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Introduction

The convergence of the scaled cumulant generating functions of a sequence of random variables implies a large deviation principle; this is known as the Gärtner-Ellis condition [5, p. 43]. Our main result establishes that condition for the square of an asymptotically stationary Gaussian process. Reasons for studying squared Gaussian processes come from different fields: large deviation theory [START_REF] Yurinsky | Sums and Gaussian vectors[END_REF][START_REF] Bryc | Large deviations for quadratic functionals of Gaussian processes[END_REF], time series analysis [START_REF] Hannan | Multiple time series[END_REF], or ancestry dependent branching processes [START_REF] Louhichi | Exponential growth of bifurcating processes with ancestral dependence[END_REF]. Since only nonnegative real valued random variables are considered here, we shall use logarithms of Laplace transforms, instead of cumulant generating functions. Theorem 1.1. Let (X t ) t∈Z be a Gaussian process, with mean m = (m(t)) and covariance kernel K = (K(t, s)): for all t, s ∈ Z, E[X t ] = m(t) and E[(X tm(t))(X sm(s))] = K(t, s) . For t 0, consider the following Laplace transform:

L t (α) = E exp -α t-1 s=0 X 2 s . (1.2)
Then for all α 0, lim (1.5)

t→+∞ 1 t log(L t (α)) = -ℓ(α) = -ℓ 0 (α) -ℓ 1 (α) , (1.3) 
Theorem 1.1 yields as a particular case the following result of weak multiplicative ergodicity.

Proposition 1.2. Under the hypotheses of Theorem 1.1, consider:

L x,t (α) = E x exp -α t-1 s=0 X 2 s , ( 1.6 
)

where E x denotes the conditional expectation given X 0 = x. Then for all α 0 and all x ∈ R,

lim t→+∞ 1 t log(L x,t (α)) = -ℓ(α) ,
where ℓ is defined by (1.3), (1.4), and (1.5).

The analogue for finite state Markov chains has long been know [5, p. 72]. It was extended to strong multiplicative ergodicity of exponentially converging Markov chains by Meyn and his co-workers: see [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processes[END_REF]. In [START_REF] Kleptsyna | Exponential transform of quadratic functional and multiplicative ergodicity of a Gauss-Markov process[END_REF], the square of a Gauss-Markov process was studied, strong multiplicative ergodicity was proved, and the limit was explicitly computed. This motivated the present generalization.

The particular case of a centered stationary process (m(t) = 0, K(t, s) = k(ts)) can be considered as classical: in that case, the limit (1.4) follows from Szegő's theorem on Toeplitz matrices: see [START_REF] Grenander | Toeplitz forms and their applications[END_REF], [START_REF] Böttcher | Introduction to large truncated Toeplitz matrices[END_REF] as a general reference on Toeplitz matrices, and [START_REF] Bingham | Szegő's theorem and its probabilistic descendants[END_REF] for a review of probabilistic applications of Szegő's theory. The extension to the centered asymptotically stationary case follows from the notion of asymptotically equivalent matrices, in the L 2 sense: see section 7.4 p. 104 of [START_REF] Grenander | Toeplitz forms and their applications[END_REF], and [START_REF] Gray | Toeplitz and circulant matrices: a review[END_REF]. The noncentered stationary case (m(t) = m ∞ and K(s, t) = k(st)) has received much less attention. In Proposition 2.2 of [START_REF] Bryc | Large deviations for quadratic functionals of Gaussian processes[END_REF], the Large Deviation Principle is obtained for a squared noncentered stationary Gaussian process. There, the centered case is deduced from Szegő's theorem, while the noncentered case follows from the contraction principle.

A different approach to the noncentered stationary case is proposed here. Instead of the spectral decomposition and Szegő's theorem, a Wiener-Hopf factorization is used. The limits (1.4) and (1.5) are both deduced from the asymptotics of that factorization. The technique is close to those developed in [START_REF] Kleptsyna | New formulas concerning Laplace transforms of quadratic forms for general Gaussian sequences[END_REF], that were used in [START_REF] Kleptsyna | Exponential transform of quadratic functional and multiplicative ergodicity of a Gauss-Markov process[END_REF]. One advantage is that the coefficients of the Wiener-Hopf factorization can be given a probabilistic interpretation in terms of a regression problem. This approach will be detailed in section 2.

To go from the stationary to the asymptotically stationary case, asymptotic equivalence of matrices is needed. But the classical L 2 definition of [7, section 2.3] does not suffice for the noncentered case. A stronger notion, linked to the L 1 norm of vectors instead of the L 2 norm, will be developed in section 3.

