polarization following x. That's our case where we give equation ( 19) the relations for polarization x. Another branin is needed for polarization y and cross talk (with coupling coecients paragraph 2) between both branins. There is a gold rule saying that loads use the mode giving them the maximum free surface. This says that for example, between some T E n0 mode and another possible under denition T E n m , loads will prefer the second one, giving them more surface through both coupled plates.

In equation (1) u x can be associated with the coupled plates in the direction y -polarization x and u y the same for the direction x -polarization y. Coupling due to the stirrer from the x polarization to the y polarization has been set to 50% ([α We can, on this simple system make move the delay value α 1 in order to simulate a moving wall. Figure 13 shows the result where many frequencies appear compare to gure 12 due to the stirred mechanism involved. x 0 , y 0 , z 0 can change.

The impedance matrix in the mesh space of this graph is composed of three kinds of objects:

1. intrinsic impedance of walls, source and probes, including characteristic impedance of guided waves. These are diagonal components of the matrix: d q ;

2. Branin's coupling terms that translate the guided propagation: l q ;

3. other coupling terms between modes and source and probe with the guided waves: [β ← α] and C ij .

4 More information are given on my webpage, see document

Second geometrization: cases study.

From these three parts, we construct a system of equations given by ψ k (i 1 , i 2 , . . . , i 20 ) = 0. This set of functions can generate a parametric hyper-surface of basis

b q = ∂ψ k ∂i q (20)
The topology shown gure 14 can be organized following: mesh 1 is the source. meshes 2 to 7, 8 to 13, 14 to 19 are the branins and mesh 20 is the probe.

By this choice of numbering, it's clear that the group of meshes 2 to 19 takes the role of Green's function in the MSC.

The metric is given by the fundamental relation:

G qm = b q , b m (21) 
Solutions of the problem is given by:

q G qm x m = p • b q (22) 
(parameters i k are now replaced by directions x k ).

As the problem is linear (the basis vector doesn't depends on the currents), no curvature exists for this hyper-surface (i.e. b ij = 0, ∀i, j). p is the impulse vector made for components of the sources e q . Another point of view is to say that the solution for one

conguration of α i , [β j ← α i ] is a curve of coordi- nates x q following: e q = q b q(m) x m (23) 6.1 b q nature
For one q number of mesh, ψ can be decomposed as said previously in three parts:

ψ (d q i q , l q i m , [β ← α] i m , C qm i m )
. So when we compute equation ( 20), b a has also three kinds of components. We can see the impedance organization for the previous choice and two guides (each guide reduced here with two meshes):

[d srce ] C 12 0 0 0 0 C 21 [d in1g ] l q 0 0 F 26 0 l q [d outg ] 0 [α ← β] F 36 0 0 0 [d ing2 ] l q F 46 0 0 [β ← α] l q [d outg2 ] F 56 0 F 62 F 63 F 64 F 65 [d prbe ] (24) 
In this organization we see that the source is coupled with only one guide and polarization.

Impedance l q wears the delay coecients and the cross talk between modes is included in impedance between end wall, on the stirrer side. The probe is coupled with all branin extremities through impedance F ij .

When we take a look to this fundamental tensor obtained as a covector of the contravariant basis vectors ([b q ]), we understand for the case considered how works the MSC. To simplify this understanding, we can neglect the return action of the probe on the stationary eld. This leads to the new structure:

[d srce ] C 12 0 0 0 0 C 21 [d in1g ] l q 0 0 0 0 l q [d outg ] 0 [α ← β] 0 0 0 0 [d ing2 ] l q 0 0 0 [β ← α] l q [d outg2 ] 0 0 F 62 F 63 F 64 F 65 [d prbe ] (25) 
The source gives energy to one mode through C 21 coecient. But it is inuenced also by this mode through C 12 . This return of energy is important because the MSC is a closed environment. And we have proved that the backward impedance on the emission antenna is the only way to explain that we are not in a open environment. The radiation resistance of the emission antenna is reduced to zero, in order to respect Poynting's principle.

l q impedance change with time when the stirrer moves. The coecients [β ← α] translate the impact of the stirrer on the limit conditions of the guides, and the distribution of elds between the various guides.

