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Gärtner-Ellis condition for squared asymptotically

stationary Gaussian processes

Marina Kleptsyna, Alain Le Breton, and Bernard Ycart
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Abstract

The Gärtner-Ellis condition for the square of an asymptotically stationary

Gaussian process is established. The same limit holds for the conditional distri-

bution given any fixed initial point, which entails weak multiplicative ergodicity.

The limit is shown to be the Laplace transform of a convolution of Gamma

distributions with Poisson compound of exponentials. A proof based on Wiener-

Hopf factorization induces a probabilistic interpretation of the limit in terms of

a regression problem.
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1 Introduction

The convergence of the scaled cumulant generating functions of a sequence of ran-
dom variables implies a large deviation principle; this is known as the Gärtner-Ellis
condition [5, p. 43]. Our main result establishes that condition for the square of an
asymptotically stationary Gaussian process. Reasons for studying squared Gaussian
processes come from different fields: large deviation theory [16, 4], time series analysis
[9], or ancestry dependent branching processes [14]. Since only nonnegative real valued
random variables are considered here, we shall use logarithms of Laplace transforms,
instead of cumulant generating functions.

Theorem 1.1. Let (Xt)t∈Z be a Gaussian process, with mean m = (m(t)) and covari-

ance kernel K = (K(t, s)): for all t, s ∈ Z,

E[Xt] = m(t) and E[(Xt − m(t))(Xs − m(s))] = K(t, s) .

Assume:

sup
t∈Z

|m(t)| < +∞ ; (H1)

sup
t>1

t−1
max
s=0

t−1
∑

r=0

|K(s, r)| < +∞ . (H2)
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Assume there exist a constant m∞ and a positive definite symmetric function k such

that:
∑

t∈Z

|k(t)| < ∞ ; (H3)

lim
t→+∞

1

t

t−1
∑

s=0

|m(s) − m∞| = 0 ; (H4)

lim
t→+∞

1

t

t−1
∑

s,r=0

|K(s, r) − k(r − s)| = 0 . (H5)

Denote by f the spectral density of k:

f(λ) =
∑

t∈Z

eiλtk(t) . (1.1)

For t > 0, consider the following Laplace transform:

Lt(α) = E

[

exp

(

−α
t−1
∑

s=0

X2
s

)]

. (1.2)

Then for all α > 0,

lim
t→+∞

1

t
log(Lt(α)) = −ℓ(α) = −ℓ0(α) − ℓ1(α) , (1.3)

with:

ℓ0(α) =
1

4π

∫ 2π

0
log(1 + 2αf(λ)) dλ , (1.4)

and

ℓ1(α) = m2
∞α (1 + 2αf(0))−1 . (1.5)

Theorem 1.1 yields as a particular case the following result of weak multiplicative
ergodicity.

Proposition 1.2. Under the hypotheses of Theorem 1.1, consider:

Lx,t(α) = Ex

[

exp

(

−α
t−1
∑

s=0

X2
s

)]

, (1.6)

where Ex denotes the conditional expectation given X0 = x.

Then for all α > 0 and all x ∈ R,

lim
t→+∞

1

t
log(Lx,t(α)) = −ℓ(α) ,

where ℓ is defined by (1.3), (1.4), and (1.5).
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The analogue for finite state Markov chains has long been know [5, p. 72]. It was
extended to strong multiplicative ergodicity of exponentially converging Markov chains
by Meyn and his co-workers: see [13]. In [12], the square of a Gauss-Markov process
was studied, strong multiplicative ergodicity was proved, and the limit was explicitly
computed. This motivated the present generalization.

The particular case of a centered stationary process (m(t) = 0, K(t, s) = k(t − s))
can be considered as classical: in that case, the limit (1.4) follows from Szegő’s theorem
on Toeplitz matrices: see [8], [3] as a general reference on Toeplitz matrices, and [1] for
a review of probabilistic applications of Szegő’s theory. The extension to the centered
asymptotically stationary case follows from the notion of asymptotically equivalent
matrices, in the L2 sense: see section 7.4 p. 104 of [8], and [7]. The noncentered sta-
tionary case (m(t) = m∞ and K(s, t) = k(s − t)) has received much less attention. In
Proposition 2.2 of [4], the Large Deviation Principle is obtained for a squared noncen-
tered stationary Gaussian process. There, the centered case is deduced from Szegő’s
theorem, while the noncentered case follows from the contraction principle.

A different approach to the noncentered stationary case is proposed here. Instead of
the spectral decomposition and Szegő’s theorem, a Wiener-Hopf factorization is used.
The limits (1.4) and (1.5) are both deduced from the asymptotics of that factorization.
The technique is close to those developed in [11], that were used in [12]. One advantage
is that the coefficients of the Wiener-Hopf factorization can be given a probabilistic
interpretation in terms of a regression problem. This approach will be detailed in
section 2.

To go from the stationary to the asymptotically stationary case, asymptotic equiv-
alence of matrices is needed. But the classical L2 definition of [7, section 2.3] does not
suffice for the noncentered case. A stronger notion, linked to the L1 norm of vectors
instead of the L2 norm, will be developed in section 3.

