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Abstract. This work is concerned with large-scale three-dimensional inversion under

transient elastodynamic conditions by means of the modified error in constitutive

relation (MECR), an energy-based, cost functional. In contrast to quasi-static or

frequency-domain contexts, time-domain formulations have so far seen very limited

investigation. A peculiarity of time-domain MECR formulations is that each evaluation

involves the solution of two elastodynamic problems (one forward, one backward),

which moreover are coupled (unlike the case of L2 misfit functionals, where the

forward state does not depend on the adjoint state). This coupling creates a major

computational bottleneck, making MECR-based inversion difficult for spatially 2D or

3D configurations. To overcome this obstacle, we propose an approach whose main

ingredients are (a) setting the entire computational procedure in a consistent time-

discrete framework that incorporates the chosen time-stepping algorithm, and (b) using

an iterative SOR-like method for the resulting stationarity equations. The resulting

MECR-based inversion algorithm is formulated under quite general conditions,

allowing for three-dimensional transient elastodynamics, straightforward use of

available parallel solvers, a wide array of time-stepping algorithms commonly used

for transient structural dynamics, and flexible boundary condition and measurement

settings. The proposed MECR algorithm is then demonstrated on computational

experiments involving 2D and 3D transient elastodynamics and up to over 500,000

unknown elastic moduli.

1. Introduction

The identification of spatially-varying mechanical material parameters (e.g. elastic

moduli) from experimental information on the mechanical response of the solid body

is an important inverse problem arising in connection with e.g. seismic exploration,

biomechanical imaging or damage detection. Considerable research effort has been

dedicated to formulate algorithms for material identification, most often based on

nonlinear optimization. The most common form of such approaches involves minimizing

the L2-norm of the error between available measured responses and their simulated

counterparts (e.g. displacement, strains) [1, 10, 15, 16, 35, 37, 38].
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Alternatively, energy-based cost functionals are also very relevant for this kind of

inverse problem. According to this approach, given an over-determined set of boundary

or internal data (e.g. displacements and tractions), a cost functional is defined based

on the residual (measured in terms of an energy norm) in the constitutive equations

connecting (dynamically admissible) stresses to (kinematically admissible) strains, with

admissibility constraints defined in terms of the available data. Energy-based functionals

were initially introduced in e.g. [24–26] for electrical impedance tomography and in [30]

for error estimation in the linear elastic FEM. Such functionals, often referred to as

error in constitutive relation (ECR) functionals in the area of solid mechanics, have

been proved very useful for various mechanical parameter identification problems under

linear static [19], nonlinear quasistatic [34], time-harmonic [6, 29, 32] or, more recently,

transient [2, 17, 36] conditions. Mathematical and numerical issues are also discussed

in e.g. [12, 20]. Energy-based functionals have additionally been found to be useful for

solving data completion (Cauchy) problems [4].

In their original form, ECR functionals assume the measured data to be strictly

enforced as part of the admissibility constraints, which is undesirable when using noisy

data. For this reason, ECR-based identification is often formulated by means of so-

called modified error in constitutive relation (MECR) functionals (see e.g. [32]), where

reliable and unreliable informations are treated differently. Equilibrium equations, initial

conditions and known boundary conditions are deemed reliable, while measured data,

constitutive properties and (when applicable) imperfectly known boundary conditions

are treated as unreliable. MECR functionals then enforce reliable equations strictly (e.g.

as constraints, using Lagrange multipliers), while unreliable equations are incorporated

as constitutive or observation residuals, using a combination of ECR and L2 components.

In most available investigations using (M)ECR functionals, either (quasi-)static

or frequency-domain conditions are assumed; moreover, the considered parameter

identification problems are of moderate dimension. Recent efforts towards broadening

the scope of MECR-based inversion include the study [5], which addresses large-

scale inversion in a frequency-domain setting, and references [2, 17, 36] where MECR

functionals for parameter identification under transient dynamical conditions are

proposed. A crucial feature of the latter approach is that the evaluation of the MECR

functional requires solving a set of stationarity equations, which govern one forward

elastodynamic state (with initial conditions) and one backward elastodynamic state

(with final conditions). Moreover, the two states are coupled, unlike in the more usual

case of L2 cost functionals, where the forward solution does not depend on the backward

(adjoint) state. As pointed out in [2, 17, 36], the coupling between the forward and

backward stationarity solutions creates a major computational bottleneck, making the

application of the approach a priori problematic for spatially 2D and 3D configurations.

These investigations were as a result restricted to spatially 1D conditions (which are

nonetheless very relevant to certain experiments, e.g. the split Hopkinson pressure

bar test [27]), and have moreover been applied only to low-dimensional parameter

identification problems.



3

The primary objective of this work is to formulate and evaluate a MECR-

based approach suitable for large-scale three-dimensional inversion under transient

elastodynamic conditions. This goal entails overcoming the forward-backward coupling

bottleneck. To this aim, we propose an approach whose main ingredients are: (a)

setting up and exploiting the stationarity conditions in a time-discrete framework

that incorporates the chosen time-stepping algorithm, and (b) an iterative block SOR

treatment for the resulting stationarity equations. This algorithm, a cornerstone for the

whole treatment, is shown to be always convergent for suitable (problem-dependent)

settings of the relaxation parameter. The resulting MECR-based algorithm is

formulated under quite general conditions, allowing for three-dimensional configurations,

straightforward use of available parallel solvers, a wide array of time-stepping algorithms

commonly used for transient structural dynamics, and varied boundary condition and

measurement settings. The feasibility and performance of the proposed MECR-based

inversion are demonstrated on several numerical experiments involving 2D and 3D

transient elastodynamics and up to over 500,000 unknown elastic moduli.

The article is organised as follows. Section 2 reviews the relevant governing

elastodynamic equations and summarizes the existing (M)ECR framework. The MECR-

based time-discrete formulation for the elastodynamic inverse problem is then developed

in Section 3. The proposed solution method for the coupled stationarity problem is next

presented, and its convergence properties investigated, in Section 4. After discussing

implementation aspects in Section 5, our treatment is finally demonstrated in Section 6

on several numerical experiments.

2. Background

2.1. Problem setting

Elastodynamics governing equations. Let a solid elastic body occupy the bounded and

connected domain Ω⊂Rd (1≤ d≤ 3) with boundary Γ. Transient motions of the solid

during a time interval of interest t∈ [0, T ] are governed by (a) the balance equations

∇·σ + f = ρü in Ω× [0, T ], (1a)

σ ·n = g on ΓN× [0, T ], (1b)

where u is the displacement field, ρ is the mass density, σ denotes the stress tensor, f

is a given body force density, g and ΓN⊂Γ are the given surface force density (traction)

and its support, and n is the unit normal vector pointing outward from Ω; (b) the

kinematic compatibility equations

ε[u] = 1
2
(∇u+∇uT), in Ω× [0, T ], (2a)

u = 0 on ΓD× [0, T ], (2b)

where ε[u] denotes the linearized strain tensor associated with the displacement u and

ΓD is the constrained part of Γ; (c) the homogeneous initial conditions

u(·, 0) = u̇(·, 0) = 0 in Ω (3)
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(assumed for simplicity, with other possibilities requiring only simple modifications);

and (d) the constitutive (linear elastic) relation

σ = C :ε in Ω× [0, T ], (4)

where C is the fourth-order elasticity tensor.

In this model, the given excitations are f and g, but other modes of loading could be

considered as well with straightforward modifications. The boundary portions ΓD,ΓN

are only assumed to satisfy ΓD ∩ ΓN = ∅ and do not necessarily define a cover of Γ.

Consequently, equations (1a)–(3) are consistent (i.e. there exists an elastodynamic state

(u,σ) verifying them), but do not in general ensure uniqueness of the solution (u,σ)

(except for the case ΓN∪ΓD = ∂Ω corresponding to the usual well-posed elastodynamic

initial-boundary value problem). A motivation for this setting is given in Remark 1.

Weak formulations. Let
〈
a, b

〉
denote the L2(Ω) scalar product of any square-

integrable second-order tensor fields a and b, i.e.:〈
a,f

〉
:=

∫
Ω

a :b dV =

∫
Ω

aijbij dV, (5)

where indicial notation (with implicit summation over repeated indices) is used. Scalar

products of vector or scalar fields follow the same notation. Similar notation will be

used for scalar products of fields defined on surfaces, e.g.〈
a, b

〉
Γ

:=

∫
Γ

a :b dS. (6)

Let Q denote the 21-dimensional vector space of fourth-order tensors C having major

and minor symmetries, i.e. such that Cijk` = Ck`ij = Cjik`. The space Z of admissible

elasticity tensor fields is then defined by Z =
{
C ∈ L∞(Ω;Q), ε : C(x) : ε > c0ε : ε

for any x ∈ Ω and ε ∈ R3,3
sym, ε 6= 0

}
for some positive constant c0. Let C ∈ Z and

ρ ∈ L∞(Ω) with ρ > ρ0 for some positive constant ρ0 > 0. For any pair of vector fields

u,w ∈ H1(Ω;R3), the stiffness bilinear form (u,w) 7→ K(u,w;C) and the mass bilinear

form (u,w) 7→ M(u,w) are then respectively defined by

K(u,w;C) :=

∫
Ω

ε[u] :C :ε[w] dV, M(u,w) :=

∫
Ω

ρu·w dV (7)

(the dependence of M on ρ being suppressed as ρ is kept constant throughout). The

weak formulation of the balance equations (1a,b) then reads〈
σt , ε[w]

〉
+M

(
üt ,w

)
= Ft(w) +

〈
σt ·n,w

〉
Γ\ΓN

, t∈ [0, T ], ∀w ∈W , (8)

(with the test function space W defined by W = H1(Ω;R3)) where the linear form

Ft(w) :=
〈
ft ,w

〉
+
〈
gt ,w

〉
ΓN

(9)

synthesizes the given excitations in Ω and on ΓN at time t. In (8) and thereafter, the

shorthand notation ut = u(·, t) is used for space-time fields. Moreover, the following

spaces of kinematically and dynamically admissible fields are introduced for later use:

U :=
{
u : ut ∈W0, eqn. (3) holds, t∈ [0, T ]

}
, (10a)
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S(u) :=
{
σ : σt ∈L2(Ω;R3,3

sym), eqn. (8) holds, t∈ [0, T ]
}
, (10b)

with the function space W0 defined by

W0 =
{
w ∈W , w= 0 on ΓD

}
. (11)

Measurements. In addition to the fundamental equations (1a)–(4), experimental

information is assumed to be available, namely (i) measured displacements d̃ in Ωm⊂Ω,

(ii) measured displacements ũ on Γu⊂Γ and (iii) measured tractions τ̃ on Γσ ⊂Γ, i.e.:

u = d̃ in Ωm× [0, T ], u = d̃ on Γu× [0, T ], σ ·n = τ̃ on Γσ× [0, T ], (12)

where some, but not all of Ωm, Γu, Γσ may be empty. The measurement surfaces Γu,Γσ
are for now only assumed to satisfy ΓD∩Γu = ΓN∩Γσ = ∅; additional considerations,

such as whether ΓN,ΓD,Γu,Γσ may otherwise overlap or define a cover of Γ, are deferred

to Sec. 3.3.