Joining the stationary case to asymptotic equivalence, one gets the conclusion of Theorem 1.1, but only for small enough values of α. To deduce that the convergence holds for all α 0, an extension of Lévy's continuity theorem will be used: if both (L t (α)) 1/t and e -ℓ(α) are Laplace transforms of probability distributions on R + , then the convergence over an interval implies weak convergence of measures, hence the convergence of Laplace transforms for all α 0. Actually, (L t (α)) 1/t and e -ℓ(α) both are Laplace transforms of infinitely divisible distributions, more precisely convolutions of Gamma distributions with Poisson compounds of exponentials. Details will be given in section 4, together with the particular case of a Gauss-Markov process.

The stationary case

This section treats the stationary case: m(t) = m ∞ and K(s, t) = k(ts). We shall denote by c t = (m ∞ ) s=0,...,t-1 the constant vector with coordinates all equal to m ∞ , and by H t the Toeplitz matrix with symbol k: H t = (k(sr)) s,r=0,...,t-1 . The main result of this section is a particular case of Theorem 

f (λ) = t∈Z e iλt k(t) .
Let Z = (Z t ) t∈Z be a centered stationary process with covariance function k. Let m ∞ be a real. For all α such that 0 α < 1/(2M),

lim t→+∞ 1 t log E exp -α t-1 s=0 (Z s + m ∞ ) 2 = -ℓ 0 (α) -ℓ 1 (α) ,
where ℓ 0 (α) and ℓ 1 (α) are defined by (1.4) and (1.5).

Denote by m t and K t the mean and covariance matrix of the vector (X s ) s=0,...,t-1 . The Laplace transform of the squared norm of a Gaussian vector has a well known explicit expression: see for instance [16, p. 6]. The identity matrix indexed by 0, . . . , t-1 is denoted by I t , the transpose of a vector m is denoted by m * .

L t (α) = (det(I t + 2αK t )) -1/2 exp(-αm * t (I t + 2αK t ) -1 m t ) , (2.7) 
In the stationary case, m t = c t and K t = H t . From (2.7), we must prove that the following two limits hold.

lim t→+∞ 1 2t log(det(I t + 2αH t )) = ℓ 0 (α) = 1 4π 2π 0 log(1 + 2αf (λ)) dλ , ( 2.8) 
and lim

t→+∞ α t c * t (I t + 2αH t ) -1 c t = ℓ 1 (α) = m 2 ∞ α(1 + 2αf (0)) -1 .
(2.9)

Here, I t + 2αH t will be interpreted as the covariance matrix of the random vector (Y s ) s=0,...,t-1 , from the process

Y = ε + √ 2αZ , ( 2.10) 
where ε = (ε t ) t∈Z is a sequence of i.i.d. standard normal random variables, independent from Z. The limits (2.8) and (2.9) will be deduced from a Cholesky decomposition of I t + 2αH t . We begin with an arbitrary positive definite matrix A. The Cholesky decomposition writes it as the product of a lower triangular matrix by its transpose. Thus A -1 is the product of an upper triangular matrix by its transpose. Write it as and for any vector m = (m(r)),

A -1 = T * DT ,
m * A -1 m = s 1 G(s, s) s r=0 G(s, r)m(r) 2 .
(2.13)

Here is the probabilistic interpretation of the coefficients G(t, s). Consider a centered Gaussian vector Y with covariance matrix A. For t = 0, . . . , n, denote by Y 0,t the σ-algebra generated by Y 0 , . . . , Y t , and by ν t the partial innovation:

ν t = Y t -E[Y t | Y 0,t-1 ] ,
with the convention ν 0 = Y 0 . Using elementary properties of Gaussian vectors, it is easy to check that:

ν t = 1 G(t, t) t r=0 G(t, r) Y r .
(

Moreover, the ν t 's are independent, and the variance of

ν t is 1/G(t, t).
When this is applied to A = I t + 2αH t , another interesting interpretation arises. For t = 0, . . . , n (G(t, s)) s=0,...,t is the unique solution to the system:

G(t, s) + 2α t r=0 G(t, r) k(r -s) = δ t,s .
(2.15)

Observe that the equations (2.15) are the normal equations of the regression of the ε t 's over the Y t 's in the model (2.10). Actually, since

E[Y r Y s ] = δ s,r + 2αk(r -s) and E[ε t Y s ] = δ t,s , setting µ t = G(t, t) ν t = t r=0 G(t, r) Y r , (2.16) 
equation (2.15) says that for s = 0, . . . , t,

E[µ t Y s ] = E[ε t Y s ] .
This means that:

µ t = E[ε t | Y 0,t ] .
Obviously, the µ t 's are independent, the variance of µ t is G(t, t) and the filtering error is:

E[(ε t -µ t ) 2 ] = 1 -G(t, t) .
In particular, it follows that 0 < G(t, t) < 1.