Joining the stationary case to asymptotic equivalence, one gets the conclusion of
Theorem 1.1, but only for small enough values of α. To deduce that the convergence
holds for all α > 0, an extension of Lévy’s continuity theorem will be used: if both
(Lt(α))1/t and e−ℓ(α) are Laplace transforms of probability distributions on R

+, then
the convergence over an interval implies weak convergence of measures, hence the
convergence of Laplace transforms for all α > 0. Actually, (Lt(α))1/t and e−ℓ(α) both
are Laplace transforms of infinitely divisible distributions, more precisely convolutions
of Gamma distributions with Poisson compounds of exponentials. Details will be given
in section 4, together with the particular case of a Gauss-Markov process.

2 The stationary case

This section treats the stationary case: m(t) = m∞ and K(s, t) = k(t − s). We shall
denote by ct = (m∞)s=0,...,t−1 the constant vector with coordinates all equal to m∞,
and by Ht the Toeplitz matrix with symbol k: Ht = (k(s − r))s,r=0,...,t−1. The main
result of this section is a particular case of Theorem 1.1. It entails Proposition 2.2 of
Bryc and Dembo [4].
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Proposition 2.1. Assume k is a positive definite symmetric function such that

∑

t∈Z

|k(t)| = M < +∞ ,

and denote by f the corresponding spectral density:

f(λ) =
∑

t∈Z

eiλtk(t) .

Let Z = (Zt)t∈Z be a centered stationary process with covariance function k. Let m∞

be a real. For all α such that 0 6 α < 1/(2M),

lim
t→+∞

1

t
log

(

E

[

exp

(

−α
t−1
∑

s=0

(Zs + m∞)2

)])

= −ℓ0(α) − ℓ1(α) ,

where ℓ0(α) and ℓ1(α) are defined by (1.4) and (1.5).

Denote by mt and Kt the mean and covariance matrix of the vector (Xs)s=0,...,t−1.
The Laplace transform of the squared norm of a Gaussian vector has a well known
explicit expression: see for instance [16, p. 6]. The identity matrix indexed by 0, . . . , t−1
is denoted by It, the transpose of a vector m is denoted by m∗.

Lt(α) = (det(It + 2αKt))
−1/2 exp(−αm∗

t (It + 2αKt)
−1mt) , (2.7)

In the stationary case, mt = ct and Kt = Ht. From (2.7), we must prove that the
following two limits hold.

lim
t→+∞

1

2t
log(det(It + 2αHt)) = ℓ0(α) =

1

4π

∫ 2π

0
log(1 + 2αf(λ)) dλ , (2.8)

and
lim

t→+∞

α

t
c∗

t (It + 2αHt)
−1ct = ℓ1(α) = m2

∞α(1 + 2αf(0))−1 . (2.9)

Here, It + 2αHt will be interpreted as the covariance matrix of the random vector
(Ys)s=0,...,t−1, from the process

Y = ε +
√

2αZ , (2.10)

where ε = (εt)t∈Z is a sequence of i.i.d. standard normal random variables, independent
from Z. The limits (2.8) and (2.9) will be deduced from a Cholesky decomposition of
It + 2αHt. We begin with an arbitrary positive definite matrix A. The Cholesky
decomposition writes it as the product of a lower triangular matrix by its transpose.
Thus A−1 is the product of an upper triangular matrix by its transpose. Write it as
A−1 = T ∗DT , where T is a unit lower triangular matrix (diagonal coefficients equal
to 1), and D is a diagonal matrix with positive coefficients. Denote by G the lower
triangular matrix DT . Then GA = (T ∗)−1 is a unit upper triangular matrix. Hence
the coefficients G(s, r) of G are uniquely determined by the following system of linear
equations. For 0 6 s 6 t,

t
∑

r=0

G(t, r) A(r, s) = δt,s , (2.11)
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where δt,s denotes the Kronecker symbol: 1 if t = s, 0 else. Notice that A−1 = G∗D−1G,
and TAT ∗ = D−1, where D is the diagonal matrix with diagonal entries G(s, s). In
particular,

det(A) =

(

∏

s

G(s, s)

)−1

, (2.12)

and for any vector m = (m(r)),

m∗A−1m =
∑

s

1

G(s, s)

(

s
∑

r=0

G(s, r)m(r)

)2

. (2.13)

Here is the probabilistic interpretation of the coefficients G(t, s). Consider a centered
Gaussian vector Y with covariance matrix A. For t = 0, . . . , n, denote by YJ0,tK the
σ-algebra generated by Y0, . . . , Yt, and by νt the partial innovation:

νt = Yt − E[Yt | YJ0,t−1K] ,

with the convention ν0 = Y0. Using elementary properties of Gaussian vectors, it is
easy to check that:

νt =
1

G(t, t)

t
∑

r=0

G(t, r) Yr . (2.14)

Moreover, the νt’s are independent, and the variance of νt is 1/G(t, t).
When this is applied to A = It + 2αHt, another interesting interpretation arises.

For t = 0, . . . , n (G(t, s))s=0,...,t is the unique solution to the system:

G(t, s) + 2α
t
∑

r=0

G(t, r) k(r − s) = δt,s . (2.15)

Observe that the equations (2.15) are the normal equations of the regression of the
εt’s over the Yt’s in the model (2.10). Actually, since E[YrYs] = δs,r + 2αk(r − s) and
E[εtYs] = δt,s, setting

µt = G(t, t) νt =
t
∑

r=0

G(t, r) Yr , (2.16)

equation (2.15) says that for s = 0, . . . , t,

E[µtYs] = E[εtYs] .

This means that:
µt = E[εt | YJ0,tK ] .

