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Abstract. Terrestrial Laser Scanning (TLS) technique is today widely
used in ground plots to acquire 3D point clouds from which forest in-
ventory attributes are calculated. In the case of mixed plantings where
the 3D point clouds contain data from several different tree species, it is
important to be able to automatically recognize the tree species in order
to analyze the data of each of the species separately. Although automatic
tree species recognition from TLS data is an important problem, it has
received very little attention from the scientific community. In this paper
we propose a method for classifying five different tree species using TLS
data. Our method is based on the analysis of the 3D geometric texture of
the bark in order to compute roughness measures and shape characteris-
tics that are fed as input to a Random Forest classifier to classify the tree
species. The method has been evaluated on a test set composed of 265
samples (53 samples of each of the 5 species) and the results obtained
are very encouraging.

Keywords: Tree species classification, 3D pattern recognition, 3D bark
texture analysis, forest inventory.

1 Introduction

TLS is today a well established technique for the acquisition of precise and
reliable 3D point clouds from which forest inventory attributes can be calculated
at the single tree level [1] [2]. Numerous work on the calculation of the Diameter
at Breast Height (DBH), the height of the tree, the volume of wood and so on
can be found in the literature. However, to the best of our knowledge not much



has been done in the field of tree species recognition at the single tree level
although it is a very important issue if one would like to analyze the 3D data
of each of the species of a mixed planting separately. One can only find some
work concerning tree species recognition using a combination of TLS data and
hyperspectral [3] or panoramic images [4][5]. The aim of our work is to recognize
tree species based on TLS data only for two major reasons. The first one is to
save acquisition time and/or to avoid the use of multiple acquisition systems for
capturing different types of datasets. The second reason is to avoid the need for
data coregistration and/or fusion techniques in order to simplify data processing.

Using TLS data only, we can only analyze 3D geometrical shape features such
as the shape of the leaves, the general shape of the crown and the variations in
geometry across the surface of the bark known as the 3D geometric texture of
the bark in order to recognize the tree species. In our case, we have to exclude
leaf shape analysis because our forest inventory data are mostly acquired during
winter when the trees are leafless. The reason is to reduce occlusions due to leaves
for more accurate wood volume calculation and also to do the measurement
outside the growing period of the trees. The general shape of the canopy is a
good characteristic feature of the species of a tree for isolated trees. However,
in a forest planting, the management type and the density have a big impact on
the canopy. They render it polymorphic so that it is difficult to use the shape
of the canopy as a discriminating criterion for tree species recognition. Finally,
the bark is probably the most discriminating feature of the species even if it is
subject to changes during the tree’s life because of age, injuries and modified
growth pattern due to environmental disturbances.

Fig. 1 illustrates the 3D geometric texture characteristics of the bark of the
five most important tree species that we have to recognize. One can notice that
each of the five tree species has a distinguishable 3D geometric bark texture char-
acteristic. The beech has a relatively smooth surface, the spruce is less smooth
compared to the beech and it has circular scars, the pine and the oak are rough
with vertical strips but the growth pattern is different, and the hornbeam is
smooth with an undulating texture.

hornbeam oak spruce beech pine

Fig. 1. 3D point clouds of the five tree species

We thus propose a method that analyzes the 3D geometric texture of the
bark in order to classify and recognize the tree species. For the analysis a 30 cm
long segment of the tree trunk at about 1.3 m from the ground (breast height)



called a patch is considered. 30 cm is a good trade-off between a small patch
for rapid processing times and a long enough segment that contains sufficient
texture patterns for recognition.

Our method consists of several steps. Firstly, a 3D deviation map is com-
puted from the 3D point cloud of the 30cm long segment of the tree trunk at
breast height. The first step is described in details in section 2. Secondly, the
3D deviation map is transformed into a 2D deviation map or height map that
is next segmented in order to reveal characteristic shape features of the tree
species. The second step is presented in section 3. Finally, classification features
are computed from both the 2D deviation map and the segmented 2D deviation
map and fed as input to a Random Forest classifier for tree species classification.
The classification features and the selection of the most pertinent features are
presented in section 4. In section 5, we describe the test set used to evaluate our
method and discuss about the classification results obtained before concluding
in section 6.

2 3D deviation map of the tree bark

We define the 3D geometric texture of a 3D surface as the local variations of
the original meshed surface denoted by Mo with respect to a smoothed version
of the same meshed surface denoted by Ms as illustrated in Fig. 2 for some tree
trunk segments.