The asymptotics of G(t, s) will now be related to the spectral density f . Denote g t (s) = G(t, ts). A change of index in (2.15) shows that (g t (s)) s=0,...,t is the unique solution to the system:

g t (s) + 2α t r=0 g t (r) k(s -r) = δ s,0 .
(2.17)

Proposition 2.2. Assume k is a positive definite symmetric function such that t∈Z |k(t)| = M < +∞ ,
and denote by f the corresponding spectral density:

f (λ) = t∈Z e iλt k(t) .
For all α such that 0 α < 1/(2M), the following equation has a unique solution in L 1 (Z).

g(s) + 2α +∞ r=0 g(r) k(s -r) = δ s,0 . (2.18)
One has:

g(0) = exp - 1 2π 2π 0 log(1 + 2αf (λ)) dλ , ( 2.19 
)

and +∞ s=0 g(s) = exp - 1 2 log(1 + 2αf (0)) - 1 4π 2π 0 log(1 + 2αf (λ)) dλ . (2.20)
Moreover, if g t (s) is defined for all 0 s t by (2.17), then for all s 0, lim

t→+∞ g t (s) = g(s) , (2.21)
and

lim t→+∞ t s=0 g t (s) = +∞ s=0 g(s) . (2.22)
The main idea of the proof amounts to writing the Wiener-Hopf factorization of the operator I + 2αH. The method is originally due to M. G. Krein: see section 1.5 of [START_REF] Böttcher | Introduction to large truncated Toeplitz matrices[END_REF], in particular the proof of Theorem 1.14 p. 17.

Proof. Conditions of invertibility for Toeplitz operators are well known. They are treated in section 2.3 and 7.2 of [START_REF] Böttcher | Introduction to large truncated Toeplitz matrices[END_REF]. Here, the L 1 norm of the Toeplitz operator H with symbol k is M, and the condition 0 α < 1/(2M) permits to write the inverse as:

(I + 2αH) -1 = +∞ n=0 (-2αH) n .
That the truncated inverse (I t + 2αH t ) -1 converges to (I + 2αH) -1 is deduced for the L 2 case from [3, p. 42]. Convergence of entries follows, hence (2.21). To obtain (2.22), consider δ t (s) = g(s)g t (s). From (2.17) and (2.18):

δ t (s) = -2α t r=0 k(r -s)δ t (r) -2α +∞ r=t+1 g(r)k(r -s) .
Hence:

t s=0 |δ t (s)| 2α t r=0 |δ t (r)| +∞ s=-∞ |k(s)| + 2α +∞ s=-∞ |k(s)| +∞ r=t+1 |g(r)| .
Thus the following bound is obtained:

t s=0 |δ t (s)| 2αM 1 -2αM +∞ r=t+1 |g(r)| , which yields (2.22).
The generating function of (g(s)) s 0 will now be related to the spectral density f . Define for all s ∈ Z,

g + (s) = g(s) if s 0 0 else and g -(s) = g(s) if s < 0 0 else.
Denote by F + and F -the Fourier transforms of g + and g -:

F ± (λ) = s∈Z e isλ g ± (s) .
Take Fourier transforms in both members of (2.18):

F + (λ) + F -(λ) + 2αF + (λ)f (λ) = 1 .
Or else:

F + (λ)(1 + 2αf (λ)) = 1 -F -(λ) . (2.23)
The functions F ± (λ) can be seen as being defined on the unit circle. They can be extended into analytic functions, one inside the unit disk, the other one outside. For |ζ| 1:

F + (ζ) = s 0 ζ s g + (s) ,
and for |ζ| 1:

F -(ζ) = s<0 ζ s g -(s) .
Similarly, we shall denote by f (ζ) the value of f (λ) for ζ = e iλ . Let ζ 0 be any fixed complex inside the unit disk. In (2.23), take logarithms of both members (principal branch), divide by 2πi(ζζ 0 ), then take the contour integral over the unit circle.

1 2πi |ζ|=1 log( F + (ζ)) ζ -ζ 0 dζ + 1 2πi |ζ|=1 log(1 + 2α f(ζ)) ζ -ζ 0 dζ = 1 2πi |ζ|=1 log(1 -F -(ζ)) ζ -ζ 0 dζ . (2.24)
Since F + is analytic inside the unit disk, the residue of the first integral is F + (ζ 0 ). Let us prove that the integral in the second member is null. Since the function to be integrated is analytic outside the unit circle, the integral has the same value over any circle with radius ρ > 1, centered at 0.