Inverse problem. The inverse problem considered in this work consists in reconstructing

the elasticity tensor field C ∈Z, given the measurements (12) of the transient response

of the solid and subject to satisfying the governing equations of motion (1a)–(4) with

known excitations f , g.

Remark 1. The adopted setting is somewhat unusual in that the inverse problem

is not formulated on the basis of a forward problem defined a priori. Rather, all

information available from (i) the laws of mechanics, (ii) the known excitations, and

(iii) the available experimental data will later be combined into a single functional.

The relevant forward problem, and also the boundary constraints entering appropriately

defined function spaces, will emerge a posteriori from stationarity conditions for that

functional (Sec. 3.2). This viewpoint has often been adopted elsewhere for ECR-based

functionals, see e.g. [17], as it allows more flexibility in how to split the available infor-

mation into imperfectly-known data, to be enforced approximately, and reliable equations,

to be enforced exactly (boundary conditions (1b), (2b) being of the latter kind).

2.2. Error in constitutive relation approach

ECR-based inversion is based on cost functionals that measure, by means of an energy

seminorm, the constitutive relation residual for a given displacement field u and a given

stress field σ. For linearly elastic materials, the ECR cost functional U is defined as [33]

U(u,σ;C) :=
1

2

∫ T

0

〈
(σt−C :ε[ut] , C−1 : (σt−C :ε[ut])

〉
dt. (13)

Since C is positive definite, U(u,σ;C) has the important property of being zero when

u and σ are linked by the elastic constitutive relation, and strictly positive otherwise

(i.e. U ≥ 0 ∀C ∈Z and U = 0 ⇐⇒ σ=C :ε in Ω× [0, T ]).

The error in constitutive relation E(C) for the given measurements (12) is then

defined through the partial minimization of U(u,σ;C) with C kept fixed while u and
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σ must fulfill all admissibility constraints and reproduce experimental data, i.e.

E(C) := min
u∈U ,σ∈S(u)

U(u,σ;C) subject to (12) (14)

In particular, E(C) = 0 in the absence of any measurements (since equations (1a)–

(4) are then consistent for any given C ∈ Z), or when the experimental data (12) is

consistent with the assumed material property C. Conversely, if the assumed value of C
is inconsistent with the measurements, C may be estimated by minimizing E(C). This

is the essence of the ECR approach to the inverse problem at hand [19].

2.3. Modified error in constitutive relation approach

In practice, however, measurement noise is to be expected, in which case the exact

enforcement of experimental data made in (14) is often not desirable. To address this

concern, a modified error in constitutive relation (MECR) functional Ũ is defined by

treating the discrepancy between measured quantities and their computed counterparts

as a penalty term [2, 17], and is accordingly given by

Ũ(u,σ,C) = U(u,σ;C) + ξD(u,σ) (15)

where the misfit functional D is assumed to have the form

D(u,σ) =

∫ T

0

{
Du(ut− ũt) +Dσ(τt− τ̃ t) +Dm(ut− d̃t)

}
dt (16)

where the positive functionals Du,Dσ,Dm serve to define norms on the measurement

residuals associated to data available on Γu, Γσ and Ωm, respectively, at a given time

and ξ > 0 is a tunable dimensionless weight (this format requires Du,Dσ,Dm to be

dimensionally consistent with Ũ). We will focus thereafter on the case where all three

measurement misfit functionals are of least-squares type, i.e.

Du(u) =
1

2
fu‖u‖2

L2(Γu), Dσ(τ ) =
1

2
fσ‖τ‖2

L2(Γσ), Dm(u) =
1

2
fm‖u‖2

L2(Ωm) (17)

where fu, fσ, fm are fixed dimensional constants chosen so that all components of the

MECR functional (15) have the same units.

In this framework, the inverse problem is cast as the optimization problem

(u?,σ?,C?) = arg min
u∈U ,σ∈S(u),C∈Z

Ũ(u,σ,C), (18)

whose solution (u?,σ?,C?) satisfies equations (1a) to (3) (i.e. balance, compatibility and

initial conditions), while achieving a compromise between (a) satisfying the constitutive

relation (4), and (b) matching the measurements (12). Indeed, the limiting situations

for ξ → +∞ and ξ → 0 in (18) respectively correspond to minimizing the ECR U and

the measurement misfit functional D (see last paragraph of Sec. 3.3). The trade-off

inherent in the definition of Ũ(u,σ,C) was for example found in [17], on the basis of

numerical experiments on spatially 1D cases, to make identification using the transient

MECR much less sensitive to data noise than an ordinary L2 minimization. On another

note, a “dual” interpretation of MECR as a penalty approach for the L2 minimization

was proposed in [12] for coefficient identification using time-independent data.
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When using MECR functionals of the form (15), the mismatch between an assumed

material property C and measurements (12) is quantified through the modified error in

constitutive relation Ẽ(C):

Ẽ(C) := Ũ(uC,σC,C) (19)

where the mechanical fields (uC,σC) are determined by the partial minimization of

Ũ(u,σ,C) for given C, and in particular depend on C:

(uC,σC) := arg min
u∈U ,σ∈S(u)

Ũ(u,σ,C). (20)

A natural approach for solving the minimization (18), previously used for frequency-

domain problems in [5], then consists in an alternating-directions strategy whereby the

transition from a current iterate (u,σ,C) to the next iterate (u+,σ+,C+) proceeds by:

(i) setting (u+,σ+) = (uC,σC), with (uC,σC) solving the partial minimization (20),

and (ii) finding the material update C? by solving the partial minimization problem

C+ := arg min
C′∈Z

Ũ(uC,σC,C′), (21)

where (uC,σC) are the outcome of (20) and are kept fixed. This approach has been

implemented in this work and is employed for the numerical experiments of Sec. 6.

The inverse problem may also be cast as the minimization problem

C+ := arg min
C∈Z

Ẽ(C) = arg min
C∈Z

Ũ(uC,σC,C), (22)

in which case each major iteration over C updates the fields (u,σ) and the moduli C
simultaneously rather than sequentially. Either approach in practice requires repeatedly

solving the partial minimization problem (20).

Remark 2. The ECR formulation developed in this article assumes the absence of any

damping. Some forms of damping (e.g. absorbing boundaries or Rayleigh damping)

can be taken into account by supplementing the the balance equation in weak form (8)

with a damping bilinear operator (which in some cases would depend on the elastic

properties); these entail only straightforward modifications to the present methodology.

By contrast, internal dissipation by the material would require a substantial alteration

of the formulation, through the adoption of an appropriate, history-dependent (e.g.

viscoelastic) constitutive model and a suitable modification of the MECR functional (13).

3. MECR-based inversion: a time-discrete formulation

We now consider a time-discrete formulation of the transient dynamics involved in

the definition and exploitation of the MECR functional. For the sake of both

definiteness and sufficient generality, the integration in time is assumed to be based

on a scheme belonging to the so-called generalized-α multi-parameter family of time-

stepping schemes [13], which is commonly used for computational structural dynamics

and includes several well-known schemes as special cases. Introducing a sequence

t0 = 0, t1 = h, . . . , tk = kh, . . . , tn = Nh = T of discrete time instants (with a constant

time step h= T/N used for simplicity), we let fk denote the value at t= tk of a generic
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time-dependent quantity f . The generalized-α schemes involve two algorithmic real-

valued parameters α, θ, as follows. Setting for notational convenience ᾱ := 1−α and

θ̄ := 1−θ, let fk+ᾱ and fk+θ̄ stand for the weighted averages ᾱfk+1 +αfk and θ̄fk+1 +θfk,

respectively, where f is any time-dependent quantity. The generalized-α schemes are

then, in the context of this work, based on the following time-discrete version of the

weak balance equation (8), where the inertial term is evaluated at time tk+θ̄ while all

internal and external forcing terms are evaluated at time tk+ᾱ:〈
σk+ᾱ , ε[w]

〉
+M

(
ak+θ̄ ,w

)
= Fk+ᾱ(w) +

〈
σk+ᾱ ·n,w

〉
Γ\ΓN

∀w ∈W . (23)

Equation (23) is supplemented with the Newmark update equations linking the

displacements uk, the velocities vk := u̇k and the accelerations ak := ük, which involve

two additional algorithmic parameters β, γ and read (with β̄ := 1
2
−β and γ̄ := 1−γ)

uk+1 = uk + hvk + h2[β̄ak + βak+1], (24a)

vk+1 = vk + h[γ̄ak + γak+1]. (24b)

The transition equations (23) and (24a,b) are completed with the initial balance equation

M(a0,w) +
〈
σ0 , ε[w]

〉
= F0(w) +

〈
σ0 ·n,w

〉
Γ\ΓN

∀w ∈ W (25)

and the initial conditions

u0 = v0 = 0. (26)

The properties of generalized-α schemes, and the special cases they contain, are well-

documented [13]. For example, choosing α= θ= 0 gives the Newmark family of schemes,

while just setting either θ= 0 or α= 0 yields the HHT [22] and WBZ [45] time-stepping

methods, respectively. Also, the generalized-α method is unconditionally stable and

second-order accurate whenever γ = 1
2
−θ+α, θ≤α≤ 1

2
, and β ≥ 1

4
+ 1

2
(α− θ) [13].

3.1. Time-discrete inverse problem

Introducing for convenience the shorthand notations u,v,a,σ for denoting mechanical

field histories (uk,vk,ak,σk)0≤k≤N , the time-discrete counterparts U and S of the

spaces (10a,b) of admissible kinematical and dynamical responses are defined as

U =
{

(u,v,a)∈
(
WN+1

0 ×WN+1
0 ×WN+1

0

)
,u= v=a= 0 on ΓD,

eqns. (24a,b) and (26) hold
}
, (27a)

S(a) =
{
σ ∈

(
L2(Ω;R3,3

sym)
)N+1

, eqns. (23), (25) hold
}
. (27b)

In this setting, the inverse problem consists in reconstructing the spatial distribution

C? of the elasticity tensor, and additionally in finding the mechanical field histories σ?

and (u?,v?,a?), such that

(u?,v?,a?,σ?,C?) = arg min
(u,v,a)∈U,σ∈S(a),C∈Z

ŨN(u,σ,C) (28)

where ŨN , the time-discrete counterpart of the MECR functional (15), is defined by

ŨN(u,σ,C) = UN(u,σ,C) +DN(u,σ) (29a)
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with UN and DN , the time-discrete versions of the ECR and misfit functionals, given by

UN(u,σ,C) :=
1

2

N∑
k=0

〈
σk−C :ε[uk] , C−1 :σk−ε[uk]

〉
(29b)

DN(u,σ) := ξfσ

N∑
k=0

Dσ(τk− τ̃ k) +
N∑
k=1

ξ
{
fuDu(uk− ũk) + fmDm(uk− d̃k)

}
. (29c)

The alternate-direction strategy outlined in Section 2.3 then employs partial

minimizations (20) and (21) with the MECE functional Ũ replaced with its time-discrete

counterpart ŨN given by (29a). Stationarity equations for the partial minimization (20)

will be established next in Section 3.2, and their main features examined in Section 3.3.

