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UNIQUENESS OF THE DE SITTER SPACETIME

AMONG STATIC VACUA WITH POSITIVE

COSMOLOGICAL CONSTANT

OUSSAMA HIJAZI, SEBASTIÁN MONTIEL, AND SIMON RAULOT

Abstract. We prove that, among all (n + 1)-dimensional spin
static vacua with positive cosmological constant, the de Sitter
spacetime is characterized by the fact that its spatial Killing hori-
zons have minimal modes for the Dirac operator. As a consequence,
the de Sitter spacetime is the only vacuum of this type for which
the induced metric tensor on some of its Killing horizons is at least
equal to that of a round (n − 1)-sphere. This extends unique-
ness theorems shown in [1, 2] by Boucher-Gibbons-Horowitz and
Chruściel to more general horizon metrics and to the non-single
horizon case.

1. Introduction

An (n+1)-dimensional vacuum spacetime with cosmological constant
Λ is a Lorentzian manifold (V, gab) satisfying the Einstein equation
Rab = Λ gab, where Rab is the Ricci tensor of the metric gab. The
vacuum is said to be static when

(1) V = R×M, ds2 = −V 2 dt2 + ngabdx
adxb,

where (M, ngab) is an n-dimensional connected Riemannian manifold,
that we will take to be orientable, standing for the unchanging slices
of constant time and V ∈ C∞(M) is a non-trivial smooth function
on M . In the case of positive cosmological constant Λ > 0, it seems
physically natural to require spatially compact solutions, that is, the
Cauchy hypersurface M is usually taken to be compact. The vacuum
Einstein equation can be translated into the following two conditions
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on (M, ngab) and V :

(2) ∇a∇bV = V (nRab − Λ ngab) , ∇2V = −Λ V,

where nRab is the Ricci tensor, ∇a is the covariant derivative and
∇2 = ∇a∇a = ngab∇a∇b is the Laplace operator of the Riemannian
manifold (M, ngab). By the second equation, we see that the spacetime
cannot be globally static, that is, the lapse function V changes sign on
M . This means that the causal Killing field ∂

∂t
is lightlike on some locus

(in fact, on a hypersurface, as we will point out below) of V. Taking
traces in the first equation in (2) and taking into account the second
one, we conclude immediately that

(3) nR = (n− 1)Λ,

where nR is the scalar curvature of (M, ngab).

Denote by Σ ⊂ M the zero set of the lapse function V . If there
exists a point x ∈ Σ with (∇aV )(x) = 0, then the unicity of the solu-
tions to the first (integrable linear) equation in (2) would imply that
V is identically zero on M . This means that Σ is a closed smooth
hypersurface embedded in M , although it may have several connected
components. Then the null hypersurface R × Σ of the spacetime V is
called a Killing horizon, because it is the locus of V where the causal
non vanishing Killing vector field ∂

∂t
is lightlike. From a physical point

of view, one usually says that R×Σ is a cosmological event horizon, the
horizon occurring because of the rapid expansion of the space due to
the Λ term. A common abuse of language will allow us to call horizon
to the projected hypersurface Σ of M . Indeed, each component Ω of
M where V is positive stands for a spatial region where communica-
tion is possible and the components Σα, α = 1, . . . , k, of its boundary
∂Ω = Σ represent unattainable barriers for signals. From now on, we
will restrict ourselves to work on open domains Ω ⊂ M of this type
with compact closure Ω and non empty boundary Σ = ∂Ω, not nec-
essarily connected. Since the Riemannian manifold with non empty
boundary (Ω, ngab), with

ngab ∈ C∞(Ω) and V ∈ C∞(Ω), positive on
Ω and vanishing along Σ, completely determine the physically realistic
regions of the vacuum spacetime (V, gab). It is also usual to call the
triple (Ω, ngab, V ) a positive static triple.

