
HAL Id: hal-01116662
https://hal.science/hal-01116662

Submitted on 31 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Towards Modular Instrumentation of Interpreters in
JavaScript

Florent Marchand de Kerchove, Jacques Noyé, Mario Südholt

To cite this version:
Florent Marchand de Kerchove, Jacques Noyé, Mario Südholt. Towards Modular Instrumentation
of Interpreters in JavaScript. FOAL - Foundations of Aspect-Oriented Languages, Mar 2015, Fort
Collins, United States. �10.1145/2735386.2736753�. �hal-01116662�

https://hal.science/hal-01116662
https://hal.archives-ouvertes.fr


Towards Modular Instrumentation of Interpreters in JavaScript

Florent Marchand de Kerchove Jacques Noyé Mario Südholt
ASCOLA team (Mines Nantes, Inria, LINA)
École des Mines de Nantes, Nantes, France

Abstract
With an initial motivation based on the security of web applica-
tions written in JavaScript, we consider the instrumentation of an
interpreter for a dynamic analysis as a crosscutting concern. We
define the instrumentation problem – an extension to the expression
problem with a focus on modifying interpreters. We then illustrate
how we can instrument an interpreter for a simple language using
only the bare language features provided by JavaScript.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords JavaScript, Instrumentation, Interpreter, Expression
Problem, Modularity

1. Introduction
Today, JavaScript, with its special connection to HTML5 [6], is con-
sidered the language of choice for building web applications. It
has made it possible to turn the static pages of the early web into
dynamic pages, providing effective interactions with remote sites.
This context has created new security challenges, in particular, with
respect to information flow security and its dual aspects of confiden-
tiality (local private information should not flow to untrusted remote
sites) and integrity (remote sites should not corrupt local informa-
tion). Although these properties are traditionally enforced through
static analysis [12], this new context has created the need for con-
sidering dynamic analyses as well as hybrid analyses with various
theoretical and practical results [3]. In practice, the corresponding
prototypes, when they exist and have been made accessible, turn out
to be built each in a very specific way, making it hard to compare
and reuse approaches. In particular, the integration of the analysis
is often invasive, which means that it is even difficult to relate the
principles of the analysis and the implementation or evolve either
the analysis or the base JavaScript runtime to which it applies.

This can be seen as a problem of modular instrumentation: what
are the basic principles making it possible to modularly compose a
JavaScript runtime and a dynamic or hybrid analysis dealing with
information flow? In this paper, we study this problem starting from
a full-blown case study: the extension of Narcissus, a JavaScript
interpreter, written by Mozilla, to faceted evaluation [2], a novel and

[Copyright notice will appear here once ’preprint’ option is removed.]

expressive information flow analysis technique able to dynamically
handle implicit flows (flows depending on conditionals).

On the basis of this case study, we define the four criteria that
would enable the modular instrumentation of interpreters. We frame
these criteria as the instrumentation problem – an extension to the
expression problem (section 2). We then illustrate how to build an
interpreter incrementally, and how to instrument it in a way that
satisfies the requirements of the instrumentation problem using only
simple features of the JavaScript language (section 3). Finally, we
discuss how our proposal relates to other approaches to modular
instrumentation (section 4).

2. Instrumenting Interpreters For Dynamic
Analyses

Instrumenting an interpreter for a dynamic analysis is straightfor-
wardly achieved by modifying the source code of the interpreter.
The dynamic analysis logic may require to extend or disable parts of
the existing interpreter code, in several, separate places. When the
code of the instrumentation is split across the interpreter code, the
concerns of the dynamic analysis and the concerns of the language
interpretation become tangled. As a result, extensibility, maintain-
ability and reusability are all decreased; and modular reasoning is
lost.