Obviously, the µt’s are independent, the variance of µt is G(t, t) and the filtering error
is:

E[(εt − µt)
2] = 1 − G(t, t) .

In particular, it follows that 0 < G(t, t) < 1.
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The asymptotics of G(t, s) will now be related to the spectral density f . Denote
gt(s) = G(t, t − s). A change of index in (2.15) shows that (gt(s))s=0,...,t is the unique
solution to the system:

gt(s) + 2α
t
∑

r=0

gt(r) k(s − r) = δs,0 . (2.17)

Proposition 2.2. Assume k is a positive definite symmetric function such that

∑

t∈Z

|k(t)| = M < +∞ ,

and denote by f the corresponding spectral density:

f(λ) =
∑

t∈Z

eiλtk(t) .

For all α such that 0 6 α < 1/(2M), the following equation has a unique solution in

L1(Z).

g(s) + 2α
+∞
∑

r=0

g(r) k(s − r) = δs,0 . (2.18)

One has:

g(0) = exp
(

− 1

2π

∫ 2π

0
log(1 + 2αf(λ)) dλ

)

, (2.19)

and

+∞
∑

s=0

g(s) = exp
(

−1

2
log(1 + 2αf(0)) − 1

4π

∫ 2π

0
log(1 + 2αf(λ)) dλ

)

. (2.20)

Moreover, if gt(s) is defined for all 0 6 s 6 t by (2.17), then for all s > 0,

lim
t→+∞

gt(s) = g(s) , (2.21)

and

lim
t→+∞

t
∑

s=0

gt(s) =
+∞
∑

s=0

g(s) . (2.22)

The main idea of the proof amounts to writing the Wiener-Hopf factorization of
the operator I + 2αH . The method is originally due to M. G. Krein: see section 1.5 of
[3], in particular the proof of Theorem 1.14 p. 17.

Proof. Conditions of invertibility for Toeplitz operators are well known. They are
treated in section 2.3 and 7.2 of [3]. Here, the L1 norm of the Toeplitz operator H with
symbol k is M , and the condition 0 6 α < 1/(2M) permits to write the inverse as:

(I + 2αH)−1 =
+∞
∑

n=0

(−2αH)n .
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That the truncated inverse (It + 2αHt)
−1 converges to (I + 2αH)−1 is deduced for the

L2 case from [3, p. 42]. Convergence of entries follows, hence (2.21). To obtain (2.22),
consider δt(s) = g(s) − gt(s). From (2.17) and (2.18):

δt(s) = −2α
t
∑

r=0

k(r − s)δt(r) − 2α
+∞
∑

r=t+1

g(r)k(r − s) .

Hence:
t
∑

s=0

|δt(s)| 6 2α

(

t
∑

r=0

|δt(r)|
)(

+∞
∑

s=−∞

|k(s)|
)

+ 2α

(

+∞
∑

s=−∞

|k(s)|
)(

+∞
∑

r=t+1

|g(r)|
)

.

Thus the following bound is obtained:

t
∑

s=0

|δt(s)| 6 2αM

1 − 2αM

+∞
∑

r=t+1

|g(r)| ,

which yields (2.22).
The generating function of (g(s))s>0 will now be related to the spectral density f .

Define for all s ∈ Z,

g+(s) =

{

g(s) if s > 0
0 else

and g−(s) =

{

g(s) if s < 0
0 else.

Denote by F + and F − the Fourier transforms of g+ and g−:

F ±(λ) =
∑

s∈Z

eisλg±(s) .

Take Fourier transforms in both members of (2.18):

F +(λ) + F −(λ) + 2αF +(λ)f(λ) = 1 .

Or else:
F +(λ)(1 + 2αf(λ)) = 1 − F −(λ) . (2.23)

The functions F ±(λ) can be seen as being defined on the unit circle. They can be
extended into analytic functions, one inside the unit disk, the other one outside. For
|ζ | 6 1:

F̄ +(ζ) =
∑

s>0

ζsg+(s) ,

and for |ζ | > 1:
F̄ −(ζ) =

∑

s<0

ζsg−(s) .

Similarly, we shall denote by f̄(ζ) the value of f(λ) for ζ = eiλ. Let ζ0 be any fixed
complex inside the unit disk. In (2.23), take logarithms of both members (principal
branch), divide by 2πi(ζ − ζ0), then take the contour integral over the unit circle.

1

2πi

∮

|ζ|=1

log(F̄ +(ζ))

ζ − ζ0
dζ +

1

2πi

∮

|ζ|=1

log(1 + 2αf̄(ζ))

ζ − ζ0
dζ

=
1

2πi

∮

|ζ|=1

log(1 − F̄ −(ζ))

ζ − ζ0

dζ .

(2.24)
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Since F̄ + is analytic inside the unit disk, the residue of the first integral is F̄ +(ζ0).
Let us prove that the integral in the second member is null. Since the function to be
integrated is analytic outside the unit circle, the integral has the same value over any
circle with radius ρ > 1, centered at 0.

1

2πi

∮

|ζ|=1

log(1 − F̄ −(ζ))

ζ − ζ0
dζ =

1

2πi

∮

|ζ|=ρ>1

log(1 − F̄ −(ζ))

ζ − ζ0
dζ .