Fig. 2. 3D geometric texture model

To extract the 3D geometric texture of a patch, we first apply a denoising
filter, implemented in the RapidForm software, to the 3D point cloud in order to
remove ghost points. Next, the 3D point cloud is meshed and smoothed. Finally,
the deviation between the original mesh and the smoothed mesh is computed.
This yields a 3D deviation map representation of the geometric texture that can
be modeled by a dataset DM3 = {(x, y, z, d) : x, y, z, d ∈ R} where (x, y, z) are
the coordinates of the 3D points or vertices of the smoothed mesh and d, the
Euclidean distance between a point of the smoothed mesh Ms of coordinates
(x, y, z), denoted by v(x, y, z), and its nearest neighbor in the original mesh Mo,
denoted by ṽ(x′, y′, z′). d is computed according to equation 1.



d(v, ṽ) =
√

(x− x′)2 + (y − y′)2 + (z − z′)2 (1)

ṽ(x′, y′, z′) is determined using the efficient Aligned Axis Bounding Box
(AABB) tree structure [6]. It is equal to

ṽ = argminpi∈Mo
‖pi − v‖ (2)

The smoothed mesh is computed using Taubin’s λ/µ smoothing algorithm
[7]. It consists in basically performing the Laplacian smoothing two consecutive
times with different scaling factors denoted by λ and µ. A first step with λ > 0
(shrinking step) and a second step with a negative scaling factor µ < −λ < 0
(unshrinking step). Laplacian smoothing consists in iteratively moving each of
the vertices of the mesh to a new position that corresponds to the weighted
average position of the neighboring vertices. The new position v’i of a vertex i
is given by Eq. 3:

v′i = vi + λ ∆vi (3)

where vi is the current position, λ a scalar that controls the diffusion speed
and ∆vi the Laplacian operator given by Eq. 4. It is a weighted sum of the
difference between the current vertex vi and all its neighbors vj .

∆vi =
∑

j:vj∈i∗
wi,j(vj − vi) (4)

where i∗ is the set of all the neighbors of the vertex vi. Taubin’s λ/µ smooth-
ing algorithm is run with equal weights wi,j for each of the neighbors such that∑
j:vj∈i∗ wi,j = 1 and with λ and µ equal to 0.6307 and – 0.6732, respectively

(values suggested by Taubin). It is run iteratively until the mesh is sufficiently
smoothed.

The smoothness of a 3D surface is usually quantified by the minimum, max-
imum, mean and Gaussian curvatures of each of the points of the mesh. Conse-
quently, we have studied the evolution of the median of these curvature values as
a function of the number of iterations of Taubin’s algorithm for several samples
of the five species to classify. Our study showed that there is no significant dif-
ference in the curvature against number of iterations curve for the four types of
curvature values. We have thus decided to consider only the median of the maxi-
mum curvatures curve, as shown in Fig. 3, to determine the smoothing stopping
criterion.

We have chosen to stop the smoothing process when the slope of the tan-
gent to the curve is less than or equal to -0.01. For this value of the slope we
have noticed that the mesh is sufficiently smoothed while preserving the main
structures of the trunk.



Fig. 3. The median of the maximum curvatures against the number of iterations for
each of the five tree species

3 2D deviation map

The next step of our method is the transformation of the 3D deviation map, a
dataset DM3 = {(x, y, z, d) : x, y, z, d ∈ R}, into a 2D deviation map, a dataset
DM2 = {(X,Y, d) : X,Y, d ∈ R}. It is a dimensionality reduction problem
that should preserve the intrinsic geometry of the data. The two classical tech-
niques for dimensionality reduction is Principal Component Analysis (PCA) and
Multidimensional Scaling (MDS). However, they are not appropriate for our 3D
deviation map because they are linear techniques and our 3D deviation map is
a non linear structure.

One can find in the literature several non linear techniques that are more ap-
propriate for our 3D deviation map. Among all these techniques we have chosen
the Maximum Variance Unfolding (MVU) dimensionality reduction algorithm
proposed by Weinberger et al. [8] because it is fast and it gives good results. An
example of the 2D deviation map obtained using MVU is illustrated in Fig. 4.

hornbeam beech pine oak spruce

Fig. 4. Example of 2D deviation map for each of the five species

The 2D deviation map is a set of points in a 3D space. It is different from
the point cloud in the sens that the third dimension represents a distance from
a plane surface defined by the other two dimensions. It is like a height map
or relief map defined by a set of points. The idea now is to cluster the points



that are above a certain distance or ”height” from the plane in order to define
clusters or regions whose shape will allow us to classify the different species. The
result of the clustering is a segmented 2D deviation map. To acheive this, a first
thresholding step is done in order to keep the most salient features, e.g. the points
with the highest deviation values. The threshold value is empirically defined as
the median value of the deviation values. In this way only all the points in the
2D deviation map that have a height value greater than the median value are
kept.

