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Tree species recognition from Terrestrial Light Detection and Ranging (T-LiDAR) scanner data is essential for estimating forest inventory attributes in a mixed planting. In this paper, we propose a new method for individual tree species recognition based on the analysis of the 3D geometric texture of tree barks. Our method transforms the 3D point cloud of a 30 cm segment of the tree trunk into a depth image on which a hybrid segmentation method using watershed and region merging techniques is applied in order to reveal bark shape characteristics. Finally, shape and intensity features are calculated on the segmented depth image and used to classify five different tree species using a Random Forest (RF) classifier. Our method has been tested using two datasets acquired in two different French forests with different terrain characteristics. The accuracy and precision rates obtained for both datasets are over 89%.

INTRODUCTION

The development of software tools for the automatic measurement of forest inventory attributes has become a major research field due to the increasing use of Light Detection and Ranging (LiDAR) technology in the forestry domain [START_REF] Dassot | The Use of Terrestrial LiDAR Technology in Forest Science: Application fields, Benefits and Challenges[END_REF]. Recently, the National Office of Forests ("Office National des Forêts -ONF") has started to develop a software tool named "Computree" for the automatic measurement of forest inventory attributes using T-LiDAR Scanner (TLS) data [START_REF] Othmani | Towards Automated and Operational Forest Inventories with T-LiDAR[END_REF]. Among the important attributes that "Computree" should be able to determine is the species of each tree in the ground plot. The identification of the species in a mixed planting is essential for estimating forest inventory attributes according to the species and not in a global manner. But, to the best of our knowledge not much has been done regarding single tree species identification based on TLS data. In this paper we present our work on single tree species identification using ground plot TLS data. The common criteria used to identify the species of a single tree are the shape of the leaves, the general shape of the crown and the variations in geometry across the surface of the bark known as the geometric texture of the bark. Since forest inventory data are mostly acquired during winter in order to reduce occlusions due to leaves and also in order to do the measurement outside the growing period of the trees, it cannot be envisaged to recognize the species based on the shape of the leaves. Finally, the bark is probably the most discriminating feature of the species even if it is subject to changes during the tree's life because of age, injuries and modified growth pattern due to environmental disturbances. Figure 1 shows the bark texture of the five most dominant species in European forest. They are the hornbeam, the oak, the spruce, the beech and the pine.

Figure 1: Example of 3D mesh of the five tree species

One can notice that each of the five species has a distinguishable bark feature: the beech has a relatively smooth surface, the spruce is less smooth compared to the beech and it has circular scars, the pine and the oak are rough with vertical strips but the growth pattern is different, and the hornbeam is smooth with an undulating texture. We thus propose a method that analyzes the geometric variation patterns or geometric texture of the 3D surface of the bark in order to determine the species. The first step of our method, as depicted in section 2, consists thus in generating a 2D depth map representation of the 3D geometric texture from the 3D point cloud of a 30 cm segment of the trunk called a "patch". Then, a hybrid depth image segmentation method is used to extract texture features for tree species classification using the Random Forest technique. Section 3 describes the experimental setting and discusses about the results obtained on two datasets, D1 and D2, consisting of respectively 16 and 30 patches per species.

METHODOLOGY

Our method consists of four steps as represented in Figure 2. Each of the steps, except the first one which is a denoising step using the RapidForm™ software (http://www.rapidform.com) for removing ghost points, will be described in the subsequent sections. 

, , is determined using the efficient Aligned Axis Bounding Box (AABB) tree structure [START_REF] Alliez | AABB Tree[END_REF].

The smoothed mesh is computed using Taubin's λ/μ smoothing algorithm [START_REF] Taubin | Geometric Signal Processing on Polygonal Meshes[END_REF]. It consists in basically performing the Laplacian smoothing two consecutive times with different scaling factors noted λ and μ. A first step with λ > 0 (shrinking step) and a second step with a negative scaling factor μ<-λ<0 (unshrinking step). Laplacian smoothing consists in iteratively moving each of the vertices of the mesh to a new position that corresponds to the weighted average position of the neighboring vertices. The new position v' i of a vertex i is given by:

(3)
where v i is the current position, λ is a scalar that controls the diffusion speed and ∆ the Laplacian operator, a weighted sum of the difference between the current vertex v i and its neighbors v j , given by the following equation:
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where i* is the set of all the neighbors of the vertex v i .