As ρ tends to +∞, it can easily be checked that the right hand side tends to zero.
Thus (2.24) becomes:

log(F̄ +(ζ0)) = − 1

2πi

∮

|ζ|=1

log(1 + 2αf̄(ζ))

ζ − ζ0

dζ . (2.25)

Two particular cases are of interest. Consider first ζ0 = 0.

log(F̄ +(0)) = − 1

2πi

∮

|ζ|=1

log(1 + 2αf̄(ζ))

ζ
dζ

= − 1

2π

∫ 2π

0
log(1 + 2αf(λ)) dλ .

Since F̄ +(0) = g(0), (2.19) follows.
The other particular case is ζ0 = 1, but it is on the unit circle; so a limit has to be

taken.

log(F̄ +(1)) = lim
ζ0→1
|ζ0|<1

(

− 1

2πi

∮

|ζ|=1

log(1 + 2αf̄(1))

ζ − ζ0

dζ

− 1

2πi

∮

|ζ|=1

log(1 + 2αf̄(ζ)) − log(1 + 2αf̄(1))

ζ − ζ0

dζ

)

.

The first integral does not depend on ζ0:

− 1

2πi

∮

|ζ|=1

log(1 + 2αf̄(1))

ζ − ζ0

dζ = − log(1 + 2αf(0)) .

Since f̄ has no singularity at 1, the limit of the second integral is:

− 1

2πi

∮

|ζ|=1

log(1 + 2αf̄(ζ)) − log(1 + 2αf̄(1))

ζ − 1
dζ .

Written as a real integral:

− 1

2π

∫ 2π

0

log(1 + 2αf(λ)) − log(1 + 2αf(0))

1 − e−iλ
dλ .

For all λ, the real part of 1/(1 − e−iλ) is 1/2. The integral of the imaginary part
vanishes, because the function to be integrated is odd. Finally:

log(F̄ +(1)) = −1

2
log(1 + 2αf(0)) − 1

4π

∫ 2π

0
log(1 + 2αf(λ)) dλ ,
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hence (2.20), since

F̄ +(1) = F +(0) =
+∞
∑

s=0

g(s) .

Here is the probabilistic interpretation. Consider a centered stationary process
(Yt)t∈Z, with covariance function A(t, s) = a(t − s). For s 6 t, denote by YJs,tK the
σ-algebra generated by (Yr)r=s,...,t. Consider again the partial innovation νt = Yt −
E[Yt | YJ0,t−1K]. From (2.14), and using stationarity, νt has the same distribution as

ηt =
1

G(t, t)

t
∑

r=0

G(t, t − r) Y−r ,

which is:
ηt = Y0 − E[Y0 | YJ−t,−1K] .

As t tends to infinity, ηt converges almost surely to:

η∞ = Y0 − E[Y0 | YJ−∞,−1K] .

Observe by stationarity that for all r,

η∞
D
= Yr − E[Yr | YJ−∞,r−1K] ,

which is the innovation process associated to Y . Now the variance of νt, 1/G(t, t) tends
to the variance of η∞. From the Szegő-Kolmogorov formula (see e.g. Theorem 3 p. 137
of [9]), that variance is:

exp
(

1

2π

∫ 2π

0
log(φ(λ)) dλ

)

,

where φ(λ) is the spectral density of Y . Let X be a centered stationary process with
covariance function k, ε be a standard Gaussian noise, and Y = ε +

√
2αX. The

spectral densities φ of Y and f of X are related by φ(λ) = 1 + 2αf(λ). Hence:

lim
t→+∞

var(νt) = lim
t→+∞

1

G(t, t)
= exp

(

1

2π

∫ 2π

0
log(1 + 2αf(λ)) dλ

)

,

which is equivalent to (2.19).
Alternatively, observe that due to stationarity, µt defined by (2.16) has the same

distribution as:

ξt =
t
∑

r=0

G(t, t − r) Y−r ,

which is
ξt = E[ε0 | YJ−t,0K] .

As t tends to infinity, ξt converges a.s. to:

ξ∞ = E[ε0 | YJ−∞,0K] .

9



Of course, since E[ε−sY−r] = δs,r, for all s = 0, . . . , t:

E[ξt ε−s] = G(t, t − s) .

Hence the limiting property (2.21) says that:

E[ξ∞ ε−s] = lim
t→+∞

G(t, t − s) = g(s) .

Actually, ξ∞ admits the representation:

ξ∞ =
+∞
∑

s=0

g(s) Y−s .

Similarly, for all t,

E[εt | YJ−∞,tK] =
+∞
∑

s=0

g(s) Yt−s ,

which means that (g(s)) realizes the optimal causal Wiener filter of εt from the Yt−s’s.

Now, Proposition 2.1 is a straightforward consequence of Proposition 2.2.

Proof. Let the coefficients gτ (s) be defined by (2.17). Applying (2.12) to A = It+2αHt,
one gets:

(det(It + 2αHt))
−1/2 =

(

t−1
∏

τ=0

gτ (0)

)1/2

.

Therefore:
1

t
log

(

det(It + 2αHt))
−1/2

)

=
1

2t

t−1
∑

τ=0

log(gτ (0)) .

From Proposition 2.2:

lim
τ→+∞

gτ(0) = g(0) = exp
(

− 1

2π

∫ 2π

0
log(1 + 2αf(λ)) dλ

)

.

Hence:

lim
t→+∞

1

t
log

(

det(It + 2αHt))
−1/2

)

= −ℓ0(α) .