2.1 Case Study: Narcissus Instrumentation for Faceted
Evaluation

Narcissus is a meta-circular interpreter for JavaScript, written by
Mozilla, that is used for prototyping improvements to the language.
Tom Austin and Cormac Flanagan used Narcissus as a base to
implement their dynamic information flow analysis, called faceted
evaluation [2], in JavaScript. This instrumentation was done on
top of Narcissus in a straightforward way, that is, favoring ease of
implementation. As a result, getting all the modifications made by
the instrumentation requires extracting the difference between two
well-chosen commits. If we extract such a diff1, we can see that the
instrumentation touches three files out of seven, and nearly all the
changes are in the file concerned with executing the parsed code.
Looking more closely at these changes, two patterns are apparent:

1. The addition of a pc parameter (Program Counter) at nine distinct
locations. In the faceted evaluation strategy, sensible values are
wrapped into pairs: one public value and one visible only to
a set of principals. The program counter records the branches
taken by the program, allowing implicit flows to be tracked.
As the program counter is part of the state used by the faceted
evaluation strategy, it has to be present in the execution context
of Narcissus. Here are two occurrences of this pattern (‘<’ are
lines removed, ‘>’ are lines added):

1 Extracted from the HEADs of https://github.com/taustin/narcissus and
https://github.com/taustin/ZaphodFacets.

1 2015/7/29

https://github.com/taustin/narcissus
https://github.com/taustin/ZaphodFacets


< function ExecutionContext(type, version) {
> function ExecutionContext(type, pc, version) {

< var x = new ExecutionContext(GLOBAL_CODE,
Narcissus.options.version);

> var x = new ExecutionContext(GLOBAL_CODE, new
ProgramCounter(), Narcissus.options.version);

2. The addition of tests for FacetedValue objects. New cases
are created to handle faceted values, and tests are needed to
distinguish these values from other runtime values, such as
references.

< function getValue(v) {
> function getValue(v, pc) {
> if (v instanceof FacetedValue) {
> return derefFacetedValue(v, pc);
> }

if (v instanceof Reference) { ... }
return v;

}

< function putValue(v, w, vn) {
> function putValue(v, w, vn, pc) {
> if (v instanceof FacetedValue) { ... }

else if (v instanceof Reference) { ... }
}

The fact that these patterns have multiple occurrences hint at a
possible factorization.

Another observation is that all the changes made for the instru-
mentation are scattered throughout the code. Without the diff or
prior knowledge of the base interpreter, it is impossible to tell the in-
strumentation parts from the base interpreter. The dynamic analysis
and the interpreter are effectively tangled together.

2.2 The Instrumentation Problem
Based on the observations made in the case study, we define the
requirements for a modular instrumentation of interpreters for
dynamic analyses. They are:

Modularity The instrumentation should be defined as a module;
all its code must be part of this module. In particular, no
instrumentation code should appear in the base interpreter
source.

Intercession The instrumentation may extend, partially alter or en-
tirely replace the behavior of code present in the base interpreter.

Local state The instrumentation may refer to state that concerns
only the dynamic analysis it implements.

Pluggability The instrumentation should be easily activated dy-
namically. Multiple, non-interfering instrumentations can be
activated together without extra effort.

These requirements are not specific to the faceted evaluation
analysis, to the Narcissus interpreter or to the JavaScript language.
We think they apply broadly to other dynamic analyses, other
interpreters, and any language where modules can be defined.

2.3 Relation to the Expression Problem
Extending an interpreter can be seen as an instance of the expression
problem coined by Wadler [14]. In fact, the instrumentation prob-
lem can be thought of as the expression problem with additional
requirements. Wadler defines the expression problem as:

The Expression Problem is a new name for an old problem.
The goal is to define a datatype by cases, where one can

add new cases to the datatype and new functions over
the datatype, without recompiling existing code, and while
retaining static type safety (e.g., no casts).

The lack of recompilation of existing code can be roughly
translated as the modularity requirement of the instrumentation
problem. Both aim for a clean separation between base code and
extension code. The addition of cases and functions can be absorbed
into the intercession requirement. Static type safety is not applicable
in our case, since JavaScript is dynamically typed. More importantly,
the expression problem in the context of interpreters is concerned
only with extending interpreters via additional operations (like
a pretty printer), rather than modifying existing operations (the
evaluation function in particular).