The paradigmatic example of a positive static triple with cosmologi-
cal constant Λ > 0 is given by choosing (Ω, ngab) = (Sn

+

(√
n
Λ

)
, nδab)

the open upper n-hemisphere in R
n+1 of radius

√
n
Λ
, where nδab is

the Euclidean metric tensor. In particular, nRab = Λ
n
(n − 1)nδab and
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Σ = ∂Ω = S
n−1

(√
n
Λ

)
is the equator. It is easy to see that, if p is the

pole of Sn
+

(√
n
Λ

)
, the corresponding height function h given by

h(x) = xapa, ∀x ∈ S
n
+

(√
n

Λ

)

is positive on S
n
+

(√
n
Λ

)
, vanishes along Σ = S

n−1
(√

n
Λ

)
and satisfies

the Obata type equation (see [3, 4])

∇a∇bh = −Λ

n
h nδab.

As a consequence, ∇2h = −Λ h, and so equations (2) are satisfied.
Indeed, the corresponding spacetime

(dS+, ds
2) = (R× S

n
+,−h2 dt2 + nδabdx

adxb)

is nothing but an open domain in de Sitter spacetime of radius
√

n
Λ

bounded by a certain lightlike hypersurface.

In fact, the so called cosmic no-hair conjecture, formulated by Boucher-
Gibbons-Horowitz (see [1, p. 2449]) refers to a postulated and desired
uniqueness for the above example:

The only (n + 1)-dimensional static vacuum spacetime
with Λ > 0 and connected cosmic event horizon is the
de Sitter spacetime of radius

√
n
Λ
. In other words, the

only n-dimensional positive static triple (Ω, ngab, V ) with
single-horizon Σ = ∂Ω and cosmological constant Λ > 0
is given by a round hemisphere (Sn

+

(√
n
Λ

)
, nδab) of radius√

n
Λ
, where the lapse function V is taken as the height

function attaining its maximum at the pole.

Connectedness of the horizon Σ is essential for this conjecture to be
true. In fact, we can easily construct positive vacuum triples (Ω, ngab, V )

with double-horizon Σ. It suffices to take Ω = S
1
+

(
1√
Λ

)
× P , where

S
1
+(

1√
Λ
) is the upper half-circle of radius 1√

Λ
and P is any

(n − 1)-dimensional Einstein compact manifold with Ricci curvature

equal to Λ (for example, the choice of P as the sphere S
n−1

(√
n−2
Λ

)

provides the so called Nariai spacetime), ngab the product metric and

V (t, x) = sin
√
Λ t for all 1√

Λ
ei

√
Λ t ∈ S

1
+

(
1√
Λ

)
and all x ∈ P . One can

check (see, for example, [5, p. 51, 2.]) that these choices ensure that
equations (2) are satisfied. Moreover, it is immediate that, in this case,
Σ consists just of two copies of P .
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The cosmic no-hair conjecture is closely related to another conjecture
by Fischer and Marsden concerning the Riemannian metrics which are
critical points for the scalar curvature map (see [6, 7, 8]). Indeed, we
may rephrase this Fischer-Marsden conjecture (see [9, Conjecture 2.])
just as the Boucher-Gibbons-Horowitz conjecture above by removing
the single-horizon assumption. So, the last aforementioned examples
should be viewed as counterexamples of this conjecture, at least as long
as stated in such a generality.

Since the gradual spreading of the cosmic no-hair conjecture, some
results about the subject have been interpreted as advances lending
support to it. Firstly, it is clear from (2) that, if (Ω, ngab) is Einstein
(or even if just the Ricci tensor nRab has Λ as a lower or upper bound),
the Obata type theorem in [10] (cf. [4]) solves the conjecture in the affir-
mative, even in the case where the horizon Σ is not assumed in principle
to be connected. The same positive answer is obtained when (Ω, ngab)
is supposed to be conformally flat, a result proved independently by
Kobayashi in [11] and Lafontaine in [12]. Moreover, Chruściel, gener-
alizing some early computations by Lindblom in [13], showed in [2] the
following integral inequality

(4)

k∑

α=1

κα

∫

Σα

(
(n−1)Rα − Λ

n
(n− 1)(n− 2)

)
dΣα ≥ 0,

where (n−1)Rα is the scalar curvature of the metric tensor (n−1)hα
ij in-

duced from Ω on the connected component Σα of the event horizon
Σ and each constant κα > 0 is the corresponding surface gravity on
Σα (see (8) for a definition). The equality implies that Ω is the round
hemisphere of radius

√
n
Λ
(and we have k = 1 a fortiori, that is, Σ must

be connected).