Then, a material update procedure is proposed in Section 3.4. Finally, the alternative

approach based on solving the minimization (22) is outlined in Section 3.5.

3.2. Coupled forward-backward equations for MECR functional evaluation

This step is concerned with the evaluation of the modified error in constitutive relation

Ẽ(C) for given C, i.e. performing the partial minimization (20). As problem (20) involves

the kinematical and dynamical admissibility constraints embedded in definitions (27a,b),

it is now reformulated in terms of its first-order Karush-Kuhn-Tucker necessary

optimality conditions. The latter are derived from the following Lagrangian functional:

L(u,v,a,σ, ū, v̄, ā,C)

= ŨN(u,σ,C) +
{
M(a0, ū0) +

〈
σ0 , ε[ū0]

〉
−F0(ū0)−

〈
σ0 ·n, ū0

〉
Γ\ΓN

}
+

N−1∑
k=0

{ 〈
σk+ᾱ , ε[ūk+1]

〉
+M

(
ak+θ̄ , ūk+1

)
−Fk+ᾱ(ūk+1)−

〈
σk+ᾱ ·n, ūk+1

〉
Γ\ΓN

+M
(
uk+1 − uk − hvk − h2[β̄ak + βak+1], āk+1

)
+M

(
vk+1 − vk − h[γ̄ak + γak+1], v̄k+1

) }
(30)

which incorporates the MECR objective functional ŨN defined by (29a) together with

the constraints resulting from: (i) the initial balance equation (25) with multiplier field

ū0; (ii) the balance equations (23) with multiplier fields ūk+1, and (iii) the Newmark

update equations (24a,b) with multiplier fields āk+1 and v̄k+1. Moreover, the quantities

ū, v̄, ā are time-discrete sequences of Lagrange multiplier fields. Note that duality

products between Newmark update equations and relevant Lagrange multipliers are

written in terms of the (invertible) mass operator rather than the standard L2 inner

product for reasons of homogeneity.

3.2.1. Necessary optimality conditions. Since the constitutive parameters are kept

fixed in the partial minimization (20), the (first-order) necessary optimality conditions

are found by setting to zero the first-order derivatives of the Lagrangian (30) with

respect to the state variables histories (u,v,a,σ) and multiplier histories (ū, v̄, ā). To
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obtain equations that are in spatially weak form suitable for subsequent finite element

discretization, the partial derivatives of L are formulated as directional derivatives:

∂xL(x,y, . . .)[x̂] := lim
s→0

1

s

[
L(x+sx̂,y, . . .)− L(x,y, . . .)

]
,

where x, y . . . stand for any of the arguments of L and the directions x̂, . . . are arbitrary

functions which need only be chosen such that x+ sx̂, . . . belong to the same space as

x, . . . for any s. Moreover, since the initial (k = 0), intermediate (1 ≤ k ≤ N − 1)

and final (k = N) time instants play different roles in the definition of L, they will be

distinguished whenever appropriate in the resulting stationary equations.

(a) Variation of the multipliers. Setting to zero the derivatives of L with respect to the

multiplier histories (ū, v̄, ā) simply restores all constraints introduced in the Lagrangian,

i.e. the transition equations (23), (24a,b) and their initial counterparts (25), (26).

(b) Variation of the kinematic variables. The second set of stationarity equations is

obtained by taking the variations of L with respect to the kinematic histories (u,v,a)

and setting them to zero to obtain

0 = ∂a0L[â0] =M
(
ū0 +θū1 − hγ̄v̄1 − h2β̄ā1 , â0

)
, (31a)

0 = ∂ukL[ûk] =M
(
āk− āk+1 , ûk

)
+K

(
uk , ûk ; C

)
−
〈
σk , ε[ûk]

〉
+ ξD′m

(
uk− d̃k , ûk

)
+ ξD′u

(
uk− ũk , ûk

)
, (31b)

0 = ∂vkL[v̂k] =M
(
v̄k− v̄k+1−hāk+1 , v̂k

)
, (31c)

0 = ∂akL[âk] =M
(
ūk+θ−hγ̄v̄k+1−hγv̄k−h2β̄āk+1−h2βāk , âk

)
, (31d)

0 = ∂uNL[ûN ] =M
(
āN , ûN

)
+K

(
uN , ûN ; C

)
−
〈
σN , ε[ûN ]

〉
+ ξD′m

(
uN − d̃N , ûN

)
+ ξD′u

(
uN − ũN , ûN

)
, (31e)

0 = ∂vNL·v̂N =M
(
v̄N , v̂N

)
, (31f)

0 = ∂aNL[âN ] =M
(
θ̄ūN −hγv̄N −h2βāN , âN

)
. (31g)

(c) Variation of the stress. Differentiating L with respect to the stress history σ yields

∂σ0L[σ̂0] =
〈
C−1 :σ0 +ε[ūα], σ̂0

〉
−
〈
σ̂0 ·n, ūα

〉
Γ\ΓN

+ ξD′σ(σ0 ·n− τ̃ 0)[σ̂0 ·n],

∂σkL[σ̂k] =
〈
C−1 :σk +ε[ūk+α−uk], σ̂k

〉
−
〈
σ̂k ·n, ūk+α

〉
Γ\ΓN

+ ξD′σ(σk ·n− τ̃ k)[σ̂k ·n] (1≤ k≤N−1),

∂σNL[σ̂N ] =
〈
C−1 :σN +ε[ᾱūN −uN ], σ̂N

〉
− ᾱ

〈
σ̂N ·n, ūN

〉
Γ\ΓN

+ ξD′σ(σN ·n− τ̃N)[σ̂N ·n].

Setting ∂σkL[σ̂k] (0 ≤ k ≤ N) to zero for arbitrary σ̂k and considering the case (17)

where Dσ is of least-squares type, the following boundary conditions emerge:

ūk = 0 on Γ\ (ΓN∪Γσ) (0≤ k≤N), (32a)
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and

(ξfσ)−1ūk+α + τ̃ k − σk ·n = 0 on Γσ (0≤ k≤N−1), (32b)

(ξfσ)−1ūN + τ̃N − σN ·n = 0 on Γσ, (32c)

while the stress history in Ω is given in terms of the kinematic histories by

σk = C :ε[uk− ūk+α] (0≤ k≤N−1) (33a)

σN = C :ε[uN − ᾱūN ] (33b)

In view of the boundary condition (32a), we introduce for later use the function space

W0 :=
{
w : w ∈ H1(Ω;R3), w = 0 on Γ\ (ΓN∪Γσ)

}
. (34)

3.2.2. Governing equations for MECR evaluation. The evaluation of the MECR Ẽ(C)

rests upon the equations collected in steps (a)–(c) above. Noticing that equations arising

from steps (c) permit easy elimination of the stress history σ, a natural strategy, adopted

here, consists in retaining the kinematic history (u,v,a) and the multiplier history

(ū, v̄, ā) as primary unknowns.

Forward time-stepping equations. A first set of equations is obtained by using step

(a), i.e. the original kinematical and balance constraints. The stress variables are then

eliminated from the latter by (i) restricting the trial displacement w to the space W0

defined by (34) and (ii) exploiting relationships (32b) and (33a) from step (c). Moreover,

the boundary constraint (32a) is also specified. As a result, the following set of forward

time-stepping equations are obtained, where the kinematical constraints (27a) and (32a)

imply

uk ∈ W0, ūk ∈ W0 (0≤ k≤N). (35)

(i) Initial conditions:

M
(
a0 , w̄

)
= K

(
ūα , w̄ ; C

)
+ F0(w̄) +

〈
(ξfσ)−1ūα+ τ̃ 0 , w̄

〉
Γσ
∀w̄ ∈ W0, (36a)

v0 = 0, (36b)

u0 = 0. (36c)

(ii) Forward time-stepping equations (0≤ k≤N−1):

K
(
uk+ᾱ , w̄ ; C

)
+M

(
ak+θ̄ , w̄

)
= K

(
Aαūk+1 , w̄ ; C

)
+
〈

(ξfσ)−1Aαūk+1 + τ̃ k+ᾱ , w̄
〉

Γσ

+ Fk+ᾱ(w̄) ∀w̄ ∈ W0, (36d)

vk+1 = hγak+1 + hγ̄ak + vk, (36e)

uk+1 = h2βak+1 + h2β̄ak + hvk + uk. (36f)

having set Aαūk+1 := ᾱūk+1+α+αūk+α in (36d).

Backward time-stepping equations. Using equations (31a–g) from step (b) and

eliminating the stress history from (31b) and (31e) by invoking (33a) and (33b),

respectively, the following set of backward time-stepping equations is obtained, with

uk and ūk again subjected to the kinematical constraints (35):
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(i) Final conditions:

M
(
āN ,w

)
+ ᾱK

(
ūN ,w ; C

)
= −ξfm

〈
uN − d̃N ,w

〉
Ωm

− ξfu
〈
uN − ũN ,w

〉
Γu

∀w ∈W0, (37a)

v̄N = 0, (37b)

θ̄ūN − h2βāN = 0. (37c)

(ii) Backward transition equations (1≤ k≤N−1):

M
(
āk ,w

)
+ ᾱK

(
ūk ,w ; C

)
=M

(
āk+1 ,w

)
− αK

(
ūk+1 ,w ; C

)
− ξfm

〈
uk− d̃k ,w

〉
Ωm

− ξfu
〈
uk − ũk ,w

〉
Γu

∀w ∈W0, (37d)

v̄k = v̄k+1 + hāk+1, (37e)

θ̄ūk − hγv̄k − h2βāk = −θūk+1 + hγ̄v̄k+1 + h2β̄āk+1. (37f)

(iii) Backward transition equation (last):

ū0 = −θū1 + hγ̄v̄1 + h2β̄ā1. (37g)

3.2.3. Evaluation of the MECR functional. Let (uC,vC,aC) and (ūC, v̄C, āC)

respectively denote the kinematic and multiplier histories that solve the coupled

stationarity problem constituted by the forward equations (36a–f) and the backward

equations (37a–g). Using these solutions in (32b) and (33a,b) in turn yields the stress

history σC. Those histories achieve the partial minimization (20), i.e. allow the

evaluation of the MECR functional ẼN(C) for any given C. Expressing σC in terms

of the other histories by means of (32b) and (33a,b) in (19), one obtains

ẼN(C) = ŨN(uC,σC,C) = UN(uC,σC,C) +DN(uC,σC), (38a)

with the values of the ECR and data misfit components of ŨN given by

UN(uC,σC,C) =
ᾱ2

2
K
(
ūC
N , ū

C
N ; C

)
+

1

2

N−1∑
k=0

K
(
ūC
k+α , ū

C
k+α ; C

)
, (38b)

DN(uC,σC) =
ξ

2

N∑
k=1

{
fu‖uC

k − ũk‖2
L2(Γu) + fm‖uC

k − d̃k‖2
L2(Ωm)

}
+ (ξfσ)−1

{ ᾱ2

2
‖ūC

N‖2
L2(Γσ) +

1

2

N−1∑
k=0

‖ūC
k+α‖2

L2(Γσ)

}
. (38c)

3.3. Coupled forward-backward problem: discussion

In this section, important characteristics of the coupled stationarity problem (36a–f),