2.4 A Minimal Example
While the instrumentation of faceted evaluation on Narcissus is far
from simple, the changes it expresses are all covered by the require-
ments of the instrumentation problem. To focus on the underlying
language mechanisms needed for instrumentation, we exhibit a min-
imal example. To that effect, we follow Wadler and Odersky [10]
and define a language of arithmetic expressions. We show that we
can add new data variants and new operations straightforwardly
in JavaScript, thereby solving the expression problem. We then
illustrate how we can modify existing operations and pass state,
thus satisfying the requirements of the instrumentation problem.
Along the way, we mention how the examples relate back to faceted
evaluation.

3. Building an Interpreter with Modules
In all the following code examples2, we use a subset of the Ec-
maScript 6 standard of JavaScript as implemented in Mozilla Fire-
fox 37a, for the shorthand notations reduce syntax noise. All the
examples can be translated back to standard EcmaScript 5 supported
by all major JavaScript implementation. In the examples, the result
of the preceding expression is indicated by the comment syntax ‘//:’.

3.1 Solving the Expression Problem
The simplest language has terms only for numbers, and an operation
to evaluate a number to a numeric value.

Num
eval

We adopt an object-oriented decomposition where data variants
are objects, and operations on the datatype are methods of these
objects. The following code in JavaScript implements this datatype
using objects and prototypical inheritance. The num object has two
functions: new for returning an object that has this as prototype and
holds the numeric value n, and eval for returning the numeric value
held by such objects. On line 6, e1 is an instance of the num term,
and we can call eval on it to get its value.

1 var num = {
2 new(n) { return {__proto__: this, n} },
3 eval() { return this.n }
4 }
5
6 var e1 = num.new(3)
7 e1.eval() //: 3

2 All the code examples from this paper can be found online at
https://gist.github.com/fmdkdd/6f0faa7d105dbbd8c514

2 2015/7/29

https://gist.github.com/fmdkdd/6f0faa7d105dbbd8c514


3.1.1 Adding a Variant
The ‘plus’ data variant takes two terms and evaluates to the sum of
these terms.

Num Plus
eval eval

In our object-oriented implementation, a new data variant is
easily added by creating a new object plus with an eval function.
The evaluation of plus recursively calls eval on the left and right
sub-expressions.

8 var plus = {
9 new(l, r) { return {__proto__: this, l, r} },

10 eval() { return this.l.eval() + this.r.eval() } }
11
12 var e2 = plus.new(num.new(1), num.new(2))
13 e2.eval() //: 3

In the instrumentation of faceted evaluation, instanceof tests
were added to distinguish a FacetedValue from a Reference. Both
objects are data variants of the datatype of runtime values manipu-
lated by the interpreter. By dispatching on these data variants instead
of using instanceof tests, we can write the FacetedValue like the plus
object, and extend the interpreter incrementally.

3.1.2 Adding an Operation
We now wish to add another operation to print expressions instead
of evaluating them.

Num Plus
eval eval
show show

14 num.show = function() { return this.n.toString() }
15 plus.show = function() {
16 return this.l.show() + ’+’ + this.r.show() }
17
18 e1.show() //: "3"
19 e2.show() //: "1+2"
20 plus.new(num.new(1), num.new(2)).show() //: "1+2"

Lines 14 and 15 extend the prototypes of num and plus with the
show operation. As we see on lines 18–20, extending the prototypes
adds the show operation on new expressions (line 20) as well as
already-created expressions (e1, e2). This flexibility is convenient
when interactively adapting a running system, where objects cannot
be recreated.

Num Plus show.Num show.Plus
eval eval eval eval

show show

In some cases however, we would like to preserve the original
versions of num and plus, and create derivatives that can be used
alongside the originals. To avoid name collisions, we create a plain
object to serve as namespace for the derivatives. To prevent coupling
of the derivatives to the originals, we parameterize the namespace
on num and plus. Essentially, we simulate a simple module system:
the show function takes imports as arguments and returns an object
of exports. By constructing our extensions in this way, we satisfy
the first requirement of the instrumentation problem: modularity.