1 2πi |ζ|=1 log(1 -F -(ζ)) ζ -ζ 0 dζ = 1 2πi |ζ|=ρ>1 log(1 -F -(ζ)) ζ -ζ 0 dζ .
As ρ tends to +∞, it can easily be checked that the right hand side tends to zero. Thus (2.24) becomes:

log( F + (ζ 0 )) = - 1 2πi |ζ|=1 log(1 + 2α f(ζ)) ζ -ζ 0 dζ . (2.25)
Two particular cases are of interest. Consider first ζ 0 = 0.

log( F + (0)) = - 1 2πi |ζ|=1 log(1 + 2α f(ζ)) ζ dζ = - 1 2π 2π 0 log(1 + 2αf (λ)) dλ . Since F + (0) = g(0), (2.19) follows.
The other particular case is ζ 0 = 1, but it is on the unit circle; so a limit has to be taken.

log( F + (1)) = lim ζ 0 →1 |ζ 0 |<1 - 1 2πi |ζ|=1 log(1 + 2α f(1)) ζ -ζ 0 dζ - 1 2πi |ζ|=1 log(1 + 2α f(ζ)) -log(1 + 2α f(1)) ζ -ζ 0 dζ .
The first integral does not depend on ζ 0 :

- 1 2πi |ζ|=1 log(1 + 2α f(1)) ζ -ζ 0 dζ = -log(1 + 2αf (0)) .
Since f has no singularity at 1, the limit of the second integral is:

- 1 2πi |ζ|=1 log(1 + 2α f(ζ)) -log(1 + 2α f(1)) ζ -1 dζ .
Written as a real integral:

- 1 2π 2π 0 log(1 + 2αf (λ)) -log(1 + 2αf (0)) 1 -e -iλ dλ .
For all λ, the real part of 1/(1e -iλ ) is 1/2. The integral of the imaginary part vanishes, because the function to be integrated is odd. Finally:

log( F + (1)) = - 1 2 log(1 + 2αf (0)) - 1 4π 2π 0 log(1 + 2αf (λ)) dλ , hence (2.20), since F + (1) = F + (0) = +∞ s=0 g(s) .
Here is the probabilistic interpretation. Consider a centered stationary process (Y t ) t∈Z , with covariance function A(t, s) = a(ts). For s t, denote by Y s,t the σ-algebra generated by (Y r ) r=s,...,t . Consider again the partial innovation (2.14), and using stationarity, ν t has the same distribution as

ν t = Y t - E[Y t | Y 0,t-1 ]. From
η t = 1 G(t, t) t r=0 G(t, t -r) Y -r ,
which is:

η t = Y 0 -E[Y 0 | Y -t,-1 ] .
As t tends to infinity, η t converges almost surely to:

η ∞ = Y 0 -E[Y 0 | Y -∞,-1 ] .
Observe by stationarity that for all r,

η ∞ D = Y r -E[Y r | Y -∞,r-1 ] ,
which is the innovation process associated to Y . Now the variance of ν t , 1/G(t, t) tends to the variance of η ∞ . From the Szegő-Kolmogorov formula (see e.g. Theorem 3 p. 137 of [START_REF] Hannan | Multiple time series[END_REF]), that variance is:

exp 1 2π 2π 0 log(φ(λ)) dλ ,
where φ(λ) is the spectral density of Y . Let X be a centered stationary process with covariance function k, ε be a standard Gaussian noise, and Y = ε + √ 2αX. The spectral densities φ of Y and f of X are related by φ(λ) = 1 + 2αf (λ). Hence:

lim t→+∞ var(ν t ) = lim t→+∞ 1 G(t, t) = exp 1 2π 2π 0 log(1 + 2αf (λ)) dλ , which is equivalent to (2.19).
Alternatively, observe that due to stationarity, µ t defined by (2.16) has the same distribution as:

ξ t = t r=0 G(t, t -r) Y -r , which is ξ t = E[ε 0 | Y -t,0 ] .
As t tends to infinity, ξ t converges a.s. to:

ξ ∞ = E[ε 0 | Y -∞,0 ] . Of course, since E[ε -s Y -r ] = δ s,r
, for all s = 0, . . . , t:

E[ξ t ε -s ] = G(t, t -s) .
Hence the limiting property (2.21) says that:

E[ξ ∞ ε -s ] = lim t→+∞ G(t, t -s) = g(s) .
Actually, ξ ∞ admits the representation:

ξ ∞ = +∞ s=0 g(s) Y -s .
Similarly, for all t,

E[ε t | Y -∞,t ] = +∞ s=0 g(s) Y t-s ,
which means that (g(s)) realizes the optimal causal Wiener filter of ε t from the Y t-s 's. Now, Proposition 2.1 is a straightforward consequence of Proposition 2.2.

Proof. Let the coefficients g τ (s) be defined by (2.17). Applying (2.12) to A = I t +2αH t , one gets:

(det(I t + 2αH t )) -1/2 = t-1 τ =0 g τ (0) 1/2
.

Therefore:

1 t log det(I t + 2αH t )) -1/2 = 1 2t t-1 τ =0 log(g τ (0)) .
From Proposition 2.2:

lim τ →+∞ g τ (0) = g(0) = exp - 1 2π 2π 0 log(1 + 2αf (λ)) dλ .
Hence: lim

t→+∞ 1 t log det(I t + 2αH t )) -1/2 = -ℓ 0 (α) .
Applying now (2.13) to A = I t + 2αH t , one gets:

c * t G * t D -1 t G t c t = m 2 ∞ t-1 τ =0 1 g τ (0) τ s=0 g τ (s) 2 .
From Proposition 2.2:

lim τ →+∞ 1 g τ (0) τ s=0 g τ (s) 2 = 1 g(0) +∞ s=0 g(s) 2 = (1 + 2αf (0)) -1 . Hence: lim t→+∞ α t c * t (I t + 2αH t ) -1 c t = ℓ 1 (α) .