Taubin's λ/μ smoothing algorithm is run with equal weights w i,j for each of the neighbors such that ∑ , 1 and with λ and μ respectively equal to 0.6307 and -0.6732 (values suggested by Taubin). It is run iteratively until the mesh is sufficiently smoothed. To measure the smoothness of the mesh the maximum curvature is computed for all the points of the mesh and the median of the maximum curvature values considered. An experimental study that we have conducted showed that the mesh is sufficiently smoothed when the difference in the median of the maximum curvature values between two successive runs of Taubin's algorithm is less than or equal to 1%. We thus use this criterion as the smoothing stopping criterion.

The geometric details, a 3D map or a dataset (x, y, z, d) in the space, is next transformed into a depth image, a dataset in the (X, Y, I) space that can be modeled as:

, , , (5) 
where d i is the details for a point v i of coordinates , , given by equation (1) and , , ,

. is the Isomap dimensionality reduction algorithm proposed by Tenenbaum et al [START_REF] Tenenbaum | A Global Geometric Framework for Nonlinear Dimensionality Reduction[END_REF] followed by a quantization step. The latter step is necessary since Isomap transforms nonlinear manifolds in to Euclidean manifolds in whereas we would like to transform the 3D coordinates of a non linear manifold to the 2D coordinates (X, Y) ∈ of the pixels of the depth image. Isomap is particularly suitable in our case since it minimizes the geodesic distortion between points on the 3D surface which results in a minimization of shape distortion when transforming from to In equation ( 5) the mean of the distances d i is computed since there may be several 3D points , , that map to the same pixel at coordinates (X, Y) in the depth image. Also, it is possible that no 3D point , , maps to a pixel of coordinates (X, Y). In that case a bicubic interpolation is done in order to estimate a value for the pixel. Examples of the depth images in the gray level scale [0, 255] for each of the five species to identify are shown in Figure 4. 

Hybrid edge-region segmentation

The proposed method is a 2-step approac uses watershed to produce a primary segm input depth images, while the second weakness boundary based region-mergin obtain the final segmented map [START_REF] Haris | Hybrid Image Segmentation Using Watersheds and Fast Region Merging[END_REF]. The flow proposed method is shown in Figure 5. where F is the depth image and ○ is th opening operation with an octagonal struc of size 30 pixels from the origin to the side It is a contrast detector suitable for enhanci in the image. A post processing stage removing small objects from the image and by an opening operation followed by a c resulting segmented tree trunk depth imag Figure 6. 

Region merging based on we

Despite all the processing in the overcome the over-segmentation pr neighboring regions that could b meaningful region. In our case, t segmented adjacent regions R 1 homogeneous, but, they nevertheles region. An edge dissimilarity mea weakness of the boundaries will b criteria. The Region Adjacency Gra in Figure 7, will be used for the me partition is defined as an undirected R = {1, 2, .., K} is the set of nodes a edges. Each region is represented adjacent regions R i and R j are rep i, j ϵ R and connected by the edge measure between the two regions the graph edge. The region-merging algorithm segmentation. The corresponding e image is extracted. Two adjacent re E i,j lower than a fixed threshold (0.5

,
where n is the number of pixels in adjacent regions, is the number black one (grayscale < 0.8), is considered as white pixels (graysc = 0.25. The final segmentation is 

Feature extraction and classi

We assign each region a set quantitative attributes that describe directionality. We used the regionpr to calculate the properties of r perimeter, orientation, and so on descriptors, we used other shape circularity ratio, rectangularity, co solidity as described in [START_REF] Mingqiang | A Survey of Shape Feature Extraction Techniques[END_REF].

eak boundaries initial segmentation to roblem, there still remain be merged into a more there can be two overand R 2 that are not ss belong to the same real asure that evaluates the be used as the merging aph (RGA), as illustrated erging Severe injury occurs during the life of the tree which can damage the tree bark and change its discriminating criteria. Also, the size of the scars depends strongly on the age of the tree and the distance to the scanner which can result in a dispersion of the features. To evaluate the intraclass variability, we consider the mean, the standard deviation and the median of each feature of all the regions. Classification is done using the Random Forest (RF) classifier proposed by Breiman [START_REF] Breiman | Random Forests[END_REF] in order to classify the textures and thus the tree species.