14 var show = function(base) {
15 var num = {__proto__: base.num,
16 show() { return this.n.toString() }}
17
18 var plus = {__proto__: base.plus,
19 show() { return this.l.show() + ’+’ + this.r.show() }}
20
21 return {num, plus} }
22
23 e2.show //: undefined
24 var s = show({num, plus});
25 e2.show //: undefined
26 s.plus.new(s.num.new(1), s.num.new(2)).show() //: "1+2"
27 s.plus.new(num.new(1), s.num.new(2)).eval() //: 3

As lines 23 and 25 attest, existing expression objects are not
affected by the definition or activation of show. But on line 26, a
new expression is created using the derivatives of plus and num, and
supports show.

On line 27, we see that it is possible to mix expression objects
that support show, and those that do not: the second is created from
s.num, while the first one is not. When calling eval, an operation
that both have in common, this is not an issue. But since JavaScript
is not statically typed, nothing would prevent us to call show on an
expression of mixed languages, and raise an error only at runtime.

It is possible to prevent the writing of expressions of mixed
languages by shadowing the bindings for the original num and plus.
By using the with construct on an object, all the properties of this
object are in scope of the code delimited by with. On line 29, plus
and num refer to the derivatives created by the ‘show’ module.
The original num and plus are shadowed by these bindings; it is
impossible to refer to them inside the with construct. In addition,
the extension of the scope does not persist when exiting with, so the
num and plus bindings only exist inside, restricting the activation of
the show module.

28 with (show({num, plus})) {
29 plus.new(num.new(1), num.new(2)).show() //: "1+2"
30 }

The with construct does not allow us to select which names to
import from the show module; every property of the object returned
by show on line 28 is put into scope. If we would rather selectively
import a subset of names from the ‘show’ module, then we can
use an immediately-invoked function expression (IIFE) and specify
which names we want out as arguments to this function. For instance,
here we only import num.

(function({num}) {
num.new(1).show() //: "1"

}(show({num, plus})))

The last example shows that the with construct is not necessary
to our scheme, since an IIFE is more expressive. Nevertheless, it
provides an interesting use-case for this controversial construct, and
since examples using with are easier to read, we will stick to it
throughout the rest of the paper.

3.1.3 Summary
We have seen how we could:

• add variants to a datatype by defining new objects (3.1.1),
• add operations that act on all the existing variants by extending

the prototype of objects (3.1.2),
• without modifying the existing code.

Thereby, we have solved the expression problem as it applies to a
dynamic language such as JavaScript.

3 2015/7/29



Furthermore, we have seen that we could add operations to the
datatype in two ways: by directly modifying the prototype and
affecting all the existing and future objects of the extended data
variants, or by creating derivatives of the data variants. With the latter
it is possible to mix data variants from separate languages in unsafe
ways. We have seen how we can restrict the use of only one language
at a time by shadowing and creating new scopes with function
expressions and the with construct; this dynamic activation satisfies
the pluggability requirement of the instrumentation problem.

Interestingly, in all the examples we have seen so far, we used
only a fraction of the features provided by the language, without
resorting to extra libraries or framework. We develop this point
further in section 4.

3.2 Solving the Instrumentation Problem
We have seen how to extend the interpreter for the language of
arithmetic expressions by adding variants and operations incremen-
tally as modules – without modifying the extended code. Now we
tackle the remaining requirements of the instrumentation problem:
intercession and local state.

3.2.1 Modifying Operations
Let us imagine that we want to modify the ‘eval’ operation on the
data variant ‘num’ to return twice the value it holds.

Num Plus
eval* eval

This is straightforwardly achieved in JavaScript, since functions
held by objects are like other properties: replaceable by assignment.
We used the same mechanism in the addition of show. Here we erase
the previous definition of eval and replace it with the new one.

num.eval = function() { return this.n ∗ 2 }

num.new(1).eval() //: 2
plus.new(num.new(1), num.new(2)).eval() //: 6

Now we change the specification of our modification to ‘num’:
it should return twice the value of the result of the original ‘eval’
operation on ‘num’. The solution requires the ability to call the
previous version of num.eval, so we use a function expression to
save this version in the closure of the new eval. Then we need to
call this previous version with the current object as receiver, which
is done by invoking the call function with the argument this.