The probe receive the eld information through the F 65 coecients, covering all the available volume if the probe is suciently moved in this volume.

Stirrer distribution impact on statistic

Neglecting the probe for the moment, we can group the previous elements noting B 1 the rst branin structure for the rst polarization and B 2 the second one. It means that our wronksien w (it is possible to show that [b q ] is in fact the wronksien of the parametrized surface) can be written:

w =   [d srce ] C 12 0 C 21 [B 1 ] [α ← β] 0 [β ← α] [B 2 ]   (26) 
We have a geometry similar to the one realized with two transformers coupled. If B 1 is associated with x polarization, says B x , and B 2 to y: B y , it is clear that if βα = [β ← α] is too low, eld intensity in the y direction will be less than in the x one. Let's take a look to the metric (with simplied but stills evident notations):

G =   d 2 + C 2 C (d + B x ) αβ C C (d + B x ) C 2 + B 2 x + 2 βα βα B x + αβ B y αβ C βα B x + αβ B y 2 αβ + B 2 y   ( 27 
)
The metric is symmetric.

The solution of the problem can also be written using the lagrangian L = G ij φ i φ j , φ i begin here the energy ux in the three structures source(d), B x , B y . If we force = 0, the φ 3 component will be totally free and without any constraint with φ 1 and φ 2 . We can aect to each φ i a statistical variable φi (it implies that we consider the harmonic, established working of the MSC and a suciently high frequency compared to its dimensions) 5 . φ1 is here the energy in the evanescent eld of the antenna. φ2 the energy in our single guide in the x polarization LP. If we reduce G to:

G = Ξ(t) 0 0 B 2 y ( 28 
)
Lagrangian can be written:

L = Ξ(φ 1 ) 2 + B 2 y (φ 2 ) 2 as in a classical 2D plan.
Both direction are not correlated and any statistic on φ 1 depending on random edition versus time cannot be linked with one on φ 2 . More than all φ 3 = 0 as no source power supplied the third structure.

This demonstrates that the stirrer must be realized in order to distribute the energy with equilibrium to any polarization. That's a known result.

Research of an equilibrium

We can imagine a simplest system made of three meshes. The rst is the source, the second is a resonator that can be set and the thrid another resonator that can be set too. This system is equivalent to ( 27) for one frequency of excitation. First mesh is of impedance 2R ray + L 0 p. Second mesh of impedance R 1 + L 1 p + 1/(C 1 p) and third one with R 2 + L 2 p + 1/(C 2 p). As previously the source can excite only mesh 1. C 12 is the coupling between meshes 1 and 2, and C 23 between meshes 2 and 3. An equilibrium may be found if energy would be similar in Figure 20 shows the well-balanced case with one complete turn of stirrer. 

w =   Z c C 0 C Z c C 0 C Z c   (29)
it leads to the metric:

G =   Z 2 c + C 2 2 (CZ c ) C 2 2 (CZ c ) Z 2 c + C 2 2 (CZ c ) C 2 2 (CZ c ) Z 2 c + C 2   (30) now if C 2 ≈ 0 we obtain: G =   Z 2 c 2 (CZ c ) 0 2 (CZ c ) Z 2 c 2 (CZ c ) 0 2 (CZ c ) Z 2 c   (31) 
and

L = Z 2 c (φ 1 ) 2 + (φ 2 ) 2 + (φ 3 ) 2 + . . . . . . + 4CZ c φ 2 φ 1 + φ 3 1 2 (32) under a good equilibrium, if φ 2 ≈ φ 3 = Qφ 1 , Q < 1, L becomes L = Z 2 c + 4CZ c Qφ 1 ≈ |Z c + 2CQ| φ 1 (33) L = ds is in volt (as ds 2 = G ij φ i φ j is in [V ]
2 ) and can be compared here to the relations of a ladder network, with:

   Z c = L C C = -ω 2 L 2 16ZcQ ( 34 
)
This important result says that a good equilibrium in eld distribution in a MSC can be compared with a ladder network with losses where energy propagates. This allows to understand that an half and xed sphere which diract the eld equally in all directions can constitute a good stirrer, even without rotation. It will distribute the energy through the various guides and leads to a good equilibrium 6 .