Asymptotic equivalence

Proposition 2.1 only treats the stationary case. To extend the result under the hypotheses of Theorem 1.1, a notion of asymptotic equivalence of matrices and vectors is needed. It is developed in this section. From (2.7), we must prove that under the hypotheses of Theorem 1.1:

lim t→+∞ 1 2t log(det(I t + 2αK t )) = ℓ 0 (α) = 1 4π 2π 0 log(1 + 2αf (λ)) dλ , ( 3.26) 
and lim -5). In order to prove (3.27), we shall develop asymptotic equivalence of matrices and vectors along the same lines as [7, section 2.3], but in a stronger sense, replacing L 2 by L ∞ and L 1 , for boundedness and convergence. The norms used here for a vector v = (v(s)) s=0,...,t-1 are:

t→+∞ α t m * t (I t + 2αK t ) -1 m t = ℓ 1 (α) = m 2 ∞ α(1 + 2αf (0)) -1 . ( 3 
v ∞ = t-1 max s=0 |v(s)| and v 1 = t-1 s=0 |v(s)| .
For symmetric matrices, the norm subordinate to • ∞ is equal to the norm subordinate to • 1 . It will be denoted by • and referred to as strong norm. For A = (A(s, r)) s,r=0,...,t-1 such that A * = A,

A = t-1 max s=0 t-1 r=0 |A(s, r)| = max v ∞ =1 Av ∞ = t-1 max r=0 t-1 s=0 |A(s, r)| = max v 1 =1 Av 1 .
The following weak norm will be denoted by |A|:

|A| = 1 t t-1 s,r=0 |A(s, r)| .
Clearly, |A| A . Moreover, the following bounds hold. Here is a definition of asymptotic equivalence for vectors. Here are some elementary results, analogous to those stated in Theorem 1 p. 172 of [START_REF] Gray | Toeplitz and circulant matrices: a review[END_REF]. Lemma 3.4. Let (A t ), (B t ), (C t ), (D t ) be four sequences of symmetric matrices.

1. If A t ∼ B t and B t ∼ C t then A t ∼ C t . 2. If A t ∼ B t and C t ∼ D t then A t + C t ∼ B t + D t . 3. If A t ∼ B t and C t ∼ D t then A t C t ∼ B t D t . 4. If A t ∼ B t and F is an analytic function with radius R > max A t , max B t , then F (A t ) ∼ F (B t ).
Proof. Points 1 and 2 follow from the triangle inequality for the weak norm. For point 

|A t C t -B t D t | |(A t -B t )C t | + |B t (C t -D t )| |A t -B t | C t + B t |C t -D t | .
Since C t and B t are uniformly bounded, and

lim t→∞ |A t -B t | = lim t→∞ |C t -D t | = 0 ,
the result follows. For point 4, let F be analytic with radius of convergence R. For |z| < R, let

F (z) = +∞ k=0 a k z k ,
and

F n (z) n k=0 a k z k .
The matrices F (A t ), F (B t ) are defined as the limits of F n (A t ), F n (B t ); from the hypothesis, it follows that the convergence is uniform in t. Because • is a matrix norm, F (A t ) F ( A t ) and the same holds for B t : F (A t ) and F (B t ) are uniformly bounded. Let ǫ be a positive real. Fix n such that for all t,

F (A t ) -F n (A t ) < ǫ 3 and F (B t ) -F n (B t ) < ǫ 3 .
By induction on n using points 2 and 3, F n (A t ) ∼ F n (B t ). There exists t 0 such that for all t > t 0 ,

|F n (A t ) -F n (B t )| < ǫ 3 .
Thus for all t > t 0 ,

|F (A t ) -F (B t )| |F (A t ) -F n (A t )| + |F n (A t ) -F n (B t )| + |F n (B t ) -F (B t )| F (A t ) -F n (A t ) + |F n (A t ) -F n (B t )| + F n (B t ) -F (B t ) < ǫ .
Hence the result. Hypothesis (H3) implies that H t is uniformly bounded, (H2) and (H5) that K t ∼ H t . Point 4 will be applied to F (z) = (1 + 2αz) -1 , which has radius of convergence R = 1/2α. Let M be defined as:

M = max    max t 1 K t , t∈Z |k(t)|    . For all α < α 0 = 1/(2M), (I t + 2αK t ) -1 ∼ (I t + 2αH t ) -1 .
(3.28)

Here is the relation between asymptotic equivalence of vectors and matrices.

Lemma 3.5.