Secondly, DBSCAN a density based algorithm for discovering clusters pro-
posed by Ester et al. [9] is used to cluster the points in order to build regions.
DBSCAN is chosen because it is a fast and efficient algorithm even for large spa-
tial set of points which is our case. DBSCAN is based on the notion of density of
points in an ε-neighborhood. It has two required parameters: the neighborhood
size (ε) and the minimum number of points in the ε-neighborhood (minPts).
For our application ε = 0.6 and minPts = 8.

An example of the segmented 2D deviation map for each of the five species
is illustrated in Fig. 5.

hornbeam beech pine oak spruce

Fig. 5. An example of segmented 2D deviation map for each of the five species

4 Classification features

From the 2D deviation map and the segmented 2D deviation map, we can com-
pute about 128 features for classification. These features are, for example :

– The number of clusters per segmented 2D deviation map.
– The roughness features described in section 4.1.
– The principal component analysis features described in section 4.2.
– The shape and intensity features presented in section 4.3. Each cluster is de-

fined by a set of shape and intensity features. We calculate the median, the
mean, the standard deviation, the minimum and the maximum of the inten-
sity and the shape features of all the clusters and use them as classification
features.

4.1 Roughness features

The 2D deviation map represents the geometric details of the surface of the bark
from which roughness measures can be computed. Many types of measures can



be found in the literature. The most common ones are statistical values such as
the root mean square value, the arithmetical mean and the standard deviation
respectively given by Eqs. (5)-(7).

sq =

√√√√ 1

n

n∑
i=1

d(vi, ṽi)2 (5)

sa =
1

n

n∑
i=1

|d(vi, ṽi)| (6)

sD =

√√√√( 1

n

n∑
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)
−

(
1

n

n∑
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d(vi, ṽi)

)2

(7)

4.2 Principal component analysis features

Principal Component Analysis (PCA) is a technique for dimension reduction
and feature extraction. It uses linear transformations to map data from a high
dimensional space to a low dimensional space. The new variables in the low
dimensional space are called principal components. Some of the features that
can be calculated for each of the clusters of points of the segmented deviation
map using PCA are listed below.

– The percentage of the total variance explained by each principal component.
– The maximum and the median distances between the observations and the

center of the data set as well as the ratio between the maximum and the
median distances.

– The longest and shortest diameter (length of the major and the minor axis).
– The aspect ratio defined as the major axis length divided by the minor axis

length.
– The orientation or the direction of the first and the second principal compo-

nent.

The minimum, maximum, mean, median and standard deviation values of
these PCA features for all the clusters of the segmented 2D deviation map are
used as features for classification.

4.3 Shape and intensity features from segmented 2D deviation map

To characterize the clusters of points in the segmented deviation map, shape and
intensity features are calculated for each cluster. The intensity features are the
maximum and the median intensity of the points of the cluster. To calculate the
shape features, the alpha shape (α-shape) algorithm proposed by Edelsbrunner
et al. [10] is used to compute the∞-shape that corresponds to the convex hulls of
the clusters of points. The 0.6-shape that best represents the real shape has also



been computed. From the ∞-shape and the 0.6-shape, shape features such as
perimeter, area, solidity, roundness, compactness, RFactor, shape, convexity and
concavity are computed and used as classification features. The mathematical
expressions of some of these features are given by Eqs. (8)-(12). To discriminate
between the strips of the pine that are close and narrow and those of the oak
that are touching each other, the ratio between the area of the convex hull and
the area of the 0.6-shape is used as feature.

Solidity =
Area

ConvexArea
(8)

Roundness =
4×Area

π ×MajorAxisLength2
(9)

Compactness =

√
4
π ×Area

MajorAxisLength
(10)

RFactor =
PerimeterOfConvexHull

MajorAxisLength× π
(11)

Shape =
Perimeter2

Area
(12)

5 Experiments and results

The 3D TLS data used to evaluate our method were captured using either a
FARO Photon 120 or a FARO Focus3D scanner with a resolution of about 6mm
at 10m. All trees at a distance of about 6m and with a Diameter at Breast Height
(DBH) of about 30cm are manually located in the scans. Next, non occluded
tree trunk segments of about 30cm long and at a height of about 1.30m from the
ground are extracted using a software that we have developed, the “Computree”
software [2], in order to constitute the evaluation database.