(37a–g) are reviewed. To facilitate this discussion, more compact notation is introduced

for the coupled problem. Letting xk := (uk,vk,ak) ∈ W3
0 and x̄k := (ūk, v̄k, āk) ∈ W3

0

denote the sets of forward and adjoint kinematic fields at time tk, respectively, the

forward and backward transition equations may be respectively written as

A(xk+1, w̄) = B(xk, w̄) + C(x̄k+1, w̄) + ξ−1Cσ(x̄k+1, w̄) + Fk+1(w̄), ∀w̄∈W3

0, (39a)

A′(x̄k,w) = B′(x̄k+1,w)− ξD(xk,w) + ξGk(w), ∀w∈W3
0 , (39b)
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where w and w̄ are test functions. The bilinear forms A,B are such that a recursion

on xk of the form A(xk+1, w̄) = B(xk, w̄) + Fk+1(w̄), ∀w̄ ∈ W3

0 effects a forward

time-stepping for given excitation Fk+1(w̄); they are defined in matrix format by

A =

ᾱK 0 θ̄M
0 M −hγM
M 0 −h2βM

 , B =

−αK 0 −θM
0 M hγ̄M
M hM β̄h2M


in terms of the stiffness and mass operators K,M, and A′, B′ are the adjoint operator

matrices obtained by transposing the above matrices and replacing K,M by their

adjoints K′,M′ therein (note that here K,M must be understood as bilinear operators

acting on W0 ×W0 and therefore are not symmetric in general). Then, the bilinear

forms C,Cσ, D are given by

C(x̄k+1, w̄) = K
(
Aαūk+1 , w̄ ; C

)
, D(xk,w) = fm

〈
uk ,w

〉
Ωm

+ fu
〈
uk ,w

〉
Γu
,

Cσ(x̄k+1, w̄) = f−1
σ

〈
Aαūk+1 , w̄

〉
Γσ
.

Finally, the linear forms Fk, Gk collect the contributions arising from the histories of

applied excitations, measured tractions, and measured displacements, respectively:

Fk(w̄) = Fk(w̄) +
〈
τ̃ k+ᾱ , w̄

〉
Γσ
, Gk(w̄) = fm

〈
d̃k ,w

〉
Ωm

+ fu
〈
ũk ,w

〉
Γu
.

Forward-backward coupling. Equations (39a,b) emphasize that the stationarity

problem combines a forward evolution problem and a backward evolution problem,

which are coupled as the forcing term of each problem depends on the solution of the

other. This raises significant computational difficulties, which need to be resolved in

order to apply MECR-based inversion to large-scale models; a discussion of these and

of our proposed remedy is deferred to Section 4.

Boundary conditions. In general, the kinematical constraints enforced on xk and x̄k
are not identical (i.e. W0 6= W0). For this reason, the bilinear operators K,M are

not symmetric in general, and may lead to rectangular matrices under finite element

discretization. To avoid additional computational complications arising from this fact,

only situations for which W0 = W0 are considered in the remainder of this article. In

view of definitions (11) and (34), this amounts to assuming that

ΓD = Γ\ (ΓN∪Γσ), (40)

i.e. that tractions are either prescribed (i.e. known exactly) or measured on the non-

constrained part of the boundary. The possible availability of measured displacements

on that portion of the boundary playing no role in the condition, i.e. Γu remains allowed

to be any (possibly empty) subset of Γ \ΓD. Condition (40) includes the commonly-

used case Γ = ΓN∪ΓD, corresponding to ordinary well-posed boundary conditions, and

also ensures that the bilinear operators K,M are symmetric. The spatially 1D setting

of [2, 17], where both forces and velocities are assumed to be measured at both ends of

the bar (i.e. Γσ = Γu = Γ and ΓD = ΓN = ∅), also fulfills condition (40).
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Stability of backward time-stepping. As already mentioned, the generalized-α schemes

are (unconditionally or conditionally) stable subject to known conditions on α, θ, β, γ.

An important feature of the coupled forward-backward problem is that the backward

time-stepping scheme (39b), which is in general not identical to the forward time-

stepping scheme (39a), involves the adjoints A′, B′ of the operators A,B used in (39a).

Consequently, the amplification matrices associated to both schemes are equal up

to transposition (and hence have equal spectral radii), implying identical stability

conditions on α, θ, β, γ for both schemes: if the forward time-stepping (39a) is stable,

the backward time-stepping (39b) is also stable (and conversely).

Weight parameter. To obtain some insight into the effect of the adjustable

dimensionless weighting parameter ξ introduced in (17), we examine the two limiting

situations ξ → 0 (Case a) and ξ → +∞ (Case b):

(a) Assuming xk to remain bounded in the limit ξ → 0, i.e. xk = O(1), equation (39b)

implies that x̄k = O(ξ). Using the ansatz xk = x
(0)
k + o(1) and x̄k = ξx̄

(1)
k + o(ξ)

in (39a,b), the leading contributions x
(0)
k , x̄

(1)
k (0 ≤ k ≤ N) are governed by the

system of equations

A(x
(0)
k+1, w̄) = B(x

(0)
k , w̄) + Cσ(x̄

(1)
k+1, w̄) + Fk+1(w̄) ∀w̄ ∈ W3

0

A′(x̄
(1)
k ,w) = B′(x̄

(1)
k+1,w)−D(x

(0)
k ,w) +Gk(w) ∀w ∈ W3

0 ,

which arises from retaining only the leading contributions to (39a) and (39b) as

ξ → 0, whose respective orders are O(1) and O(ξ). The above system of equations

can in fact be shown, by an analysis similar to that of Sec. 3.2, to constitute the

stationarity equations associated with the partial minimization (with C fixed) of the

misfit functional DN with u and σ linked by the constitutive relation σ=C :ε[u].

Moreover, through (33a,b), the above ansatz implies that σk = C : ε[uk] + o(1)

(0 ≤ k ≤ N). Consequently, the asymptotic behavior of the ECR and data misfit

parts of the MECR functional is found from (38b,c) to be

UN(uC,σC,C) = O(ξ2), DN(uC,σC) = O(ξ) (ξ → 0),

again indicative of the fact that (18) reduces to the minimization of DN when ξ → 0.

(b) As the limiting case ξ → +∞ corresponds to enforcing the measurements exactly,

a natural ansatz is xk = x
(0)
k + ξ−1x

(−1)
k + o(ξ(−1)), where the relevant parts of x

(0)
k

coincide with the displacement data (i.e. x
(0)
k is such that Gk(w)−D(x

(0)
k ,w) = 0

for any w ∈ W3
0 ). Equation (39b) then suggests setting x̄k = x̄

(0)
k +o(1), so that the

leading contributions x
(0)
k , x̄

(0)
k (0≤ k≤N) are governed by the system of equations

A(x
(0)
k+1, w̄) = B(x

(0)
k , w̄) + C(x̄

(0)
k+1, w̄) + Fk+1(w̄) w̄ ∈ W3

0,

A′(x̄
(0)
k ,w) = B′(x̄

(0)
k+1,w)−D(x

(−1)
k ,w) ∀w ∈ W3

0 ,

which arises from the O(1) contributions to (39a) and (39b) and can be shown

along the lines of Sec. 3.2 to constitute the stationarity equations associated with

the partial minimization of the ECR UN , with measurements enforced exactly rather

than through the misfit functional D.
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The above ansatz implies that σ = O(1). Consequently, the asymptotic behavior of

the ECR and data misfit parts of the MECR functional is found from (38b,c) to be

UN(uC,σC,C) = O(1), DN(uC,σC) = O(ξ−1) (ξ → +∞),

consistently with (18) reducing to the minimization of UN when ξ →+∞.

We note that these limiting cases are similar to those of a Tikhonov regularization

applied to the minimization of the data misfit functional D for large and small

values of the regularization parameter, respectively, which suggests that ξ−1 acts as

a regularization parameter. A sensible option therefore consists in adjusting ξ to the

noise in the experimental data, e.g. using the Morozov discrepancy principle [41].

3.4. Material update and MECR functional evaluation

This step, constituting the second part of the alternating-direction approach, implements

the partial minimization (21). Enforcing the first-order necessary optimality condition

∂CŨN(uC,σC,C)[Ĉ] = 0 ∀Ĉ for the latter problem, one obtains (using definition (29a)

of ŨN) the following pointwise updating rule for C:

∀Ĉ ∈Q,
{ N∑

k=1

[
ε[uC

k ]⊗ε[uC
k ]− (C−1 :σC

k )⊗ (C−1 :σC
k )
]
(x)

}
: Ĉ = 0 (x ∈ Ω), (42)

which is seen, for the general anisotropic elastic case, to consist of 21 independent

scalar equations for 21 independent unknowns (which are constrained by the positive-

definiteness requirement on C). The updating rule (42) is now shown to become explicit

for the case of isotropic linear elastic materials, for which C has the form

C =
(
B − 2

3
G
)

(I ⊗ I) + 2GI (43)

with B and G denoting (spatially-dependent) bulk and shear moduli, respectively, I

and I being the second- and symmetric fourth-order identity tensors, respectively.

Considering trial moduli Ĉ of the form (43) with B,G replaced with B̂, Ĝ, the optimality

condition (42) reduces to

∀B̂, Ĝ ∈ R, Ĝ

N∑
k=1

[
2εdk :εdk −

σdk :σdk
2G2

]
(x) + B̂

N∑
k=1

[
ε2k −

p2
k

B2

]
(x) = 0 (x ∈ Ω), (44)

where p := 1
3
σC :I is the pressure, ε := ε[uC] :I is the volumetric strain, while σd :=σC−I

and εd := ε[uC]−1
3
εI represent the deviatoric stress and strain. Equation (44) then leads

to the explicit pointwise updating formulas

B+ =

(∑N
k=1 p

2
k∑N

k=1 ε
2
k

)1/2

, G+ =
1

2

( ∑N
k=1 σ

d
k :σdk∑N

k=1 ε
d[uk] :εd[uk]

)1/2

. (45)

Since B+, G+ > 0 by construction, any such update C+ of C is positive definite.

Constitutive updating formulae (45) may easily be modified so as to yield averaged

updates over some region D ⊆ Ω, e.g. over (patches of) elements, by making each

summand carrying an implicit integration over D.
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3.5. Alternative approach: gradient-based minimization of MECR functional

This approach consists of applying any of the available gradient-based search methods [7]

to the cost functional Ẽ(C). For notational convenience, let S := (u,v,a, ū, v̄, ā,σ)

gather all histories involved in the definition of the Lagrangian (30) and SC the

corresponding solution of the stationarity problem of Section 3.2. Recalling (19) and that

for any given C the histories in SC verify the constraints involved in the definition (30)

of the lagrangian L, one has

ẼN(C) = ŨN(uC,σC,C) = L(SC,C).

All histories in SC depend on C through the stationarity equations (39a,b). Letting y

denote any component of the list S, there is (in a neighbourhood of a pair (y0,C0)

satisfying equations (39a,b), by virtue of the implicit function theorem) a solution

mapping Ry from Z to an appropriate function space Vy such that yC = Ry(C). The

derivative Ẽ ′(C) then follows by the chain rule:

Ẽ ′(C) = ∂CL(SC,C) +
∑
x∈S

∂xL(SC,C)[R′x(C)].