EXPERIMENTAL RESULTS AND CONCLUSION

We used two different datasets D1 and D2 to validate our approach experimentally. The test site of D1 is a mixed state forest of Montiers-sur-Saulx, France. The second test site of D2 is a mixed forest stands of grove and coppice-undergrove forests in Lorraine, France. The T-LiDAR data was collected with a Faro photon 120™ scanner. A segmentation of the 3D plots as described in [START_REF] Othmani | Towards Automated and Operational Forest Inventories with T-LiDAR[END_REF] is done and 3D patches are extracted. The two datasets contain five different species of trees (Figure 1): 16 patches per species in D1 and 30 patches per species in D2. Two tests are done and in each test we train a separate RF classifier built with 1000 decisions trees. For both D1 and D2, we split the dataset into 10 equal size subsets and performed a 10-fold crossvalidation. The confusion matrices are reported in Tables 1 and2 For both datasets, each with different terrains and architecture characteristics, we obtain good accuracy and precision rates. The achieved overall accuracy and precision in tree species recognition are respectively 95% and 89% for D1 and 97% and 92% for D2. We can differentiate two families from the five tested species (species that have straps or cracks: hornbeam, oak and pine) and the family of random shapes (smooth species as beech and spruce). We note from the confusion matrices that our algorithm mainly mixes intra-family species but also inter-family species. Future work involves finding better features to discriminate inter and intra family species and the validation of the performance of our method when changing the distance to the scanner.
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 2 Figure 2: Flow diagram of the method 2.1 Depth image computation After the denoising step the 3D point cloud of the tree trunk segment is transformed into a 2D depth image that represents the 3D geometric details of the bark. 3D geometric details are defined as the local variations of the original mesh M o with respect to a smoothed version of the same mesh M s as represented in Figure 3.
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 3 Figure 3: Illustration of 3D geometric detailsThus, the 3D geometric details is a dataset (x, y, z, d) in the space where (x, y, z) are the coordinates of the 3D points or vertices of the smoothed mesh and d, known as the details, the Euclidean distance between a point of the smoothed mesh Ms of coordinates (x, y, z), denoted by , , , and its nearest neighbor, denoted by , , , in the original mesh Mo. ,
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 4 Figure 4: Examples of depth im2.2 Hybrid edge-region segmentationThe proposed method is a 2-step approac uses watershed to produce a primary segm input depth images, while the second weakness boundary based region-mergin obtain the final segmented map[START_REF] Haris | Hybrid Image Segmentation Using Watersheds and Fast Region Merging[END_REF]. The flow proposed method is shown in Figure5.
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 5 Figure 5: Flow diagram of the segmenta 2.2.1 Initial segmentation using Watershed Watershed transformation [6, 7] is a powerf segmentation. It considers the gray level altitude in the relief which is exactly th images. This is why we have chosen this me The watershed transform of the gradie the image very often leads to an over-segm image. It gives poor results in the case of t of tree barks even when foreground object markers are used because of noises in th Consequently, we use a function based o criterion (contrast between facets due to b the watershed. It is a morphological trans "Top-Hat" transformation which is defined b

Figure 6

 6 Figure 6: Watershed segmented
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Figure 8 :

 8 Figure 8: Segmented images a2.3 Feature extraction and classiWe assign each region a set quantitative attributes that describe directionality. We used the regionpr to calculate the properties of r perimeter, orientation, and so on descriptors, we used other shape circularity ratio, rectangularity, co solidity as described in[START_REF] Mingqiang | A Survey of Shape Feature Extraction Techniques[END_REF].

  . The RAG of a Kd graph, G = (R, E) where and E ⊂ R×R is the set of d by a graph node. Two presented by two nodes e (i, j). The dissimilarity represents the weight of of an image, 2) the merging of two nodes.starts with the initial edge map in the original egions with an edge cost 5 in our case) are merged.(8)the edge linking the two r of pixels considered as s the number of pixels cale > 0.8), = 0.75 and shown in Figure8. after region merging ification of values representing es the geometry and the rops() function of Matlab regions including area, n. In addition to those e features: compactness, oncavity, and convexity,

Table 1 : Confusion matrix for D1 cross-validation (1: hornbeam, 2: oak, 3: spruce, 4: beech, 5: pine)

 1 .

		1	2	3	4	5
	1 14.428	0.571	0	0	1
	2 0.428	12.571	1.714	0	1.285
	3 0.285	0	15.142	0.428	0.142
	4	0	0	0.714	15.142	0.142
	5 0.714	0.142	0.857	0	14.285
		1	2	3	4	5
	1 27.166	0.166	0	1.833	0.833
	2	0	29	0	0	1
	3 0.166	1.166	27.333	1.333	0
	4	1	0	1.333	27.333	0.333
	5	0	0	0.166	1.5	28.333

Table 2 : Confusion matrix for D2 cross-validation
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