If

A t ∼ B t and v t ∞ is uniformly bounded, then A t v t ∼ B t v t . 2. If v t ∼ w t and A t is uniformly bounded, then A t v t ∼ A t w t . Proof. That A t v t ∞ , B t v t ∞ , A t w t ∞ are uniformly bounded comes from the fact that • is subordinate to • ∞ . Next for point 1: 1 t (A t -B t )v t 1 v t ∞ |A -B| .
For point 2:

1 t A t (v t -w t ) 1 1 t A t v t -w t 1 .
The relation between asymptotic equivalence of vectors and our goal is the following.

Lemma 3.6. If v t ∼ w t and u t ∼ z t , then lim t→+∞ 1 t (v * t u t -w * t z t ) = 0 .
Proof.

1 t |v * t u t -w * t z t | 1 t (|v * t (u t -z t )| + |(v * t -w * t )z t |) 1 t ( v t ∞ u t -z t 1 + z t ∞ v t -w t 1 ) .
Hence the result.

Using asymptotic equivalence, (3.26) and (3.27) can easily be deduced from (2.8) and (2.9), for 0 < α < 1/(2M). We shall not detail the passage from (2.8) to (3.26): see Theorem 4 p. 178 of [START_REF] Gray | Toeplitz and circulant matrices: a review[END_REF]. Here is the passage from (2.8) to (3.26). For all α < 1/(2M), it follows from (3.28) by point 1 of Lemma 3.5 that

(I t + 2αK t ) -1 c t ∼ (I t + 2αH t ) -1 c t .
By point 2 of Lemma 3.5:

(I t + 2αK t ) -1 m t ∼ (I t + 2αH t ) -1 c t . Lemma 3.6 implies: lim t→+∞ 1 t m * t (I t + 2αK t )m t = lim t→+∞ 1 t c * t (1 + 2αH t ) -1 c t .
Hence (3.27).

Still using asymptotic equivalence, it will now be shown that Proposition 1.2 is just a particular case of Theorem 1.1. Indeed, consider the Gaussian process X x with mean

m x (t) = E[X x t ] = m(t) + K(0, t) K(0, 0) (x -m(t)) , (3.29) 
and covariance function

K • (t, s) = E[(X x t -m x (t))(X x s -m x (s))] = K(t, s) - K(t, 0)K(s, 0) K(0, 0) . ( 3.30) 
The distribution of (X x t ) t∈N and the conditional distribution of (X t ) t∈N given X 0 = x are the same. Denote by m x,t and K • t the mean and covariance matrix of (X x s ) s=0,...,t-1 . Theorem 1.1 applies to X x , provided it is proved that m x,t ∼ c t and K • t ∼ H t . By (H1) and (H2), m x,t ∞ is uniformly bounded. Moreover from (3.29),

1 t m x,t -m t 1 |x| + m t ∞ tK(0, 0) t-1 s=0 |K(0, s)| |x| + m t ∞ tK(0, 0) K t ,
thus m x,t ∼ m t , hence m x,t ∼ c t by transitivity. Now from (3.30),

K • t K t + t-1 max r=0 |K(0, r)| K(0, 0) t-1 s=0 K(0, s) K t + K t 2 K(0, 0) .
Moreover,

|K • t -K t | 1 tK(0, 0) t-1 s=0 |K(0, s)| 2 K t 2 tK(0, 0) , thus K • t ∼ K t , hence K • t ∼ H t
by transitivity (point 1 of Lemma 3.4). This section will end with another illustration of asymptotic equivalence, which is of independent interest and yields an alternative proof of (2.9). = (e -iλs ) s=0,...,t-1 . Then:

F (H t )d (λ) t ∼ F (f (λ))d (λ) t .
(3.31)

The function (e -iλs ) s∈Z is an eigenfunction of the Toeplitz operator H with symbol k, associated to the eigenvalue f (λ). Thus Proposition 3.7 is closely related to Szegő's theorem: compare with Theorem 5.9 p. 137 of [START_REF] Böttcher | Introduction to large truncated Toeplitz matrices[END_REF]. Notice that c t = m ∞ d (0) t : in the particular case λ = 0 and F (z) = (1 + 2αz) -1 , one gets:

(1 + 2αH t ) -1 c t ∼ (1 + 2αf (0)) -1 c t ,
from which (2.9) follows, through Lemma 3.6. If instead of being constant, the asymtotic mean is periodic, Proposition 3.7 still gives an explicit expression of ℓ 1 (α). As an example, assume m(t) = (-1) t m ∞ . Then (2.9) holds with:

ℓ 1 (α) = m 2 ∞ α(1 + 2αf (π)) -1 .
Proof. We first prove (3.31) for F (z) = z. Using the fact that • is subordinate to

• ∞ , H t d (λ) t ∞ H t . Therefore H t d (λ) t
∞ is uniformly bounded. For s = 0, . . . , t-1, consider the coordinate with index s of f (λ)d Observe, due to the symmetry of k, that δ -(-s) = δ + (s) Thus:

f (0)c t -H t c t 1 = t-1 s=0 |δ -(-s -1) + δ + (t -s)| t-1 s=0 |δ -(-s -1)| + t-1 s=0 |δ + (t -s)| = 2 t s=1 |δ + (s)| .
The sequence (|δ + (s)|) s∈N tends to 0, as a consequence of the summability of k (H3). Therefore it also tends to zero in the Cesàro sense. Hence the result.