Using that the stationarity equations (39a,b) are none other than the set of all equations

∂xL = 0, and recalling the definition (30) of L(S,C), one finds

Ẽ ′(C)[Ĉ] = ∂CL(SC,C)[Ĉ] = ∂CU(uC,σC,C)[Ĉ].

Then, differentiating U(uC,σC,C) as given by (13) with respect to C, the directional

derivative of Ẽ in the direction Ĉ is finally found to be given by the simple expression

Ẽ ′(C)[Ĉ] =
1

2

N∑
k=1

∫
Ω

(ε[uC
k ]− C−1 :σC

k ) : Ĉ : (ε[uC
k ] + C−1 :σC

k ) dV, (46)

Remark 3. Following the terminology used in e.g. [9], the sequential approach (Secs. 3.2

and 3.4) may be viewed as a block Gauss-Seidel algorithm applied to the full-space method

(whereby the primary and adjoint solutions and the material parameters are sought

simultaneously by solving the complete set of first-order optimality equations), whereas

the above alternative approach is a reduced-space method.

4. Solution methodology for the stationarity equations

To evaluate the MECR functional or perform the constitutive update (45) entails solving

for the kinematic history (uk,vk,ak)0≤k≤N and the multiplier history (ūk, v̄k, āk)0≤k≤N

the stationarity problem combining the forward equations (36a–f) and the backward

equations (37a–g), which constitutes the cornerstone of MECR-based inversion. In

addition to defining evolution equation in opposite directions of time (which is usual),

the forward and backward equations are in the present case coupled. The combination

of both characteristics seems to prevent the use of time-stepping schemes and to suggest

instead a monolithic solution approach for the complete set of space-time equations, for

instance based on space-time finite element methods [23].
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However, approaches of the latter kind, i.e. global in time, are infeasible when the

spatial discretization leads to spatially large FE models, such as in most engineering,

medical or geophysical applications. An alternative approach, which is local in time,

consists in precomputing a sequence of matrices obtained by a backward (in discrete

time) recursion (which corresponds to a time-discrete analogue of a matrix-valued

Riccati differential equation), allowing to then solve the coupled problem by means

of one forward time-stepping pass. Such treatments are well known in optimal control

theory, see e.g. [3, 11], and a variation on this approach was used in [17] for spatially

1D cases. The details of the recursive approach for the present context are given for

completeness in Appendix B. The need to compute and store N matrices whose size

is proportional to that of the finite element model, however, makes that approach also

impractical when spatially large FE models are involved. Hence, practical considerations

dictated by the targeted large-scale identification problems finally suggests an iterative

approach based on usual time-stepping solvers as the only feasible option.

4.1. Iterative solution algorithm

Gathering and concatenating the coupled forward and adjoint time-stepping

equations (39a,b) for all times steps, the forward history x := (xT
0 , . . . ,x

T
N)T and

adjoint history x̄ := (x̄T
0 , . . . , x̄

T
N)T can be considered as solving the following system of

equations, set in block form: [
A −C
D AT

]{
x

x̄

}
=

{
f

g

}
, (47)

where the definition of matrices A,C,D and vectors f ,g can be easily obtained by

identification from (39a,b) (for example, the matrix A is associated to the forward

time-stepping scheme).

The structure of (47) suggests iterative approaches where x and x̄ are alternatively

treated as main unknown, so as to alternate forward and backward time-stepping

schemes. Choosing arbitrary initial guesses x(0), x̄(0) for x and x̄, one may for instance

consider solving (i) Ax(1) = f +Cx̄(0) for x(1) and either (ii-a) ATx̄(1) = g−Dx(0) or

(ii-b) ATx̄(1) = g−Dx(1) for x̄(1), and repeat the process for x(2), x̄(2), x(3) . . . until

convergence. Steps (i), (ii-a) and (i), (ii-b) constitute one iteration of the block Jacobi

and block Gauss-Seidel algorithms, respectively, for the block system (47). Convergence

of either algorithm is predicated on the spectral radius of the relevant iteration matrix

being less than unity [42]. System (47) does not necessarily meet this condition, as

shown in Sec. 4.2; in fact, when tried on a 1D version of MECR-based inversion with

fσ = fu = 0, Gauss-Seidel iterations were found to converge only for quite large values of

the regularization parameter ξ−1 (which enters C, and also D when Γσ 6= ∅, see (39a,b)).

One way to address this difficulty, while retaining a similar approach, consists

in replacing Jacobi or Gauss-Seidel iterations with successive over-relaxation (SOR)

iterations. In the present context, SOR iterations arise from multiplying equations (47)
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by η (where 0<η < 2 is the tunable relaxation parameter of the algorithm) and setting

them in the form [
A 0

ηD AT

]{
x

x̄

}
=

[
η̄A ηC

0 η̄AT

]{
x

x̄

}
+

{
ηf

ηg

}
(48)

(with η̄= 1−η). Then, the iterative scheme is defined by setting (x, x̄) = (x(i+1), x̄(i+1))

in the left-hand side of (48) and (x, x̄) = (x(i), x̄(i)) in the right-hand side, i.e.[
A 0

ηD AT

]{
x(i+1)

x̄(i+1)

}
=

[
η̄A ηC

0 η̄AT

]{
x(i)

x̄(i)

}
+

{
ηf

ηg

}
, (49)

with i = 0, 1, . . . denoting the iteration counter. A somewhat simpler, equivalent version

of equations (49) is obtained by introducing auxiliary unknowns w, w̄, so that one

iteration of the SOR algorithm consists, for given (x(i), x̄(i)) in the following steps:

(a) solve Aw = η(f +Cx(i)), then set x(i+1) = w + η̄x(i), (50a)

(b) solve ATw̄ = η(g−Dx(i+1)), then set x̄(i+1) = w̄ + η̄x̄(i). (50b)

Progress of the algorithm can be tracked through the indicator

eSOR :=
‖x(i+1) − x(i)‖2 + ‖x̄(i+1) − x̄(i)‖2

‖x(i)‖2 + ‖x̄(i)‖2
, (51)

which evaluates the relative change in solution between consecutive iterates (with ‖ · ‖
denoting the Euclidean norm). An expanded version of the SOR equations (50a,b) for

solving the MECR stationarity problem, written in terms of the usual finite element

matrices, is given in Appendix A.

The block SOR iterations (49) are shown next (Sec. 4.2) to be convergent for

suitable values of the relaxation parameter.

Remark 4. The block SOR algorithm with η= 1 reduces to the Gauss-Seidel algorithm.

Remark 5. The SOR iterations (50a,b) are quite simple to implement as they involve

the usual stiffness and mass structural matrices and use any member of the standard

generalized-α time-stepping algorithm, available in many FEM analysis codes. They

may then be solved by setting up appropriate right-hand sides and then calling existing

structural dynamics solvers. The main required addition to the latter is the adjoint form

of the time-stepping scheme, which is normally not available by default.

4.2. Convergence of the block SOR iterations

The block SOR iterations (49) are now shown to converge for suitable (problem-

dependent) values of the relaxation parameter, for all time-stepping schemes with α= 0

(this includes all Newmark schemes). The proof proceeds by combining available results

from the theory of SOR algorithms [42, 46]. As a preliminary remark, SOR iterations

are known to be always divergent for η /∈]0, 2[ [42], so that η must be chosen in ]0, 2[.

Both the block Jacobi and the block SOR iterative methods are such that{
x(i+1) − x?

x̄(i+1) − x̄?

}
= Rα

{
x(i) − x?

x̄(i) − x̄?

}
(α = J, SOR),
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where (x?, x̄?) is the solution of (47) and with the iteration matrices RJ and RSOR

associated with the Jacobi and SOR algorithms given for the case of system (47) by

RJ =

[
0 −A−1C

A−TD 0

]
, RSOR =

[
A 0

ηD AT

]−1 [
η̄A ηC

0 η̄AT

]
. (52)

Let ρα denote the spectral radius (i.e. the largest eigenvalue modulus) of the iteration

matrix Rα (α = J, SOR). Then, the (Jacobi or SOR) iterative algorithm converges if

and only if ρα< 1 (see e.g. [46, Chap. 3, Thm. 5.1]).

The diagonal block A in (47) is invertible, as it yields a unique time-discrete history

for any data (i.e. Ax= f is uniquely solvable as a consequence of the construction of the

time-stepping scheme). The block matrix of system (47) consequently belongs to the

class of 2-cyclic matrices [42], for which theoretical results are available regarding Jacobi

and SOR algorithms. In particular, known relationships hold between the eigenvalues

of RJ and RSOR: letting λ∈C denote any eigenvalue of RSOR, if µ∈C satisfies

(λ− η̄)2 = λη2µ2 (53)

then µ is an eigenvalue of RJ, and conversely (see e.g. [42, Thm. 4.3]). This relationship

allows to evaluate ρSOR from the eigenvalues of the simpler iteration matrix RJ. For

instance, when all eigenvalues of RJ are real, equation (53) allows to prove that the

Jacobi, Gauss-Seidel and SOR algorithms are simultaneously convergent or divergent.

System (47), however, does not have the latter characteristic. The block D is

positive semidefinite, and so is C for all time-stepping schemes with α= 0 (since in that

case Aαū = ū, see definitions following (39a,b)). Consequently, the following lemma

holds:

Lemma 1. All eigenvalues of RJ are purely imaginary, i.e. µ = im for some m∈R.

Proof. Let δ > 0 denote a (small) positive real number, and define the perturbed

iteration matrix Rδ
J by

Rδ
J =

[
0 −A−1(C+δI)

A−TD 0

]
(where I is the identity matrix), which is such that

∥∥Rδ
J−RJ

∥∥ ≤ ∥∥A−1
∥∥δ (with ‖ · ‖

denoting e.g. the matrix 1-norm or 2-norm). Let µδ denote an eigenvalue of Rδ
J, with

eigenvector (x, x̄), so that we have

(i) µδAx + (C+δI)x̄ = 0, (ii) Dx− µδATx̄ = 0

Since C is positive semidefinite, C + δI is invertible, and equation (i) yields x̄ =

−µδ(C+δI)−1Ax. Using this in equation (ii) then gives the eigenvalue problem[
D + (µδ)2AT(C+δI)−1A

]
x = 0

Since A is invertible, AT(C+δI)−1A is positive definite, while D is positive semidefinite.

Consequently, one must have (µδ)2≤ 0, i.e. any eigenvalue µδ of Rδ
J is purely imaginary.

As matrix eigenvalues depend continuously on matrix perturbations (see e.g. [40][Chap.

4, Thm. 1.1]), all eigenvalues of RJ are purely imaginary in the limit δ → 0.
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Available analyses of block Jacobi or SOR iterations for 2-cyclic (or, more generally,

p-cyclic matrices) do not consider the case where RJ has purely imaginary eigenvalues,

as here. This characteristic of the block system (47) in fact plays an essential role in

ensuring the convergence of block SOR iterations for suitable values of η, as shown next.