(function(previous_eval){
num.eval = function() { return previous_eval.call(this) ∗ 2 }

}(num.eval))

num.new(1).eval() //: 2
plus.new(num.new(1), num.new(2)).eval() //: 6

Num Plus double.Num
eval eval eval

Modifying the original num object is destructive: the original
eval is lost, only accessible by the closure created by the IIFE. In
this instance, we can create a new data variant that refers to the
original eval to avoid duplication. To that effect, we create a function
parameterized by the original num object to serve as a module.

31 var double = function(base) {
32 var num = {__proto__: base.num,
33 eval() { return base.num.eval.call(this) ∗ 2 }}
34

35 return {num} }
36
37 with (double({num})) {
38 plus.new(num.new(1), num.new(2)).eval() //: 6
39 }

On line 33 we define the new eval as a wrapper around the previ-
ous functionality. This enables us to compose extensions by passing
a modified base as parameter to double. The following example
illustrate how we can combine such extensions by cascading calls
to with.

with (double({num})) {
with (double({num})) {
with (double({num})) {
plus.new(num.new(1), num.new(2)).eval() //: 24

}}}

3.2.2 Passing State to Operations
In the instrumentation of Narcissus for faceted evaluation, the
“program counter” is an object that must be passed down to recursive
calls of the interpreter, representing state needed by the dynamic
analysis. To mimic this behavior, here we add a program counter
to the ‘eval’ operation that is incremented each time a data variant
calls eval.

Num Plus state.Num state.Plus
eval eval eval eval

The state function creates derivatives of the num and plus data
variants that increments the local program counter pc when calling
eval. The value of the program counter is exposed via the exported
getPC function.

40 var state = function(base, pc = 0) {
41 var num = {__proto__: base.num,
42 eval() { pc++; return base.num.eval.call(this) }}
43
44 var plus = {__proto__: base.plus,
45 eval() { pc++; return base.plus.eval.call(this) }}
46
47 var getPC = () => pc
48
49 return {num, plus, getPC} }
50
51 with (state({num, plus})) {
52 getPC() //: 0
53 plus.new(num.new(1), num.new(2)).eval() //: 3
54 getPC() //: 3
55 }

On line 52 we see that the program counter is zero, and is later
incremented to 3 on line 54 after the evaluation of the expression on
line 53.

On lines 42 and 45, the new eval functions are defined as
wrappers around base.num.eval and base.plus.eval, which allows
for composition of multiple extensions. For instance, we can add
the double modification of the previous subsection.

56 with (double({num})) {
57 with (state({num, plus})) {
58 getPC() //: 0
59 plus.new(num.new(1), num.new(2)).eval() //: 6
60 getPC() //: 3
61 }}
62

4 2015/7/29



63 with (state({num, plus})) {
64 with (double({num})) {
65 getPC() //: 0
66 plus.new(num.new(1), num.new(2)).eval() //: 6
67 getPC() //: 3
68 }}

On line 59 we see that the expression evaluates to 6, and lines
58 and 60 indicate that only three expressions were evaluated. Thus
both the double modification and state modification are in effect.
Lines 63–68 attest that the order of activation of these modifications
is irrelevant. This is not always the case, as it depends on the
semantics of each operation. In this instance, the program counter is
a side effect that does not interfere with the doubling of the ‘num’
data variant, hence they commute.

Finally, we can also add the show module without modifying
any of the existing definitions. Here again the order of activation of
modules is irrelevant.

with (state({num, plus})) {
with (double({num})) {

with (show({num, plus})) {
getPC() //: 0
var n = plus.new(num.new(1), num.new(2))
n.eval() //: 6
getPC() //: 3
n.show() //: "1+2"

}}}

3.2.3 Summary
We have seen how to extend the solution to the expression problem
of subsection 3.1 to tackle the additional requirements of interces-
sion and local state. The solution we exposed, based on simple
object modules, satisfy all the criteria of the instrumentation prob-
lem we defined in subsection 2.2:

Modularity The show, double and state extensions were all ex-
pressed as modules, without any need to alter or duplicate the
code of the parts they augment. The plus data variant, expressed
simply as an object, as well as the first definition of num, could
have been built as a simple modules with no import.

Intercession The plus and show examples were two cases of ex-
tensions to the base language. The double and state examples
illustrated replacement of the existing eval operation. In the
double case, we first saw a complete replacement of the eval
functionality. In all cases, the extension or alteration of the base
language was done incrementally – without touching the ex-
tended code.