By induction, using the triangle inequality, (3.31) holds for any polynomial F n . The rest of the proof is the same as that of point 4 in Lemma 3.4.

Asymptotic distributions

The results of the two previous sections establish that the conclusion of Theorem 1.1 holds for a small enough α. To finish the proof, the convergence must be extended to all α 0. The following variant of Lévy's continuity theorem applies (see Chapter 4 of [START_REF] Kallenberg | Foundations of modern probability[END_REF], in particular Exercise 9 p. 78). Then (π n ) converges weakly to π and the convergence holds for all α 0.

To apply this lemma, one has to check that (L t (α)) 1/t and e -ℓ(α) are the Laplace transforms of probability distributions on R + . It turns out that in our case, the function L t (α) defined by (1.2) is the Laplace transform of an infinitely divisible distribution, thus so are (L t (α)) 1/t and its limit. We give here the probabilistic interpretation of e -ℓ 0 (α) and e -ℓ 1 (α) as the Laplace transforms of two infinitely divisible distributions. Next, the particular case of a Gauss-Markov process will be considered.

Through an orthogonal transformation diagonalizing its covariance matrix, the squared norm of any Gaussian vector can be written as the sum of independent random variables, each being the square of a Gaussian variable, thus having noncentral chi-squared distribution. If Z is Gaussian with mean µ and variance v, the Laplace transform of Z 2 is:

φ(α) = (1 + 2αv) -1/2 exp(-µ 2 α/(1 + 2αv)) .
The first factor is the Laplace transform of the Gamma distribution with shape parameter 1/2 and scale parameter 2v. Assuming µ and v non null, rewrite the second factor as:

exp - µ 2 2v 1 -(1 + 2αv) -1 .
This is the Laplace transform of a Poisson compound, of the exponential with expectation 2v, by the Poisson distribution with rate µ 2 2v . Therefore, the squared norm of a Gaussian vector has an infinitely divisible distribution, which is a convolution of Gamma distributions with Poisson compounds of exponentials. Squared Gaussian vectors have received a lot of attention, since even in dimension 2, the mean and covariance matrix must satisfy certain conditions for the distribution of the vector to be infinitely divisible [START_REF] Marcus | Existence of a critical point for the infinite divisibility of squares of Gaussian vectors in R 2 with non-zero mean[END_REF]. Yet the sum of coordinates of such a vector always has an infinitely divisible distribution.

For all t, the distribution with Laplace transform (L t (α)) 1/t is the convolution of Gamma distributions with Poisson compounds of exponentials. As t tends to infinity, (L t (α)) 1/t tends to e -ℓ 0 (α) e -ℓ 1 (α) . The first factor e -ℓ 0 (α) is the Laplace transform of a limit of convolutions of Gamma distributions, which belongs to the Thorin class T (R + ) (see [START_REF] Bondesson | Generalized Gamma Convolutions and related classes of distributions[END_REF] as a general reference). Consider now e -ℓ 1 (α) . Rewrite ℓ 1 (α) as:

ℓ 1 (α) = m 2 ∞ α (1 + 2αf (0)) -1 = m 2 ∞ 2f (0) 1 -(1 + 2αf (0)) -1 .
Thus e -ℓ 1 (α) is the Laplace transform of a Poisson compound, of the exponential distribution with expectation 2f (0), by the Poisson distribution with parameter m 2 ∞ 2f (0) . As an illustrating example, consider the Gauss-Markov process defined as follows. Let θ be a real such that -1 < θ < 1. Let (ε t ) t 1 be a sequence of i.i.d. standard Gaussian random variables. Let Y 0 , independent from the sequence (ε t ) t 1 , follow the normal N (0, (1θ 2 ) -1 ) distribution. For all t 1 let:

Y t = θY t-1 + ε t .
Thus (Y t ) t∈N is a stationary centered auto-regressive process. Consider the noncentered process (X t ) t∈N , with X t = Y t +m ∞ . This is the case considered in [START_REF] Kleptsyna | Exponential transform of quadratic functional and multiplicative ergodicity of a Gauss-Markov process[END_REF], where a stronger result was proved. Formula (10) p. 72 of that reference matches (1.4) and (1.5) here. Indeed, the spectral density is:

f (λ) = 1 1 + θ 2 -2θ cos(λ)
.