Proposition 1. Consider the block system (47) for a time-stepping scheme with α= 0

(e.g. a Newmark scheme). The spectral radii ρJ and ρSOR(η) of RJ and RSOR(η) are

such that

ρSOR(η) < 1 for 0 < η < η0, with η0 = 2/(1+ρJ). (a)

Moreover, the minimum value of ρSOR(η) is given by

min
η∈]0,η0[

ρSOR(η) = 1−η1, with η1 = 2
/(

1 + (1+ρ2
J)

1/2
)

(b)

Proof. Let µ denote an eigenvalue of RJ, and let m> 0 such that µ2 =−m2 with m> 0

(using Lemma 1). Then, equation (53) becomes (λ − η̄)2 + λη2m2 = 0. Solving for λ,

two cases arise depending on the sign of the discriminant ∆ = η2m2(η2m2 − 4η̄):

(i) λ = 1
2

(
2η̄−η2m2 ± i

√
−∆

)
, |λ| = η̄ (η ∈]0, η1(m)[)

(ii) λ = 1
2

(
2η̄−η2m2 ±

√
∆
)
, |λ| = 1

2

(√
∆± η2m2 ∓ 2η̄

)
(η ∈]η1(m), 2[)

with η1(m) := 2
/(

1 + (1 + m2)1/2
)

(note that η1(m) < 1, implying η̄ > 0 for any

η ∈]0, η1(m)[ ). One always has |λ|< 1 in case (i). In case (ii), the largest value of |λ| is
|λ|max =

(√
∆+η2m2−2η̄

)
/2 and a straightforward analysis shows that |λ|max < 1 for any

η ∈ [η1(m), η0(m)[, with η0(m) := 2/(m+1)> η1(m). Since m 7→ η0(m) is a decreasing

function, the statement (a) follows by setting η0 := η0(ρJ). Moreover, m 7→ η1(m) is

also decreasing, while η 7→ |λ|max(η) is decreasing over ]0, η1(m)[ and increasing over

]η1(m), η0(m)[. Statement (b) therefore follows by setting η1 := η1(ρJ).

Remark 6. Proposition 1 shows that the proposed block SOR iterations for (47) can

always be made to converge by choosing a value η ∈]0, η0[ of the relaxation parameter

(the upper bound η0 being problem-dependent), while block Jacobi iterations may diverge.

Moreover, η0 < 1 if ρJ > 1, meaning that Gauss-Seidel iterations for (47) (i.e. SOR

iterations with η= 1) converge if and only if Jacobi iterations converge.

Remark 7. In the case where only displacement measurements are available (i.e. Cσ = 0

in (39a)), C does not depend on ξ while D is proportional to ξ. The eigenvalue problem[
D+(µδ)2AT(C+δI)−1A

]
x= 0 then shows that µδ =O(ξ1/2) (and hence µ=O(ξ1/2) in

the limit δ → 0). Consequently:

(a) ρJ → +∞ as ξ → +∞, implying that Jacobi or Gauss-Seidel iterations converge

only for sufficiently small values of ξ (and in particular diverge for accurate enough

measurements) ;

(b) η0 and η1 < η0 are decreasing functions of ξ, and η0 → 0 as ξ → +∞. When using

accurate measurements (which allow to set the regularization parameter ξ−1 to a

small value), the relaxation η must be chosen carefully, while the number of required

SOR iterations is expected to increase with ξ.

Remark 8. The main results of this section can be found in a simpler and more explicit

manner for the time-independent case; this is shown for completeness in Appendix C.
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5. Implementation aspects

This section describes some important features of the implementation of the proposed

transient MECR method.

5.1. Scaling and selection of weight parameters

The dimensional constants fu, fσ, fm used in (17) for scaling the measurement misfit

functionals are chosen as

fu =

∑N
k=1 Uko∑N

k=1Du(ũk)
, fσ =

∑N
k=1 Uko∑N

k=1Dσ(τ̃ k)
, fm =

∑N
k=1 Uk0∑N

k=1Dm(d̃k)
, (54)

where Uk0 := 1
2
K(u0

k,u
0
k;C0) is the elastic strain energy at time tk of the solution u0 to

a conventional transient forward problem satisfying (1a)–(4), with elastic moduli set to

the initial guess C0 chosen for the MECE-based inversion.

In accordance to the observations of Section 3.3, the value of ξ is selected according

to the level of noise in the data, by applying Morozov’s discrepancy principle for ξ−1,

i.e. choosing a value of ξ, denoted ξDP, such that∣∣DN(u?ξ ,σ
?
ξ )/DN(0,0)− δ2

∣∣ ≤ δ2εDP (55)

where DN(u,σ) is defined by (29c), δ is the relative noise level, εDP is a specified

tolerance, and u?ξ ,σ
?
ξ are the displacement and stress histories solving the optimization

problem (18) with given ξ. Setting εDP =O(10−2) was found to be sufficient (i.e. tighter

tolerances did not result in noticeable solution changes) for the examples of Section 6.

Using a simple bisection method, ξDP was usually estimated after only a few iterations.

5.2. Computational considerations

The flow of the MECR-based reconstruction algorithm is as follows:

while Morozov criterion (55) not satisfied do

set initial guess for moduli;

update ξ according to bisection method;

while eE >εE or less than NE iterations elapsed do

while eSOR>εSOR or less than NSOR iterations elapsed do

solve forward time-stepping problem (50a);

solve backward time-stepping problem (50b);

compute eSOR given by (51);

end

update material moduli using Equation (45);

evaluate components UN ,DN of ẼN , compute eE;
end

end

where NE and NSOR denote user-specified maximum numbers of MECE and SOR

iterations, and the progress indicator eE := |ẼN(Cj+1)− ẼN(Cj)| / ẼN(Cj)| evaluates

the relative change in MECR cost functional between two consecutive outer iterations.
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The block SOR approach of Section 4 has the significant advantage of being easily

implementable in existing finite element codes. We used the code Salinas (recently

re-named SIERRA/SDA) [8, 43], which has massively parallel capabilities including

efficient multilevel domain decomposition strategies for solving linear systems [14].

From the computational cost perspective, the material update step can be trivially

parallelized and entails very low cost operations as compared to the solution of the

coupled space-time system (47). Hence, the overall computational cost of the MECR

algorithm hinges on efficient strategies for solving (47). Since each SOR iteration

entails a forward and a backward transient problem, the overall computational cost of

solving (47) at each MECR iteration appears at first sight to become prohibitive as the

problem size increases. However, the system (47) does not need to be solved accurately

at early stages of the MECR iterations, provided the SOR tolerance eSOR ≤ εSOR

be met at completion of the MECR iterations. As a result, the strategy consisting

in setting NSOR to a low value and starting each new sequence of SOR iterations

using the stationarity solution found in the previous MECR iteration was found to

perform satisfactorily, while having the largest impact on reducing the overall cost of the

algorithm. Also, subdomain matrix factorization, which is an expensive step in implicit

multilevel solvers, is performed only once in each MECR iteration as the system matrices

do not change during the inner SOR iterations. Lastly, during SOR iterations, we

took advantage of convergence acceleration features such as Krylov subspace recycling

currently implemented in the multilevel domain decomposition solvers in SIERRA/SDA.

Computational work: comparison with L2 minimization. For most large-scale gradient-

based minimization methods, the main computational work involved can be quantified

in units that consist of one functional evaluation and one gradient evaluation. In the

more usual case of (regularized) L2 functionals, one unit involves (i) solving one forward

problem (allowing the evaluation of the cost functional), (ii) solving one backward

adjoint problem, and (iii) using the two solutions into the time convolution integral

yielding the cost functional gradient. By contrast, in MECR-based inversion, one MECR

functional evaluation requires both forward and backward solutions, but the subsequent

treatment directly combines them in the constitutive update (45) (or, alternatively, in

the MECR functional gradient (46)). The computational units for both approaches

thus overall involve similar tasks, except for the fact that (i) in the L2 case, the forward

and adjoint solutions are uncoupled and so involve one time-stepping each, whereas

(ii) in the MECR case, solving the coupled forward-adjoint problem using SOR requires

several time-stepping passes each way. In practice, for the largest example of this article

(where such considerations matter most), the computing time for solving the stationarity

problem (47) was found to be roughly proportional to the number of full time-steppings

effected (see Sec. 6.3). The relative costs of MECE and L2 computational units thus

appear to be roughly proportional to the mean SOR iteration count. The overall

inversion costs incurred by either method of course depend also on the respective outer

iteration counts. The lack of a readily available transient L2 inversion code prevented

comparative experiments under time domain conditions for this work; however, previous
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work on the frequency-domain case [5] indicated that achieving given reconstruction

error levels E2[B], E2[G] using gradient-based L2 inversion entailed 5 to 10 times the

iteration count required by MECE-based minimization.

6. Numerical experiments

In this section, we present numerical experiments on imaging the bulk modulus B and

the shear modulus G of isotropic heterogeneous elastic media, whose elasticity tensor

is therefore of the form (43), under 2D or 3D transient elastodynamic conditions, to

illustrate the performance of the proposed transient MECR method and the influence of

the main algorirhmic parameters. In all examples, displacements are used as measured

quantities and the generalized-α time-stepping algorithm is used with α = θ = 0,

β = 1/4 and γ = 1/2, i.e. is taken as an unconditionally-stable scheme of the Newmark

family. For all examples, (B0, G0) will denote (homogeneous) initial guesses, (B?, G?)

the moduli fields yielded by the MECR-based reconstruction, while (B1, G1), (B2, G2) . . .

will indicate target values. A unit mass density ρ= 1 is used in all examples.

Remark 9. The code SIERRA/SDA used only supports 3D finite elements. Therefore,

the geometrical configurations are actually three-dimensional in all examples. The 2D

examples of Sections 6.1 and 6.2 are then based on 3D domains that are thin along the

x3 coordinate, with plane strain conditions (i.e. zero displacements along e3) enforced.

6.1. 2D Example with interior data

The domain for this example (of cross-section Ω shown in Fig. 1) is a 1×1×0.1 prism with

an inclusion of elliptical cross-section (with principal axes aligned along the diagonals

of the square, and semi-axes of length 0.25 and 0.125). The top face is subjected to the

loading g=− sin(2πt)e2, while the lateral faces are traction-free and the bottom face is

fixed (i.e. ∂Ω = ΓN∪ΓD, with ΓD taken as the bottom face). The total duration of the

simulated experiment is 1 s with N = 100 time steps of 0.01 s. The target moduli are

(B1, G1) = (3, 2) in the matrix (in arbitrary units) and (B2, G2) = (6, 4) in the inclusion.