Inequality (4) has two important consequences. Clearly, it implies
that at least one of the integrals in the sum must be non negative.
Since an (n− 1)-dimensional round sphere of radius

√
n
Λ
has constant

scalar curvature Λ
n
(n− 1)(n− 2), at least one of the components Σα of

the event horizon Σ has total scalar curvature greater than or equal to
that of such a sphere. In the single-horizon case, this means that:

The de Sitter vacuum minimizes the integral of the scalar
curvature of the induced metric on the event horizon
among all the single-horizon positive static triples with
the same cosmological constant.
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In the case n = 3, inequality (4) along with the considerations above
imply that the horizon has at least one genus zero component and, in
the single-horizon case, one obtains the inequality

(5) 12 π ≥ Λarea (Σ),

discovered by Boucher-Gibbons-Horowitz in [1] (see also [9] for an anal-
ogous computation in the case of multiple horizons). As a consequence
of these last inequalities, one has the following uniqueness result by
Chruściel (see [2, 9]):

Let (Ω, ngab, V ) be an n-dimensional positive static triple
with cosmological constant Λ > 0 and suppose that the
horizon (Σ, (n−1)hij) is isometric to a sphere S

n−1 (r) of
radius r > 0. Then r ≤

√
n
Λ
, and if the equality holds,

the triple (Ω, ngab, V ) is given by a round hemisphere
(Sn

+

(√
n
Λ

)
, nδab) of radius r =

√
n
Λ
, where the lapse func-

tion V is a height function attaining its maximum at the
pole.

In fact, in order to have the uniqueness result above, it would be
enough that the scalar curvature (n−1)R of (Σ, (n−1)hij) is at most equal

to that of the sphere S
n−1

(√
n
Λ

)
, that is, (n−1)R ≤ (n−1)(n−2)

n
Λ.

Eventhough all these results have been thought of as evidences for
solving affirmatively the cosmic no-hair conjecture, at least in the
single-horizon case, they should be viewed as signs that the desired
uniqueness of the de Sitter spacetime seems to require some boundary
condition, that is, some topological, geometrical or analytical assump-
tions on the cosmic event horizon, as in the case of negative cosmolog-
ical constant Λ (see [1, 14, 15, 16, 17, 18, 19, 20, 21, 22]) or zero (see
[23, 24, 25, 26]). This point of view has been confirmed by Gibbons-
Hartnoll-Pope, who constructed in [27] counterexamples to the cosmic
no-hair conjecture, in the cases 4 ≤ n ≤ 8, by using the Riemannian
inhomogeneous Einstein metrics found by Böhm in [28] (as well as by
the uniqueness resuts obtained in [1, 2, 29, 30]). In these counterexam-
ples, one can find event horizons which are topologically spherical but
endowed with non round metrics and Riemannian products of spheres.
Anyway, Gibbons-Hartnoll-Pope showed that these examples are di-
namically unstable and should evolve into an asymptotically de Sitter
spacetime.

Therefore, taking into account the remarks above and the uniqueness
results obtained by Chruściel in [2] and by Boucher-Gibbons-Horowitz
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in [1], it becomes interesting to find necessary conditions, like inequal-
ities (4) and (5), on a given (n− 1)-dimensional compact Riemannian
manifold (Σ, (n−1)hij) in order to be a connected component of the event
horizon of a positive static triple (Ω, ngab, V ) with cosmological constant
Λ > 0. In this way, we will be able to approach to the uniqueness of
the Sitter spacetime imposing natural conditions on the event horizon
and ruling out the single-horizon assumption.

Indeed, in this paper, in the first place we will prove that the de
Sitter spacetime minimizes the absolute value of the modes of the Dirac
operator on each component of the event horizon among all the positive
static triples. Precisely, we will show the following result.