Local state The state example served to illustrate how we could
add state that is local to an extension, without having to pass
it as an argument to the modified eval operations, and without
altering the base code.

Pluggability The show, double and state examples were all easily
activated by the with construct, or an immediately-invoked
function expression. Each time, the exact same line of code was
used to add 1 and 2, and each time the effect varied depending
on the active modules. We have shown how these extensions
could all be activated at the same time, without modification
needed to the base code or to the client code inside with.

In addition, we have illustrated how to solve two patterns
we highlighted from the instrumentation of Narcissus for faceted
evaluation in subsection 2.1: (1) the addition of instanceof tests can
be transformed into dispatching on new data variants, and (2) the
addition of local state (the program counter) can be encapsulated in
module objects.

4. Discussion and Related Work
A combination of simple language features To solve the expres-
sion problem and instrumentation problem, we used only features
provided by the JavaScript language; we did not extend JavaScript
with a class system, a reflection framework or even a module system.
Several key features of JavaScript made this possible.

The flexibility of the object system is an advantage here. Objects
are essentially dictionaries with the ability to inherit keys from a
prototype link. Since objects are open, it is easy to add or modify
methods. Objects can also be created at any point at runtime, and
this allowed us to define derivatives that delegate to base objects
with a prototype link. To distinguish the derivatives from the original
objects, we only needed a simple object as a dictionary to serve as
namespace.

Our module objects are parameterized by the objects they extend
just because they are defined as functions. Functions in JavaScript
are first-class values, and can be used as expressions for defining ob-
ject methods, or the module objects we presented. When activating
modules, the shadowing of names in the outer scope was a desirable
feature, provided by the with statement and functions expressions.
In JavaScript, there are no methods strictly speaking: the value of
the receiver, accessible inside a function via the this keyword, is
determined only when a function is called, not when it is defined.
We can even specify its value to be an arbitrary object using the call
construct. We used this feature whenever we needed to invoke an
overridden behavior on the current object.

Dynamic typing is also a benefit in this case. The absence of
a static type system allows us to compose objects in a way that
would be difficult to type in languages like Java, Haskell or Scala.
Odersky and Zenger [10] show how they can use Scala to solve
the expression problem and retain static type safety, but they do
not consider the modification of existing operations. While it is
one thing to safely extend interpreters, it is quite another to safely
change a function signature at some point in runtime. In fact, the
requirement of intercession in the instrumentation problem seems at
odds with static type safety; but that remains to be shown.

The design philosophy behind our scheme is inspired by Findler
and Flatt [5]. They exhibit a solution to the expression problem in
MzScheme using mixins and a form of modules called units. Units
and mixins follow a single design principle: “specify connections
between modules or classes separately from their definitions”. In our
case, this is translated as adding indirection by names (arguments
and namespaces). This loose coupling can be found in our module
objects: they are parameterized by the objects they extend, rather
than being bound to it prematurely. Late binding is why we can
compose module objects in any order in the later examples.

Aspect-Oriented Programming (AOP) The instrumentation of
Narcissus for faceted evaluation is a crosscutting concern. AOP
is well-suited for expressing such concerns in a modular way,
using predicates (pointcuts) to target specific parts of the code
(joinpoints) where instrumentation should take over. For instance,
FlowR [11] is a library that provides information flow control for
the Ruby programming language. The authors used an AOP toolkit
to write FlowR and successfully lowered the complexity of their
implementation.

AspectScript [13] is an implementation of AOP for JavaScript
with advanced scoping strategies, and the ability to capture join-
points inside function bodies. As it wraps all the client code, not
necessarily code that is targeted by pointcuts, AspectScript mul-
tiplies the execution time by a factor of 5 to 13. Achenbach and
Ostermann define a meta-aspect protocol for developing dynamic
program analyses [1], and provide a Ruby implementation.

While we have no doubts that the instrumentation problem we
consider can be solved using AOP, the scheme we present here shows

5 2015/7/29



that the flexibility of a few JavaScript constructs are sufficient. By
leveraging the right parts of the language, we are able to define
extensions as modules without having to refer to a sophisticated
model.