The simulated data was obtained by solving the forward problem with elastic moduli

set to their target values, using a sufficiently fine mesh, interpolating the solution onto

1

1

B

A
e1

e2

(B1, G1)

g = − sin(2πt)e2

(B2, G2)

Figure 1: Schematic of the 2D example problem
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a coarser mesh, and then adding simulated noise. The fine mesh consisted of 19, 216

eight-node hexahedral finite elements (39, 330 nodes). The coarser mesh used for the

reconstruction was uniform (i.e. ellipsoidal inclusion not meshed) and consisted of 6, 400

eight-node hexahedral elements (13, 122 nodes). Only one layer of elements was used in

the out-of-plane direction. The total number of unknown moduli was twice the number

of elements, i.e. 12, 800. The linear systems were solved using 16 subdomains (with 16

processors). All components of displacement were stored over all nodes for 100 time

steps. Additional Gaussian white noise was added to the simulated data as

ul(xj, tk)
obs = ul(xj, tk)

true(1 + ζχl) (56)

where ul(xj, tk)
obs is an observed component of displacement, ζ is the relative noise level,

and χl is a Gaussian random variable with zero mean and unit standard deviation. The

discrepancy principle (55) was used with δ = ζ. A homogeneous and isotropic initial

guess C0 such that (B0, G0) = (5, 5) was chosen.

6.1.1. Performance of the SOR algorithm. The behavior of the SOR algorithm applied

to the coupled system (47) is studied first, focusing on the influence of the relaxation

parameter η and the weight ξ. The elastic properties are set to C0. For each combination

of ξ and η used, SOR iterations were performed until either the criterion eSOR ≤ 10−6

was satisfied (with eSOR defined by (51)) or the number of SOR iterations reached 100.

Figure 2 shows the effect of both η and ξ on the SOR iterations. For each value of

ξ, there is an optimal value η1(ξ) of η for which the number of iterations is minimum,

and which is observed to decrease for increasing ξ. Moreover, the range of η for which

the SOR algorithm converges is seen to be of the form ]0, η0(ξ)[. As ξ increases, that

range narrows while the minimum number of iterations to convergence increases. These

observations are all entirely consistent with the convergence study of Sec. 4.2.

Computing the optimal relaxation parameter η1 as suggested by Proposition 1 is

impractical. In the reconstructions presented herein, the value of η was empirically set

so that the SOR iterations converge, without attempting to achieve optimality.

0 0.5 1 1.5

η (SOR relaxation parameter)

0

20

40

60

80

100

It
er

at
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n
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ξ = 0.1

ξ = 0.25

ξ = 1.

ξ = 5.

ξ = 10.

Figure 2: Number of iterations for solving the stationarity equations (47) as a function

of the SOR relaxation parameter η, for several values of ξ.
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E1[B] E2[B] E1[G] E2[G]

ξ = 0.1 0.153 0.206 0.117 0.198

ξ = 1 = ξDP 0.067 0.130 0.049 0.104

ξ = 10 0.063 0.102 0.050 0.084

ξ = 50 0.158 0.223 0.115 0.164

Table 1: 2D example: relative reconstruction errors for bulk and shear moduli (with

Ep[f ] := ‖f ?−f‖Lp(Ω)/‖f‖Lp(Ω))

6.1.2. Reconstruction of shear and bulk moduli. We now present results for the

reconstruction of G and B, for synthetic data with a noise level ζ = 0.05. The

selection criterion (55) for the weight parameter yielded ξDP = 1.0. The inverse

problem was in fact solved for the cases ξ = {0.1, 1, 10, 50} to illustrate the effect of

ξ on the reconstruction quality, the corresponding values of the SOR parameter being

η = {0.25, 0.2, 0.1, 0.05} and the SOR tolerance being set at εSOR = 10−12. In all cases,

200 MECR iterations were performed, which was found to limit the relative change

in ẼN between two consecutive MECR iterations to about 5 × 10−5. In addition, at

most 5 SOR iterations were allowed per MECR iteration (i.e. NSOR = 5), following the

arguments given in Section 5. The overall convergence of the MECR algorithm was

found to be relatively insensitive to the value chosen for NSOR. In contrast, the value of

η, as expected, had a significant effect on the convergence of the MECR algorithm.

The reconstructed shear and bulk modulus fields are shown in Fig. 3, while their

variation along the diagonal line AB (Fig. 1) are plotted in Fig. 4. The moduli fields

are observed to be smooth for low values of ξ and oscillatory for high values of ξ, as

(a) ξ = 0.1 (b) ξ = 1.0 = ξDP (c) ξ = 10 (d) ξ = 50

(e) ξ = 0.1 (f) ξ = 1.0 = ξDP (g) ξ = 10 (h) ξ = 50

Figure 3: 2D example: reconstructed shear modulus G? (top row) and bulk modulus

B? (bottom row). The value ξ = 1.0 results from Morozov’s discrepancy principle.



26

0 0.5 1 1.5

abscissa along AB

2

3

4

5

6

G

G (target)

G (reconstructed, ξ=1)

G (reconstructed, ξ=10)
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B (reconstruction, ξ=1)

B (reconstruction, ξ=10)
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Figure 4: 2D example: reconstructed shear modulus G? (left) and bulk modulus B?

(right) along diagonal AB of Fig. 1

Load and 
measurement patches 

Layer G B

top 1. 2.

middle 2. 5.

bottom 6. 8.

Figure 5: 2D example with surface data: schematic (left), target elastic moduli (right).

expected. The value ξ = ξDP = 1.0 produced smooth reconstructions. Reconstruction

errors in terms of the L1(Ω) and L2(Ω) norms are shown in Table 1. Errors are observed

there to first increase then decrease as ξ increases, hinting at the existence of optimal

values of ξ. The lowest errors were obtained for ξ = 10, with those corresponding to

ξ = ξDP close to the former. This observation, also made in [44], suggests that the

discrepancy principle leads to reconstructions that are close to optimal (in terms of

reconstruction error), albeit possibly not optimal. Further research is needed to develop

adaptive techniques for determining (nearly) optimal values of ξ efficiently.

Note that for all values of ξ, the location and shape of the inclusion can be properly

identified from either the shear or the bulk modulus image. However, the magnitude of

the recovered B? is less accurate than that of the recovered G?, see e.g. Table 1. This

observation is consistent with other reported results [5] and is likely due to the loading

and support conditions used for the problem.
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6.2. 2D example with surface data

In this example, the reconstruction of B and G from only surface data is considered.

The domain used (Fig. 5) is a 1 × 1 × 0.05 prism composed of three different material

layers with target properties given in Fig. 5. The loading and measurement areas consist

of 27 square patches (of size 0.025×0.025), uniformly distributed around the two lateral

sides and the top side of the domain. The load applied on each patch is an impulsive

pressure defined by g = − sin(0.2πt)n (0 ≤ t ≤ 0.1), the remaining parts of the top

and lateral sides being traction-free. The bottom side of the domain is fixed, and plane

strain conditions are assumed.

Simulated data was generated by means of a transient analysis with N = 100 time

steps of h = 0.01 seconds, using a finite element mesh of 32,000 eight-node hexahedral

elements (43,000 nodes). This data was then interpolated onto a uniform mesh (i.e.

without meshing the layers) containing 31,000 eight-node hexahedral elements (42,000

nodes), and polluted by simulated Gaussian noise using (56) with ζ = 0.01 or ζ = 0.05.

Three layers of finite elements were used in the thickness direction. The initial guess

was homogeneous, with (B0, G0) = (2.5, 2.5). The weight ξ was set to ξDP = 0.16 for

ζ = 0.01 and ξDP = 0.031 for ζ = 0.05, using (55). The SOR parameters were η = 0.2,

εSOR = 10−12, and NSOR = 5. The algorithm was stopped when eE ≤ 10−3 was reached,

which required about 300 MECR iterations.

The resulting reconstructed fields B? and G? are shown in Fig. 6. Although B is

reconstructed less accurately than G, either reconstruction reveals the layered structure

of the target material distribution. The actual values of B and G were also reasonably

(a) G? (ζ = 0.01) (b) G? (ζ = 0.05) (c) G (target)

(d) B? (ζ = 0.01) (e) B? (ζ = 0.05) (f) B (target)

Figure 6: 2D example with surface data: reconstructed shear modulus G? (top row) and

bulk modulus B? (bottom row).
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Figure 7: 2D example with surface data: reconstructed moduli along vertical axis.

E1[B] E2[B] E1[G] E2[G]

ζ = 0.01 0.110 0.146 0.084 0.120

ζ = 0.05 0.133 0.167 0.107 0.145

Table 2: 2D example with surface data: relative reconstruction errors for bulk and shear

moduli (with Ep[f ] as defined in Table 1)

well identified, as can be seen from the relative reconstruction errors given in Table 2,

and in Fig. 7 which plots their variations along a vertical line at the center of the body.

6.3. 3D Example

The domain Ω consists of a unit cube containing a cylindrical inclusion with an elliptical

cross section (Fig. 8). The body was loaded with a time-harmonic unit pressure on the

top surface with displacements fixed at the bottom surface. Also, the side faces were

loaded with a time-harmonic pressure of 0.5 units (load frequency: 1 Hz; total duration

of the simulated experiment: 1 s, with N = 100 time steps of h= 0.01 s).

The target moduli are (B1, G1) = (4, 2) in the matrix and (B2, G2) = (16, 6)

Figure 8: Schematic of the 3D example problem
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Figure 9: 3D Example: threshold plots, reconstructed moduli B? (left) and G? (right).

in the inclusion. The synthetic data was generated using 414, 000 tetrahedral finite

elements (75, 000 nodes), and then interpolated onto a coarser uniform reconstruction

mesh (i.e. without meshing the cylindrical inclusion) consisting of 275, 000 tetrahedral

elements (50, 000 nodes). The total number of unknown moduli for this example is

therefore 550, 000. Two cases of simulated data were considered: (i) all components

of displacement assumed measured at all nodes of the coarse mesh for N = 100 time

steps, or (ii) half of the nodes (randomly sampled) selected as measurement points.

The interpolated data was further polluted with Gaussian noise according to (56) with

ζ = 0.03. The weight parameter was set to ξDP = 2.5 for Case (i) and ξDP = 0.63 for Case

(ii) by means of (55). The maximum allowed numbers of iterations were set to NSOR = 6

and NE = 200, the latter being sufficient to produce a relative change eE ≤ 10−3. The

stationarity problem was solved using 48 subdomains (with 48 processors). Under these

conditions, the computing times for (i) setting up all quantities that remain fixed within

one MECE iteration (notably the stiffness and mass matrices) and (ii) performing one

full time-stepping were observed to be about 10s and 36s, respectively. These times

were obtained using an Altus 2804i Server with quad AMD Opteron 6274 processors

(3.1 GHz) each with 16 cores and a total of 256 GB of DDR3-1333 RAM.

Figures 9 and 10 show the reconstructed fields B? and G?, respectively as

thresholded plots (with lower thresholds for B? and G? respectively set to 12 and 5) and

2D sections through the center of the cube, for case (i). The location and shape of the

inclusion appear to be correctly identified. The reconstruction of G? however displays

some aberrations near the top surface, which may result from measurements being less

sensitive to changes of moduli in those elements. The L1(Ω) and L2(Ω) relative errors

sensor nodes E1[B] E2[B] E1[G] E2[G]

all (case (i)) 0.093 0.222 0.080 0.175

half (case (ii)) 0.119 0.269 0.088 0.184

Table 3: 3D example: relative reconstruction errors for bulk and shear moduli (with

Ep[f ] as defined in Table 1)
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   G 

(a) G?

  B 

(b) B? (c) Target inclusion

   G 

(d) G?

   B 

(e) B? (f) Target inclusion

  G 

(g) G?