Applying now (2.13) to A = It + 2αHt, one gets:

c∗
t G

∗
t D−1

t Gtct = m2
∞

t−1
∑

τ=0

1

gτ (0)

(

τ
∑

s=0

gτ(s)

)2

.

From Proposition 2.2:

lim
τ→+∞

1

gτ(0)

(

τ
∑

s=0

gτ (s)

)2

=
1

g(0)

(

+∞
∑

s=0

g(s)

)2

= (1 + 2αf(0))−1 .

Hence:
lim

t→+∞

α

t
c∗

t (It + 2αHt)
−1ct = ℓ1(α) .

10



3 Asymptotic equivalence

Proposition 2.1 only treats the stationary case. To extend the result under the hy-
potheses of Theorem 1.1, a notion of asymptotic equivalence of matrices and vectors is
needed. It is developed in this section.

From (2.7), we must prove that under the hypotheses of Theorem 1.1:

lim
t→+∞

1

2t
log(det(It + 2αKt)) = ℓ0(α) =

1

4π

∫ 2π

0
log(1 + 2αf(λ)) dλ , (3.26)

and
lim

t→+∞

α

t
m∗

t (It + 2αKt)
−1mt = ℓ1(α) = m2

∞α(1 + 2αf(0))−1 . (3.27)

If Kt = Ht (centered stationary case), (3.26) is (2.8). It can also be obtained by a
straightforward application of Szegő’s theorem: see [3, 1]. That (3.26) holds (cen-
tered asymptotically stationary case) is a consequence of the theory of asymptotically
Toeplitz matrices: see section 7.4 p. 104 of [8], and also [7, Theorem 4 p. 178]. Asymp-
totic equivalence of matrices in Szegő’s theory is taken in the L2 sense, which is weaker
than the one considered here. In other words, (3.26) holds under weaker hypothe-
ses than (H1-5). In order to prove (3.27), we shall develop asymptotic equivalence of
matrices and vectors along the same lines as [7, section 2.3], but in a stronger sense,
replacing L2 by L∞ and L1, for boundedness and convergence. The norms used here
for a vector v = (v(s))s=0,...,t−1 are:

‖v‖∞ =
t−1

max
s=0

|v(s)| and ‖v‖1 =
t−1
∑

s=0

|v(s)| .

For symmetric matrices, the norm subordinate to ‖ · ‖∞ is equal to the norm sub-
ordinate to ‖ · ‖1. It will be denoted by ‖ · ‖ and referred to as strong norm. For
A = (A(s, r))s,r=0,...,t−1 such that A∗ = A,

‖A‖ =
t−1

max
s=0

t−1
∑

r=0

|A(s, r)| = max
‖v‖∞=1

‖Av‖∞

=
t−1

max
r=0

t−1
∑

s=0

|A(s, r)| = max
‖v‖1=1

‖Av‖1 .

The following weak norm will be denoted by |A|:

|A| =
1

t

t−1
∑

s,r=0

|A(s, r)| .

Clearly, |A| 6 ‖A‖. Moreover, the following bounds hold.

Lemma 3.1. Let A and B be two symmetric matrices. Then:

|AB| 6 ‖A‖ |B| and |AB| 6 |A| ‖B‖ .

11



Proof. |AB| is the arithmetic mean of the L1 norms of column vectors of AB. If b is
any column vector of B,

‖Ab‖1 6 ‖A‖ ‖b‖1 ,

because the strong norm is subordinate to the L1 norm of vectors. Hence the first
result. For the second result, replace columns by rows.

Here is a definition of asymptotic equivalence for vectors.

Definition 3.2. Let (vt)t>0 and (wt)t>0 be two sequences of vectors such that for all t >
0, vt = (vt(s))s=0,...,t−1 and wt = (wt(s))s=0,...,t−1. They are said to be asymptotically
equivalent if:

1. ‖vt‖∞ and ‖wt‖∞ are uniformly bounded,

2. lim
t→+∞

1

t
‖vt − wt‖1 = 0.

Asymptotic equivalence of (vt) and (wt) will be denoted by vt ∼ wt.

Hypotheses (H1) and (H4) imply that mt ∼ ct.
Asymptotic equivalence for matrices is defined as follows (compare with [7, p. 172]).

Definition 3.3. Let (At)t>0 and (Bt)t>0 be two sequences of symmetric matrices, where

for all t > 0, At = (At(s, r))s,t=0,...,t−1 and Bt = (Bt(s, r))s,t=0,...,t−1. They are said to

be asymptotically equivalent if:

1. ‖At‖ and ‖Bt‖ are uniformly bounded,

2. lim
t→+∞

|At − Bt| = 0.

Asymptotic equivalence of (At) and (Bt) will still be denoted by At ∼ Bt.

Here are some elementary results, analogous to those stated in Theorem 1 p. 172
of [7].

Lemma 3.4. Let (At), (Bt), (Ct), (Dt) be four sequences of symmetric matrices.

1. If At ∼ Bt and Bt ∼ Ct then At ∼ Ct.

2. If At ∼ Bt and Ct ∼ Dt then At + Ct ∼ Bt + Dt.

3. If At ∼ Bt and Ct ∼ Dt then AtCt ∼ BtDt.

4. If At ∼ Bt and F is an analytic function with radius R > max ‖At‖, max ‖Bt‖,

then F (At) ∼ F (Bt).