Context-Oriented Programming (COP) Our way of activating
modules via with is reminiscent of the activation of layers in COP
systems. ContextJS [7] is a COP extension to JavaScript, enabling
sideway composition of layers on a base class. In ContextJS, a layer
refines a class with partial methods that override the behavior of
methods of the base class; extra methods can be added as well.
Layers can then be activated and deactivated dynamically, on all
or specific instances of the class, for a delimited extent or globally.
Layers can stack, and partial methods can refer to the behavior
of upper layers indirectly by using the proceed special argument,
allowing the gracefully composition of layers similar to our final
examples in 3.2.2.

We can view our module objects as rudimentary layers. Our
composition of modules could be improved syntactically by using a
proceed keyword. The layer activation possibilities of ContextJS are
more expressive, but they go beyond the needs of the instrumentation
problem we defined. Our module objects are parameterized by the
base object they extend, and as such are not tied to a particular class.
The main difference is, again, that the simplicity of our scheme lies
in combining the raw parts of the JavaScript language, and does not
require external definitions.

Other approaches to modular instrumentation Marek et al. pro-
pose DiSL [8], a Java framework for writing dynamic program
analyses using the AOP model of pointcuts and joinpoints, focusing
on ease of instrumentation and efficiency of weaving. Polyglot [9]
is an extensible compiler front-end for Java used notably for imple-
menting the Jif language [4], which extends Java with information
flow control functionality. These approaches share our goals of ex-
tending languages with dynamic analyses while preserving modular
reasoning. However, they target the Java language, which apart
from inspiring the name “JavaScript”, bear little resemblance to the
language and platform we address.

Modular instrumentation of Narcissus The remaining question
is: how does the solution sketched here apply to the instrumentation
of Narcissus for the faceted evaluation analysis? Our examples
apply to the interpreter for arithmetic expressions that was ostensibly
designed for extensibility. The implementation of Narcissus does not
follow this clear-cut object-oriented decomposition of data variants
and operations, instead favoring switch-cases and instanceof tests.
Refactoring Narcissus is clearly needed as a first step to allow
extensions to be written. The refactoring effort should be moderate,
as the interpreter part of Narcissus is only 1500 lines, and the rest
of the program is already split into modules. Once Narcissus is in a
form more amenable to extension, we expect the scheme presented
here to allow the modular expression of faceted evaluation and other
dynamic information flow analyses.

Furthermore, since the instrumentation problem we defined is
not particularly tied to Narcissus, we expect our solution to be
applicable to other interpreters written in JavaScript.

Acknowledgments
This work has been partially funded by the SecCloud project of
the French “Laboratoire d’Excellence” CominLabs and the Inria
associated team REAL. We thank Nicolas Papredi for insightful
discussions on and around the topic of modular instrumentation.

References
[1] M. Achenbach and K. Ostermann. “A Meta-Aspect Protocol

for Developing Dynamic Analyses”. In: Runtime Verification.
Lecture Notes in Computer Science 6418, pp. 153–167. DOI:
10.1007/978-3-642-16612-9_13.

[2] T. H. Austin and C. Flanagan. “Multiple Facets for Dynamic
Information Flow”. In: POPL’12. Proceedings of the 39th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 2012, pp. 165–178. DOI: 10.1145/
2103656.2103677.

[3] N. Bielova. “Survey on JavaScript security policies and their
enforcement mechanisms in a web browser”. In: The Journal
of Logic and Algebraic Programming 82.8 (2013), pp. 243–
262. DOI: 10.1016/j.jlap.2013.05.001.

[4] S. Chong, A. C. Myers, K. Vikram, and L. Zheng. Jif Ref-
erence Manual. 2009. URL: www.cs .cornell . edu / jif /doc / jif -
3.3.0/manual.html.

[5] R. B. Findler and M. Flatt. “Modular Object-Oriented Pro-
gramming with Units and Mixins”. In: Proceedings of the
third ACM SIGPLAN International Conference on Functional
Programming (ICFP ’98). 1998, pp. 94–104. DOI: 10.1145/
289423.289432.