  B 

(h) B? (i) Target inclusion

Figure 10: 3D Example: reconstructed moduli in x1 = 0 (top), x2 = 0 (middle) and

x3 = 0 (bottom) planes.

for cases (i) and (ii) are reported in Table 3. Reducing the number of measurements by

half is observed to result in just a moderate increase in reconstruction errors, indicating

the robustness of the reconstruction with respect to data sparsity.

Remark 10. The reconstruction of elastic moduli using full interior data, like in the

examples of Sections 6.1 and 6.3, is relevant to important practical areas. For instance,

reconstruction of moduli from interior data is the main focus of the active research area

of biomechanical imaging (see e.g. [28, 39] and references therein).

7. Concluding remarks

In this work, a MECR-based approach suitable for large-scale three-dimensional

inversion under transient elastodynamic conditions has been formulated and assessed.

The formulation allows for spatially three-dimensional configurations, straightforward

use of available parallel solvers, a wide array of time-stepping algorithms commonly
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used for transient dynamics, and varied boundary condition and measurement settings.

The computational bottleneck constituted by the forward-backward coupling present in

the stationarity equations has been resolved by recourse to an iterative block SOR

treatment, whose convergence (subject to proper problem-dependent setting of the

relaxation parameter) has been shown. The feasibility and performance of the proposed

MECR-based inversion was demonstrated on several numerical experiments involving

2D and 3D transient elastodynamics and up to over 500,000 unknown elastic moduli.

To our best knowledge, this work is the first attempt at applying error in constitutive

equation functionals to large-scale inversion under transient dynamical conditions.

The parameter ξ clearly plays an important role in the method. Investigations

into its effect and adjustment have so far been limited to simple analogies with

usual regularization approaches and a trial-and-error form of the Morozov discrepancy

principle. Further analysis is therefore needed, aiming at the formulation of

computationally efficient adjustment strategies. Another heuristic component of our

approach is the alternate-directions minimization, for which a proof of convergence is

not currently available. Finally, future investigations should include regularized forms of

MECE-based inversion incorporating external prior infomation, e.g. via a total variation

component allowing better reconstruction of sharp material changes. We intend to

pursue these issues in the near future.

By making MECE functionals amenable to large-scale transient models, the

proposed computational treatment has many potential applications, e.g. structural

healh monitoring and other identification problems in civil and mechanical engineering,

or imaging of mechanical properties of biological or geophysical media. The latter class

of applications require extending the formulation to anisotropic elastic properties, which

entails either an adaptation of the material updating method of Section 3.4 (achievable

only for some specific cases of anisotropy) or a recourse to the gradient-based strategy

outlined in Section 3.5. We also conjecture that other kinds of optimal control problems

involving quadratic functionals constrained by linear evolution equations, whose solution

classically involves (time-continuous or time-discrete) Riccati equations, are amenable

to similar treatments. Besides, MECR-based material identification approaches may

be formulated for more complex constitutive models (involving e.g. viscoelasticity,

plasticity or damage), in particular for the broad class of so-called standard constitutive

models [18] that can be described in terms of two convex functions (free energy, and

dissipation potential), allowing to formulate ECR functionals [31] by means of Legendre-

Fenchel residuals (the present linear elastic case being a particular instance of this

situation, where the free energy is quadratic while no dissipation occurs). Extending

the present computational framework to Legendre-Fenchel constitutive error functionals

will permit large-scale imaging of more-complex materials using transient data.
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Appendix A. Forward and backward time-stepping using SOR

The dynamical stiffness matrix Z associated with the time-stepping scheme is

Z = (θ̄/h2β)M + ᾱK, (A.1)

where K and M are the stiffness and mass matrices produced by finite element

discretization. Moreover, matrices Ku, Km and Kσ are introduced such that the

discretized form of the misfit functionals (17) is

Du(u) =
1

2
fuu

TKuu, Dm(u) =
1

2
fmu

TKmu, Dσ(τ ) =
1

2
fστ

TKστ , (A.2)

Forward time-stepping equations. Equation (50a) leads to the following steps at each

iteration i+ 1:

(i) Initial conditions: set u0 = 0, v0 = 0, and compute a0 by solving

Ma0 = η
(

[K + ξ−1Kσ]ūiα + f0
)

(ii) Forward transition equations (0≤ k≤N−1): compute ξk defined by

h2βξk = h2β̄ak + hvk + uk,

compute uk+1 by solving

Z = −αKuk − θMak + θ̄Mξk + η
(

[K + ξ−1Kσ]Aαū
i
k+1 + fk+ᾱ

)
(having set Aαūk+1 := ᾱūk+1+α+αūk+α), then update v,a via

h2βak+1 = uk+1 − h2βξk, vk+1 = hγak+1 + hγ̄ak + vk.

After completion of the above time stepping, update SOR iterate at all time steps from

ui+1
k = uk + η̄uik, vi+1

k = vk + η̄vik, ai+1
k = ak + η̄aik (k = 0, . . . , N)

Adjoint time-stepping equations. Equation (50b) leads to the following steps at each

iteration i+ 1:

(i) Final conditions: v̄N = 0, compute ūN by solving

ZūN = −ηξfmKm(ui+1
N − d̃N)− ηξfuKu(ui+1

N − ũN),

and set āN = (θ̄/h2β)ūN .

(ii) Backward transition equations (0≤ k≤N−1): compute ūk by solving

Zūk =
1+2γ

2β
Māk+1 +

1

βh
Mv̄k+1 − αKūk+1

− ηξfmKm(ui+1
k − d̃k)− ηξfuKu(ui+1

k − ũk),
then update v,a using

v̄k = v̄k+1 + hāk+1, h2βāk = θ̄ūk − hv̄k+1 − h2(β̄+γ)āk+1.
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(iii) Backward transition equation (last):

ᾱū0 = −θū1 + hγ̄v̄1 + h2β̄ā1.

After completion of the above time stepping, update SOR iterate at all time steps from

ūi+1
k = ūk + η̄ūik, v̄i+1

k = v̄k + η̄v̄ik, āi+1
k = āk + η̄āik (k = 0, . . . , N)

Appendix B. Coupled stationarity problem: recursive solution method

After finite element discretization in space, the matrix form of equations (39a,b) reads

Axk = Bxk−1 + Cx̄k + fk, (B.1a)

ATx̄k = BTx̄k+1 −Dxk + gk, (B.1b)

where the matrices A, B are associated with the forward transition equations of the

time-stepping scheme while the remaining matrices C, D and vectors fk, gk can easily

be identified from FEM-discretized versions of equations (36d–f) and (37d–f). Both C

and D are in particular found, on inspection, to be positive semidefinite.

The case k = N in (B.1a,b) is first considered, noting that x̄N+1 = 0 is understood

in (B.1b). Equation (B.1a) then yields

xN = A−1
[
BxN−1 + Cx̄N + fN

]
.

Substituting this identity into (B.1b) and solving the resulting equation for x̄N yields

x̄N = QNxN−1 + RN ,

with

QN := −Z−1
N DA−1B, RN := Z−1

N (gN −DA−1fN), (B.2)

and having set ZN := AT + DA−1C. Then, a backwards induction on k is conducted,

starting from the assumption that for a given k≤N−1 there exist a matrix Qk+1 and

a vector Rk+1 such that

x̄k+1 = Qk+1xk + Rk+1

This assumption clearly holds for k=N−1. On (i) inserting the above ansatz for x̄k+1

in (B.1b) and (ii) replacing xk in the resulting identity with the value given by (B.1a),

one obtains

Zkx̄k = (BTQk+1 −D)A−1Bxk−1 + (BTQk+1 −D)A−1fk + BTRk+1 + gk,

having set Zk := AT + (D−BTQk+1)A−1C = ZN −BTQk+1A
−1C. This relationship

has the form

x̄k = Qkxk−1 + Rk, (B.3)

where Qk and Rk are given in terms of Qk+1,Rk+1 and the various matrices and vectors

defining the original coupled problem by

Qk = Z−1
k (BTQk+1 −D)A−1B,

Rk = Z−1
k

[
(BTQk+1 −D)A−1fk + BTRk+1 + gk

]
.

(B.4)
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Summarizing, the backward recursion defined by the initial conditions (B.2) and

the transition equations (B.4) yields a matrix-valued sequence (Qk)N≥k and a vector

valued sequence (Rk)N≥k such that (B.3) holds for any k with 1≤ k≤N .

This recursion is completed by noting that (37g) gives ū0 knowing x̄1, in fact

showing that there exists a matrix P0 such that ū0 = P0x̄1 (note that v̄0 and ā0 play no

role in the time-discrete stationarity equations). Combining this with (B.3) with k = 1

yields ū0 = P0(Q1x0 + R1).

Now, the sequences xk and x̄k can be computed by means of a single forward

time-stepping scheme, as follows. The process is initialized by substituting ū0 =

P0(Q1x0 + R1) into (36a–c) and solving the resulting equations for x0. Then, x̄1 =

Q1x0 +R1 is computed and substituted into equations (36d–f) with k = 1, the resulting

equations being then solved for x1. This process is repeated for k = 2, . . . N : compute

x̄k = Qkxk−1 + Rk, then solve (36d–f) for xk.

This approach in principle permits an uncoupled time-stepping solution process for

the time-discrete stationarity equations. However, the preparatory backward recursion

entails considerable computational work as it evaluates a sequence Qk of 3M × 3M

matrices (whereas usual generalized-α, Newmark or similar time-stepping schemes

produce sequences of 3M -vectors). Moreover, all matrices Qk would need to be stored.

Appendix C. Block SOR iterations: the time-independent case

Assuming, for simplicity, available data consisting only on measured displacements, the

MECR-based minimization under time-independent conditions leads to the Lagrangian

L(u,σ, ū,C) :=
1

2

〈
σ−C :ε[u] , C−1 :σ−ε[u]

〉
+ ξDu(u− ũ) +

〈
σ , ε[ū]

〉
−F(ū).

After FEM discretization, the stationarity equations are (with matrices K, Ku as

in Appendix A): [
K −K
ξKu K

]{
u

ū

}
=

{
f

ξKuũ

}
(C.1)

The Jacobi and SOR iteration matrices RJ and RSOR for the above system are given by

RJ =

[
0 I

−ξK−1Ku 0

]
, RSOR =

[
η̄I ηI

−η̄ηξK−1Ku η̄I−η2ξK−1Ku

]
(C.2)

Eigenvalues µ of RJ and corresponding eigenvectors w, w̄ are readily found to satisfy

[ξKu + µ2K]w = 0, w̄ = µw (C.3)

Since K is positive definite and Ku is positive semidefinite, all eigenvalues µ have the

form µ= iξ1/2m for some m∈R. The spectral radius of RJ being proportional to ξ1/2,

Jacobi iterations for solving (C.1) converge only for ξ small enough. On the other hand,

using (C.2), eigenvalues λ of RSOR and corresponding eigenvectors w, w̄ satisfy

[λη2ξKu + (λ− η̄)2K]w = 0, w̄ = η−1(λ− η̄)w (C.4)
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which, upon comparison with the characteristic equation (C.3), shows that λ and µ are

related through (53), as expected.
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