12



Proof. Points 1 and 2 follow from the triangle inequality for the weak norm. For point
3, because ‖ · ‖ is a norm of matrices, ‖AtCt‖ 6 ‖At‖ ‖Ct‖ and ‖BtDt‖ 6 ‖Bt‖ ‖Dt‖
are uniformly bounded. Moreover by Lemma 3.1,

|AtCt − BtDt| 6 |(At − Bt)Ct| + |Bt(Ct − Dt)|
6 |At − Bt| ‖Ct‖ + ‖Bt‖ |Ct − Dt| .

Since ‖Ct‖ and ‖Bt‖ are uniformly bounded, and

lim
t→∞

|At − Bt| = lim
t→∞

|Ct − Dt| = 0 ,

the result follows. For point 4, let F be analytic with radius of convergence R. For
|z| < R, let

F (z) =
+∞
∑

k=0

ak zk ,

and

Fn(z) =
n
∑

k=0

ak zk .

The matrices F (At), F (Bt) are defined as the limits of Fn(At), Fn(Bt); from the hy-
pothesis, it follows that the convergence is uniform in t. Because ‖ · ‖ is a matrix norm,
‖F (At)‖ 6 F (‖At‖) and the same holds for Bt: ‖F (At)‖ and ‖F (Bt)‖ are uniformly
bounded. Let ǫ be a positive real. Fix n such that for all t,

‖F (At) − Fn(At)‖ <
ǫ

3
and ‖F (Bt) − Fn(Bt)‖ <

ǫ

3
.

By induction on n using points 2 and 3, Fn(At) ∼ Fn(Bt). There exists t0 such that
for all t > t0,

|Fn(At) − Fn(Bt)| <
ǫ

3
.

Thus for all t > t0,

|F (At) − F (Bt)| 6 |F (At) − Fn(At)| + |Fn(At) − Fn(Bt)| + |Fn(Bt) − F (Bt)|
6 ‖F (At) − Fn(At)‖ + |Fn(At) − Fn(Bt)| + ‖Fn(Bt) − F (Bt)‖
< ǫ .

Hence the result.

Hypothesis (H3) implies that ‖Ht‖ is uniformly bounded, (H2) and (H5) that Kt ∼
Ht. Point 4 will be applied to F (z) = (1 + 2αz)−1, which has radius of convergence
R = 1/2α. Let M be defined as:

M = max







max
t>1

‖Kt‖ ,
∑

t∈Z

|k(t)|






.

For all α < α0 = 1/(2M),

(It + 2αKt)
−1 ∼ (It + 2αHt)

−1 . (3.28)

Here is the relation between asymptotic equivalence of vectors and matrices.
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Lemma 3.5.

1. If At ∼ Bt and ‖vt‖∞ is uniformly bounded, then Atvt ∼ Btvt.

2. If vt ∼ wt and ‖At‖ is uniformly bounded, then Atvt ∼ Atwt.

Proof. That ‖Atvt‖∞, ‖Btvt‖∞, ‖Atwt‖∞ are uniformly bounded comes from the fact
that ‖ · ‖ is subordinate to ‖ · ‖∞. Next for point 1:

1

t
‖(At − Bt)vt‖1 6 ‖vt‖∞|A − B| .

For point 2:
1

t
‖At(vt − wt)‖1 6

1

t
‖At‖‖vt − wt‖1 .

The relation between asymptotic equivalence of vectors and our goal is the following.

Lemma 3.6. If vt ∼ wt and ut ∼ zt, then

lim
t→+∞

1

t
(v∗

t ut − w∗
t zt) = 0 .

Proof.

1

t
|v∗

t ut − w∗
t zt| 6

1

t
(|v∗

t (ut − zt)| + |(v∗
t − w∗

t )zt|)

6
1

t
(‖vt‖∞ ‖ut − zt‖1 + ‖zt‖∞‖vt − wt‖1) .

Hence the result.

Using asymptotic equivalence, (3.26) and (3.27) can easily be deduced from (2.8)
and (2.9), for 0 < α < 1/(2M). We shall not detail the passage from (2.8) to (3.26): see
Theorem 4 p. 178 of [7]. Here is the passage from (2.8) to (3.26). For all α < 1/(2M),
it follows from (3.28) by point 1 of Lemma 3.5 that

(It + 2αKt)
−1ct ∼ (It + 2αHt)

−1ct .

By point 2 of Lemma 3.5:

(It + 2αKt)
−1mt ∼ (It + 2αHt)

−1ct .

Lemma 3.6 implies:

lim
t→+∞

1

t
m∗

t (It + 2αKt)mt = lim
t→+∞

1

t
c∗

t (1 + 2αHt)
−1ct .

Hence (3.27).
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Still using asymptotic equivalence, it will now be shown that Proposition 1.2 is just a
particular case of Theorem 1.1. Indeed, consider the Gaussian process Xx with mean

mx(t) = E[Xx
t ] = m(t) +

K(0, t)

K(0, 0)
(x − m(t)) , (3.29)

and covariance function

K•(t, s) = E[(Xx
t − mx(t))(Xx

s − mx(s))] = K(t, s) − K(t, 0)K(s, 0)

K(0, 0)
. (3.30)

The distribution of (Xx
t )t∈N and the conditional distribution of (Xt)t∈N given X0 = x

are the same. Denote by mx,t and K•
t the mean and covariance matrix of (Xx

s )s=0,...,t−1.
Theorem 1.1 applies to Xx, provided it is proved that mx,t ∼ ct and K•

t ∼ Ht. By (H1)
and (H2), ‖mx,t‖∞ is uniformly bounded. Moreover from (3.29),

1

t
‖mx,t − mt‖1 6

|x| + ‖mt‖∞

tK(0, 0)

t−1
∑

s=0

|K(0, s)| 6 |x| + ‖mt‖∞

tK(0, 0)
‖Kt‖ ,

thus mx,t ∼ mt, hence mx,t ∼ ct by transitivity. Now from (3.30),

‖K•
t ‖ 6 ‖Kt‖ +

t−1
max
r=0

|K(0, r)|
K(0, 0)

t−1
∑

s=0

K(0, s) 6 ‖Kt‖ +
‖Kt‖2

K(0, 0)
.