Probe reading

The probe integrates the eld over its own surface. It means that, as soon as its dimensions are larger than the half wavelength, the probe acts similarly to a low pass lter (in the spatial domain). And this is true for any equipment located in the MSC, for an EMC immunity test.

This time, the random variable φ(x,y,z) is associ- ated with the probe output, under the assumption that it can read one polarization only (x, y or z).

The samples are obtain making the stirrer moving.

First we use the system construct equation ( 25), setting ∆y = 0 in order to measure the y polarisation (i.e. the eld in the coupled guided waves). We test the stirrer eect at one frequency, a high one in order to make in evidence the integration eect (we need a short wavelength): 10 GHz. On a rst computation we set ∆x = ∆y = 1.10 -3 . This gives the curve for one stirrer turn shown gure 21. For the rst case, σ Ṽ = 1, 4.10 -7 , in the second case σ Ṽ = 8.10 -7 . The result of the interaction between the probe and the eld, given in ( 19) is an interception between the manifold φ i and a cylinder which diameter D is the eective surface of the probe. After what it oscillates between maximum and minimum values (gure 24). To obtain easy interpretation of the measurements, probes smaller than the wavelength may be rstly used. We rst nd that the stirrer diraction of the eld is major, in order to distribute the energy to as more as possible polarization of guided waves.

When the stirrer is perfect and the source is matched (in weak energy dissipation meaning), the MSC behaves like a propagation medium with losses where the eld should be homogeneous through the various short-circuited guided waves structures included in it.

Then we nd that we must take care of the probe integration to interpret the results. This suggest that for immunity tests, there are not evident correlations 

Figure 1

 1 Figure 1: basic structure α 1 and α 2 are the delays of mode travelling in one plan of polarization -LP (it's clear that under this choice, each branin has two components to cover both directions of the eld in each mode of one LP). Due to the stirred mechanism, value of α 2 changes. The source E is somewhere in the volume, classically near a wall. If Z α , Z β and Z γ are the three similar circuits

Figure

  Figure 1.1 shows for one volume side the organization of symbols.

Figure 2

 2 Figure 2: global structure Under some assumption, we can set the cross talk values between modes to 30% typically. The whole graph of gure 2 gives the equation for a theoretical MSC. From equation (1) we understand that the cross talk between modes is a matrix linking each coecients F i jq of a mode to the others. We have next symbols for all modes:

  last one is based on the equivalence with open guided waves. For one polarisation of propagation, the characteristic impedance says what part of energy is transmitted to the guide. So if the same energy is transmitted to an open guide, both willhave the same characteristic impedance. For example if we consider a rectangular guided waves for a x, y LP and propagation following z, it can be compared with a strip line. This makes think in equivalent levels between sinusoidal and constant signal giving the root mean square amplitude. In previous case we will write: both integrations, it leads to L = L/2. Knowing that the strip-line has for characteris-

Figure 3

 3 Figure 3: coupling generator In the case of a MSC, the antenna has its own network including its radiation resistance. The coupling occurs through the evanescent elds on the antenna output. The coupling coecient is given by the scalar product between these eld lines and the eld lines of each mode available by frequency in the waveguide. Approximatively this coecient can be evaluated by the eective antenna aperture h on the eective high of eld work for one mode. This gives a coecient near to:

Figure 4 :

 4 Figure 4: graph for one guided waves

Figure 5 :

 5 Figure 5: transfer function in currents What we see on this rst result is that it's important to take into account the coupling mechanism. Without it, the number and distribution of resonances would be dierent. But this rst test is not correct because we don't have reported the source delayed. To do that we must be able to compute the voltage across the two nodes of the rst mesh. But the emf induced depends on the rst mesh current.