[6] I. Hickson, R. Berjon, S. Faulkner, T. Leithead, E. D. Navara,
E. O’Connor, and S. Pfeiffer. HTML5 - A Vocabulary and
associated APIs for HTML and XHTML. W3C Recommenda-
tion. Oct. 2014. URL: http://www.w3.org/TR/2014/REC-html5-
20141028/.

[7] J. Lincke, M. Appeltauer, B. Steinert, and R. Hirschfeld. “An
open implementation for context-oriented layer composition
in ContextJS”. In: Science of Computer Programming 76.12
(2011), pp. 1194–1209. DOI: 10.1016/j.scico.2010.11.013.

[8] L. Marek, Y. Zheng, D. Ansaloni, L. Bulej, A. Sarimbekov,
W. Binder, and P. Tuma. “Introduction to dynamic program
analysis with DiSL”. In: Science of Computer Programming
98 (2015), pp. 100–115. DOI: 10.1016/j.scico.2014.01.003.

[9] N. Nystrom, M. R. Clarkson, and A. C. Myers. “Polyglot:
An Extensible Compiler Framework for Java”. In: Compiler
Construction, 12th International Conference, CC 2003. 2003,
pp. 138–152. DOI: 10.1007/3-540-36579-6_11.

[10] M. Odersky and M. Zenger. “Independently Extensible Solu-
tions to the Expression Problem”. In: Proceedings of the 12th
International Workshop on Foundations of Object-Oriented
Languages (FOOL’05). Jan. 2005. URL: homepages.inf.ed.ac.
uk/wadler/fool/program/10.html.

[11] T. F. J.-M. Pasquier, J. Bacon, and B. Shand. “FlowR: As-
pect Oriented Programming for Information Flow Control in
Ruby”. In: MODULARITY’14. Proceedings of the 13th Inter-
national Conference on Modularity. 2014, pp. 37–48. DOI:
10.1145/2577080.2577090.

[12] A. Sabelfeld and A. C. Myers. “Language-based information-
flow security”. In: IEEE Journal on Selected Areas in Com-
munications 21.1 (Jan. 2003), pp. 5–19. DOI: 10.1109/JSAC.
2002.806121.

[13] R. Toledo, P. Leger, and É. Tanter. “AspectScript: expres-
sive aspects for the web”. In: Proceedings of the 9th Interna-
tional Conference on Aspect-Oriented Software Development
(AOSD’10). 2010, pp. 13–24. DOI: 10.1145/1739230.1739233.

[14] P. Wadler. The Expression Problem. 1998. URL: homepages.inf.
ed.ac.uk/wadler/papers/expression/expression.txt.

6 2015/7/29

http://dx.doi.org/10.1007/978-3-642-16612-9_13
http://dx.doi.org/10.1145/2103656.2103677
http://dx.doi.org/10.1145/2103656.2103677
http://dx.doi.org/10.1016/j.jlap.2013.05.001
www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html
www.cs.cornell.edu/jif/doc/jif-3.3.0/manual.html
http://dx.doi.org/10.1145/289423.289432
http://dx.doi.org/10.1145/289423.289432
http://www.w3.org/TR/2014/REC-html5-20141028/
http://www.w3.org/TR/2014/REC-html5-20141028/
http://dx.doi.org/10.1016/j.scico.2010.11.013
http://dx.doi.org/10.1016/j.scico.2014.01.003
http://dx.doi.org/10.1007/3-540-36579-6_11
homepages.inf.ed.ac.uk/wadler/fool/program/10.html
homepages.inf.ed.ac.uk/wadler/fool/program/10.html
http://dx.doi.org/10.1145/2577080.2577090
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1145/1739230.1739233
homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

	Introduction
	Instrumenting Interpreters For Dynamic Analyses
	Case Study: Narcissus Instrumentation for Faceted Evaluation
	The Instrumentation Problem
	Relation to the Expression Problem
	A Minimal Example

	Building an Interpreter with Modules
	Solving the Expression Problem
	Adding a Variant
	Adding an Operation
	Summary

	Solving the Instrumentation Problem
	Modifying Operations
	Passing State to Operations
	Summary


	Discussion and Related Work