Moreover,

|K•
t − Kt| 6

1

tK(0, 0)

(

t−1
∑

s=0

|K(0, s)|
)2

6
‖Kt‖2

tK(0, 0)
,

thus K•
t ∼ Kt, hence K•

t ∼ Ht by transitivity (point 1 of Lemma 3.4).

This section will end with another illustration of asymptotic equivalence, which is of
independent interest and yields an alternative proof of (2.9).

Proposition 3.7. Let F be analytic with radius of convergence R >
∑

t |k(t)|. Denote

by d
(λ)
t the vector d

(λ)
t = (e−iλs)s=0,...,t−1. Then:

F (Ht)d
(λ)
t ∼ F (f(λ))d

(λ)
t . (3.31)

The function (e−iλs)s∈Z is an eigenfunction of the Toeplitz operator H with symbol
k, associated to the eigenvalue f(λ). Thus Proposition 3.7 is closely related to Szegő’s

theorem: compare with Theorem 5.9 p. 137 of [3]. Notice that ct = m∞d
(0)
t : in the

particular case λ = 0 and F (z) = (1 + 2αz)−1, one gets:

(1 + 2αHt)
−1ct ∼ (1 + 2αf(0))−1ct ,

from which (2.9) follows, through Lemma 3.6. If instead of being constant, the asym-
totic mean is periodic, Proposition 3.7 still gives an explicit expression of ℓ1(α). As an
example, assume m(t) = (−1)tm∞. Then (2.9) holds with:

ℓ1(α) = m2
∞α(1 + 2αf(π))−1 .
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Proof. We first prove (3.31) for F (z) = z. Using the fact that ‖ · ‖ is subordinate to
‖ · ‖∞,

‖Htd
(λ)
t ‖∞ 6 ‖Ht‖ .

Therefore ‖Htd
(λ)
t ‖∞ is uniformly bounded. For s = 0, . . . , t−1, consider the coordinate

with index s of f(λ)d
(λ)
t − Htd

(λ)
t :

e−iλs
∑

r∈Z

k(r)eiλr −
t−1
∑

r=0

k(r − s)e−iλr = e−iλs
∑

r∈Z

k(r)e−iλr − e−iλs
t−s−1
∑

r′=−s

k(r′)e−iλr′

= e−iλs
−s−1
∑

r=−∞

k(r)e−iλr + e−iλs
+∞
∑

r=t−s

k(r)e−iλr .

Denote

δ−(s) =
s
∑

r=−∞

k(r)e−iλr and δ+(s) =
+∞
∑

r=s

k(r)e−iλr .

Observe, due to the symmetry of k, that δ−(−s) = δ+(s) Thus:

‖f(0)ct − Htct‖1 =
t−1
∑

s=0

|δ−(−s − 1) + δ+(t − s)|

6

t−1
∑

s=0

|δ−(−s − 1)| +
t−1
∑

s=0

|δ+(t − s)|

= 2
t
∑

s=1

|δ+(s)| .

The sequence (|δ+(s)|)s∈N tends to 0, as a consequence of the summability of k (H3).
Therefore it also tends to zero in the Cesàro sense. Hence the result.

By induction, using the triangle inequality, (3.31) holds for any polynomial Fn. The
rest of the proof is the same as that of point 4 in Lemma 3.4.

4 Asymptotic distributions

The results of the two previous sections establish that the conclusion of Theorem 1.1
holds for a small enough α. To finish the proof, the convergence must be extended to
all α > 0. The following variant of Lévy’s continuity theorem applies (see Chapter 4
of [10], in particular Exercise 9 p. 78).

Lemma 4.1. Let π, π1, π2, . . . , be probability measures on R
+. Assume that for some

α0 > 0, and all α ∈ [0, α0[,

lim
n→∞

∫ +∞

0
e−αx dπn(x) =

∫ +∞

0
e−αx dπ(x) .

Then (πn) converges weakly to π and the convergence holds for all α > 0.
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To apply this lemma, one has to check that (Lt(α))1/t and e−ℓ(α) are the Laplace
transforms of probability distributions on R

+. It turns out that in our case, the function
Lt(α) defined by (1.2) is the Laplace transform of an infinitely divisible distribution,
thus so are (Lt(α))1/t and its limit. We give here the probabilistic interpretation of
e−ℓ0(α) and e−ℓ1(α) as the Laplace transforms of two infinitely divisible distributions.
Next, the particular case of a Gauss-Markov process will be considered.