Figure 6

 6 Figure 6: enriched structure The results shows rstly the cut-o frequency (see log log curve gure 7). But what is interesting is the mode density and distribution in linear -gure 8.

Figure 7 :

 7 Figure 7: transfer function in log axes

Figure 9 :

 9 Figure 9: last result with losses

  z 0 are the location of the probe for the x polarisation of eld. Similar equations are used for another LP, x 0 being dened for the y polarisation of eld. ∆y and ∆z are the lengths dening the surface covered by the probe in the volume.Adding these elements for a probe located at yo = 1, zo = 2 gives the curve shown gure 10.

Figure 10 :

 10 Figure 10: voltage obtained on the probe That's this kind of observable that will conducted the reasoning. Next step consists in adding another polarization and making some coupling with the rst one.

Figure 11

 11 Figure 11: loads mode

  1y ← α 1y ] = 0, 5). It means that we consider a perfect stirrer, giving half of energy received in the other direction. With this intermediate material, we have something that begin to seems as a MSC. Figure 12 shows the curves obtained with probe location at x = 0, 5 y = 1 z = 2. Blue curve is obtained with a deviation on y to 1,5. This rst result shows already the inuence of the probe position on eld values received and resonances seen.

Figure 12 :

 12 Figure 12: two curve obtained with be polarization system

Figure 14 :

 14 Figure 14: global topology The whole system is dened through 20 mesh currents. The stirrer is simulated by the coecients α 1 , β 1 , γ 1 , all functions of the form α 10 + α 1A Sin 2π t T , T being the period of stirrer rotation. Like these three coecients, [β ← α] (t) depends also of time (and depends on the stirrer prole). Probe location

  both resonator. If we decrease the coupling coecient of the rst resonator with the source we obtain the curve presented gure 15, where the three energy are placed in a 3D curve, the coupling coecient C 23 changing from 0 to 0,95.

Figure 15 :

 15 Figure 15: low coupling coecient with the source We see that φ 2 and φ 3 tends to be equal when C 23 → -0, 95 √ L 1 L 2 . If the coupling coecient with

Figure 16 :

 16 Figure 16: high coupling with the source

  Figure 17 shows the surface obtained, with high diversity depending on the stirrer location and higher levels on transmitted energy contrary of what we may think, increasing losses. Even points are under the situation where the source gives nearly zero energy. Eciency is increased, decreasing antenna self impedance.

Figure 17 :

 17 Figure 17: results with well-balanced loads

Figure 18 :

 18 Figure 18: classical impedance distribution

Figure 20 :

 20 Figure 20: complete turn of stirrer

Figure 21 :

 21 Figure 21: probe output with 1 mm width
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 22 Figure 22: probe output with 5 cm width

Figure 23

 23 Figure 23 illustrates this mechanism.

Figure 23

 23 Figure 23: probe mechanism

Figure 24 :

 24 Figure 24: probe coupling function versus diameter

  between the calibration of the empty MSC and the constraint applied on an equipment once placed in the MSC. Probably errors exists in our presentation in the software written to make the computations or in some relations. It was written quickly, more to introduce various discussions than to present an established work. The analytic approach under the Kron's formalism and dierential geometry (second geometrization) is not easy to use, but it's one way to demonstrate rigorously MSC behaviors and how to use them for EMC needs. Previous work has demonstrate that MSC is not equivalent to perfect anechoic chamber. Deeper reviewing of this work stills to do, after what new results should be demonstrated. Anyway, the idea saying that in a MSC, the equipment sees waves coming from everywhere is false and our equations demonstrate that. It is easy however to make an spirit experience: if you place a little probe outside at the center of many antennas pointing it, it will receive all the nergy coupled on it. The same probe located on the node of the eld mode inside a MSC will receive zero energy. Next step is to understand how energy is transmitted to the electronic of an equipment in a MSC compared of the process involved in real environment.
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