Write ℓ 0 (α) as a contour integral over the unit circle. Now:

1 + 2α 1 + θ 2 -θ( 1 ζ + ζ) = ζ 2 -(θ + 1 θ + 2α θ )ζ + 1 ζ 2 -(θ + 1 θ )ζ + 1
.

Observe that the two roots of the numerator have the same sign as θ, and their product is 1. Denote them by ζ -and ζ + , so that 0 < |ζ -| < 1 < |ζ + |. The two roots of the denominator are θ and 1 θ . The function to be integrated has 5 poles, among which 0, θ, ζ -are inside the unit disk, 1 θ , ζ + are outside. Rewrite ℓ 0 as:

ℓ 0 (α) = 1 4πi |ζ|=1 1 ζ log ζ -ζ - ζ -θ dζ + 1 4πi |ζ|=1 1 ζ log ζ -ζ + ζ -1 θ dζ .
The first integral is null, since The expression of ℓ 1 is:

ℓ 1 (α) = m 2 ∞ α(1 -θ) 2 (1 -θ) 2 + 2α
.

It turns out that the probability distribution with Laplace transform e -ℓ 0 (α) = 1 2 θ 2 + 1 + 2α + ((θ + 1) 2 + 2α)((θ -1) 2 + 2α)

-1/2
, has an explicit density f 0 (x) defined on (0, +∞), which is related to the modified Bessel function of the first kind, with order 1/2 (compare with formula (3.10) p. 437 in [START_REF] Feller | An introduction to probability theory and its applications[END_REF]).

f 0 (x) = e -1+θ 2 2 x 2 -1 |θ| -1/2 x -1 I 1/2 (|θ|x) = e -1+θ 2 2 x (2π) -1/2 |θ| -1 x -3/2 sinh(|θ|x) .
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 3111 Let A and B be two symmetric matrices. Then: |AB| A |B| and |AB| |A| B . Proof. |AB| is the arithmetic mean of the L 1 norms of column vectors of AB. If b is any column vector of B, Ab because the strong norm is subordinate to the L 1 norm of vectors. Hence the first result. For the second result, replace columns by rows.
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 41 Let π, π 1 , π 2 , . . . , be probability measures on R + . Assume that for some α 0 > 0, and all α ∈ [0, α 0 [, lim n→∞ +∞ 0 e -αx dπ n (x) = +∞ 0 e -αx dπ(x) .

|ζ|=1 1 ζ 2

 12 log ζζ -dζ = |ζ|=1 1 ζ log (ζθ) dζ ,the two functions having the same residues inside the unit disk. The second integral is+ 1 + 2α + ((θ + 1) 2 + 2α)((θ -1) 2 + 2α) .

  1.1. It entails Proposition 2.2 of Bryc and Dembo [4]. Assume k is a positive definite symmetric function such that

	Proposition 2.1. t∈Z	|k(t)| = M < +∞ ,
	and denote by f the corresponding spectral density:

  denotes the Kronecker symbol: 1 if t = s, 0 else. Notice that A -1 = G * D -1 G, and T AT * = D -1 , where D is the diagonal matrix with diagonal entries G(s, s).

	where δ t,s In
	particular,	-1		
	det(A) =	G(s, s)	,	(2.12)
	s			
	where T is a unit lower triangular matrix (diagonal coefficients equal
	to 1), and D is a diagonal matrix with positive coefficients. Denote by G the lower
	triangular matrix DT . Then GA = (T * ) -1 is a unit upper triangular matrix. Hence
	the coefficients G(s, r) of G are uniquely determined by the following system of linear
	equations. For 0 s t,			
	t			
	G(t, r) A(r, s) = δ t,s ,		(2.11)
	r=0			

  Definition 3.2. Let (v t ) t 0 and (w t ) t 0 be two sequences of vectors such that for all t 0, v t = (v t (s)) s=0,...,t-1 and w t = (w t (s)) s=0,...,t-1 . They are said to be asymptotically equivalent if:1. v t ∞ and w t ∞ are uniformly bounded,

	2. lim t→+∞	1 t	v t -w t 1 = 0.

Asymptotic equivalence of (v t ) and (w t ) will be denoted by v t ∼ w t .

Hypotheses (H1) and (H4) imply that m t ∼ c t . Asymptotic equivalence for matrices is defined as follows (compare with

[7, p. 172]

). Definition 3.3. Let (A t ) t 0 and (B t ) t 0 be two sequences of symmetric matrices, where for all t 0, A t = (A t (s, r)) s,t=0,...,t-1 and B t = (B t (s, r)) s,t=0,...,t-1 . They are said to be asymptotically equivalent if: 1. A t and B t are uniformly bounded, 2. lim t→+∞ |A t -B t | = 0. Asymptotic equivalence of (A t ) and (B t ) will still be denoted by A t ∼ B t .

  3, because • is a norm of matrices, A t C t A t C t and B t D t B t D t are uniformly bounded. Moreover by Lemma 3.1,