Through an orthogonal transformation diagonalizing its covariance matrix, the
squared norm of any Gaussian vector can be written as the sum of independent ran-
dom variables, each being the square of a Gaussian variable, thus having noncentral
chi-squared distribution. If Z is Gaussian with mean µ and variance v, the Laplace
transform of Z2 is:

φ(α) = (1 + 2αv)−1/2 exp(−µ2α/(1 + 2αv)) .

The first factor is the Laplace transform of the Gamma distribution with shape pa-
rameter 1/2 and scale parameter 2v. Assuming µ and v non null, rewrite the second
factor as:

exp

(

−µ2

2v

(

1 − (1 + 2αv)−1
)

)

.

This is the Laplace transform of a Poisson compound, of the exponential with ex-
pectation 2v, by the Poisson distribution with rate µ2

2v
. Therefore, the squared norm

of a Gaussian vector has an infinitely divisible distribution, which is a convolution
of Gamma distributions with Poisson compounds of exponentials. Squared Gaussian
vectors have received a lot of attention, since even in dimension 2, the mean and co-
variance matrix must satisfy certain conditions for the distribution of the vector to
be infinitely divisible [15]. Yet the sum of coordinates of such a vector always has an
infinitely divisible distribution.

For all t, the distribution with Laplace transform (Lt(α))1/t is the convolution of
Gamma distributions with Poisson compounds of exponentials. As t tends to infinity,
(Lt(α))1/t tends to e−ℓ0(α) e−ℓ1(α). The first factor e−ℓ0(α) is the Laplace transform of a
limit of convolutions of Gamma distributions, which belongs to the Thorin class T (R+)
(see [2] as a general reference). Consider now e−ℓ1(α). Rewrite ℓ1(α) as:

ℓ1(α) = m2
∞α (1 + 2αf(0))−1

=
m2

∞

2f(0)

(

1 − (1 + 2αf(0))−1
)

.

Thus e−ℓ1(α) is the Laplace transform of a Poisson compound, of the exponential dis-

tribution with expectation 2f(0), by the Poisson distribution with parameter m2
∞

2f(0)
.

As an illustrating example, consider the Gauss-Markov process defined as follows.
Let θ be a real such that −1 < θ < 1. Let (εt)t>1 be a sequence of i.i.d. standard
Gaussian random variables. Let Y0, independent from the sequence (εt)t>1, follow the
normal N (0, (1 − θ2)−1) distribution. For all t > 1 let:

Yt = θYt−1 + εt .
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Thus (Yt)t∈N is a stationary centered auto-regressive process. Consider the noncentered
process (Xt)t∈N, with Xt = Yt+m∞. This is the case considered in [12], where a stronger
result was proved. Formula (10) p. 72 of that reference matches (1.4) and (1.5) here.
Indeed, the spectral density is:

f(λ) =
1

1 + θ2 − 2θ cos(λ)
.

Write ℓ0(α) as a contour integral over the unit circle.

ℓ0(α) =
1

4π

∫ 2π

0
log(1 + 2αf(λ)) dλ =

1

4πi

∮

|ζ|=1

1

ζ
log



1 +
2α

1 + θ2 − θ(1
ζ

+ ζ)



 dζ .

Now:

1 +
2α

1 + θ2 − θ(1
ζ

+ ζ)
=

ζ2 − (θ + 1
θ

+ 2α
θ

)ζ + 1

ζ2 − (θ + 1
θ
)ζ + 1

.

Observe that the two roots of the numerator have the same sign as θ, and their product
is 1. Denote them by ζ− and ζ+, so that 0 < |ζ−| < 1 < |ζ+|. The two roots of the
denominator are θ and 1

θ
. The function to be integrated has 5 poles, among which

0, θ, ζ− are inside the unit disk, 1
θ
, ζ+ are outside. Rewrite ℓ0 as:

ℓ0(α) =
1

4πi

∮

|ζ|=1

1

ζ
log

(

ζ − ζ−

ζ − θ

)

dζ +
1

4πi

∮

|ζ|=1

1

ζ
log

(

ζ − ζ+

ζ − 1
θ

)

dζ .

The first integral is null, since
∮

|ζ|=1

1

ζ
log

(

ζ − ζ−
)

dζ =
∮

|ζ|=1

1

ζ
log (ζ − θ) dζ ,

the two functions having the same residues inside the unit disk. The second integral
is:

1

4πi

∮

|ζ|=1

1

ζ
log

(

ζ − ζ+

ζ − 1
θ

)

dζ =
1

2
log(θζ+) .

Therefore:

ℓ0(α) =
1

2
log(θζ+) =

1

2
log

(

1

2

(

θ2 + 1 + 2α +
√

((θ + 1)2 + 2α)((θ − 1)2 + 2α)
))

.

The expression of ℓ1 is:

ℓ1(α) =
m2

∞α(1 − θ)2

(1 − θ)2 + 2α
.

It turns out that the probability distribution with Laplace transform

e−ℓ0(α) =
(

1

2

(

θ2 + 1 + 2α +
√

((θ + 1)2 + 2α)((θ − 1)2 + 2α)
))−1/2

,

has an explicit density f0(x) defined on (0, +∞), which is related to the modified Bessel
function of the first kind, with order 1/2 (compare with formula (3.10) p. 437 in [6]).

f0(x) = e− 1+θ
2

2
x
(

2−1|θ|−1/2x−1I1/2(|θ|x)
)

= e− 1+θ
2

2
x
(

(2π)−1/2|θ|−1x−3/2 sinh(|θ|x)
)

.
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