We used two different datasets D1 and D2 to validate our approach exper-
imentally. The test site of D1 is a state mixed forest in Montiers-sur-Saulx,
France. The second test site of D2 is a mixed forest stands of grove and coppice-
under-grove forests in Lorraine, France. Both datasets contain the five different
species of trees represented in Fig. 1. D1 and D2 are composed of 20 patches per
species and 33 patches per species, respectively. Classification is done using the
R Language implementation of the Random Forest (RF) classifier proposed by
Breiman [11]. The RF classifier is built with recommended values for the number
of decision trees (1000) and the number of features used to split the node in the
decision tree growing process denoted by Mtry (Mtry =

√
D where D is the

feature vector size). We have tested 128 features and used RF to select the 30
most pertinent ones to evaluate our method. So, the value of D is 30.

Three tests are done using datasets D1, D2 and a combination of D1 and
D2, respectively. For each test, stratified 10-fold cross-validation is performed



(a) (b)

Fig. 6. (a) 3D point cloud captured by FARO Photon 120 scanner (b) Computree
Software screenshot

multiple times with the dataset reshuffled and re-stratified before each round.
Also, for each round, a new classifier build with the recommended values of the
number of trees and of the Mtry parameter is used. The confusion matrices
with average results are reported in Tables (1)-(3) and the accuracy rates for
the three tests are summarized in Table 4.

Table 1. Confusion matrix for D1 cross-validation (1: hornbeam, 2: oak, 3: spruce, 4:
beech, 5: pine)

1 2 3 4 5 Accuracy

1 20 0 0 0 0 100 %

2 0 20 0 0 0 100 %

3 0 0.8 19.2 0 0 96 %

4 1.8 0 0.2 18 0 90 %

5 2.2 0 1 0.2 16.6 83 %

Table 2. Confusion matrix for D2 cross-validation (1: hornbeam, 2: oak, 3: spruce, 4:
beech, 5: pine)

1 2 3 4 5 Accuracy

1 33 0 0 0 0 100 %

2 0.6 31.8 0 0 0.6 96.3 %

3 0 0 31.6 0.6 0.8 95.7 %

4 1.8 0 0.6 32.4 0 98.1 %

5 0.8 1 0 0 31.2 94.5 %



Table 3. Confusion matrix for D1 and D2 cross-validation (1: hornbeam, 2: oak, 3:
spruce, 4: beech, 5: pine)

1 2 3 4 5 Accuracy

1 53 0 0 0 0 100 %

2 0 52.6 0 0 0.4 99.3 %

3 0 0 51.6 0.4 1 97.4 %

4 0.4 0 0.4 52.2 0 98.5 %

5 1.4 0.4 0.4 0.4 50.4 95.1 %

Table 4. Accuracy rates for the three tests

Min Average Max σ

Test 1 83% 93.8% 100% 6.5%

Test 2 94.5% 96.92% 100% 1.9%

Test 3 95.1% 98.06% 100% 1.7%

For both datasets, each with a different terrain and architecture character-
istics, we obtained good classification results. One can note from the confusion
table that the accuracy ranges from 83% to 100%. The worst accuracy of 83% is
for the pine that is misclassified as any one of the other four species in the three
tests. Pine is mainly confused with hornbeam: the two species have strips. We
can differentiate two families of tree species from the five tested species: species
that have straps or cracks such as the hornbeam, the oak and the pine, and
smooth surface species such as the beech and the spruce. We note that our algo-
rithm mixes mainly intra-family species (spruce and beech) but also inter-family
species. Future work will focus on finding more pertinent features to discriminate
inter and intra family species.

We can note that training and testing with dataset D3 (test 3) gives overall
better accuracy rate than the other tests. This may be due to the fact that D3
contains more samples. Nevertheless, the result is relatively good enough and
we can consider that the classifier performs reasonably well since the datasets
D1 and D2 are composed of patches extracted from 3D data acquired from two
different forest sites.

6 Conclusions

We have proposed a method for classifying five different tree species using TLS
data only. The method is based on the analysis of the 3D geometric texture of
the bark in order to identify the species class to which pertains the tree under
analysis. In our method, the 3D geometric texture is transformed into a 2D
deviation map on which roughness measures and shape features are computed
and used as features for classification using the Random Forest classifier. Results
obtained on a dataset composed of 265 samples with equal number of samples of
each species are quite good (83% to 100%). In future work we plan to do more



tests with other datasets in order to verify this observation. Moreover, we would
also like to study the influence of the distance to scanner and of the DBH on the
results. Indeed, in the current dataset the samples are all extracted from trees
located at about 6m from the scanner and with a DBH of about 30cm.
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