Theorem 1. Let (Ω, ngab, V ) be a positive static triple with cosmological
constant Λ > 0. Suppose that Ω is a spin manifold (this is always the
case if n = 3) and that ∂/α and κα are respectively the Dirac operator
of the Riemannian spin structure induced on the connected component
Σα, α = 1, . . . , k, of the event horizon Σ = ∂Ω and the surface gravity
of Σα. Then

|λ(∂/α)| ≥
n− 1

2

√
Λ

n

(
κα

κmax

)
,

for all the modes λ of ∂/α, where κmax = maxα=1,...,k κα. If equality
holds for some α = 1, . . . , k, then k = 1, that is, the event horizon Σ
is connected, κα = κmax, the Riemannian manifold (Ω, ngab) is given
by a round hemisphere

(
S
n
+

(√
n
Λ

)
, nδab

)
of radius

√
n
Λ

and the lapse
function V is a height function attaining its maximum at the pole.

Note that the lower bound obtained in Theorem 1 is independent of
scale changes in the lapse function V . In fact, it is obvious from (2)
that, if V is a lapse function, any multiple of V is a lapse function as
well.

As a consequence, and by using a nice upper estimate of the Dirac
operator on spheres due to Herzlich (see [31]), who improved an origi-
nal general estimate by Vafa-Witten (see [32]), we obtain another result
which generalises the Chruściel and Boucher-Gibbons-Horowitz theo-
rem in two directions: it applies to the general case of non single-
horizon Σ and moreover there is no need to impose that the metric
tensor on the horizon is the round spherical metric, but only that it
dominates this round metric.

Theorem 2. Let (Ω, ngab, V ) be an n-dimensional positive static triple
with cosmological constant Λ > 0 and suppose that Ω is spin and that
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there is a connected component Σ0 of the event horizon Σ = ∂Ω which
is diffeomorphic to an (n − 1)-dimensional sphere. If the correspond-
ing induced tensor metric (n−1)h0

ij is pointwise at least equal to that of

the round standard sphere of radius r > 0, then r ≤
√

n
Λ

(
κmax

κ0

)
. If

equality is attained, then Σ is connected, κ0 = κmax, the Riemannian
manifold (Ω, ngab) is given by a round hemisphere

(
S
n
+

(√
n
Λ

)
, nδab

)
of

radius r =
√

n
Λ
and the lapse function V is a height function attaining

its maximum at the pole.

2. Geometry of a modification of the Fermat conformal

metric

Given a positive static triple (Ω, ngab, V ), the conformal metric
ñgab = 1

V 2

ngab on Ω is known as the Fermat (or optical) metric. This
is why the geodesics of this new metric are the spatial projections
of the light rays in the corresponding spacetime (R × Ω,−V 2 dt2 +
ngabdx

adxb). The geometrical features of this conformal metric have
been explicitly or implicitly studied in order to analyse the behaviour
of static spacetimes, mainly with non-null cosmological constant (see,
for example, [1, 17, 18, 13, 33]). In [2, 19], a suitable modification of
this metric has been used. We will consider again this modified Fermat
metric in order to prove Theorems 1 and 2.

Lemma 3. Let (Ω, ngab, V ) be a positive static vacuum and ε > 0 an
arbitrary positive real number. Then the conformal Riemannian metric
ng∗ab =

(
ε

V+ε

)2 ngab has scalar curvature

(6) nR∗ =
(n− 1)Λ

ε2

(
ε2 − V 2 − n

Λ
W

)
,

where W is the squared norm of the gradient of the lapse function V ,
that is, W = ngab∇aV∇bV . Moreover, ng∗ab coincides with ngab on the
event horizon Σ = ∂Ω.

Proof. The last assertion is clear because V vanishes along Σ. If we
rewrite the conformal change between the metrics ngab and

ng∗ab as

ngab =

(
V + ε

ε

)2
ng∗ab,

then the relation between the corresponding Ricci tensors nR∗
ab and

nRab

on the compact manifold Ω, is given by (see [34, p. 59]):

nR∗
ab =

nRab + (n− 2)
∇a∇bV

V + ε
+

∇2V

V + ε
ngab − (n− 1)

W

(V + ε)2
ngab.
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Taking traces with respect to ngab and multiplying by (V + ε)2, we
obtain the corresponding relation for their scalar curvatures

ε2(nR∗) = nR(V + ε)2 + 2(n− 1)(V + ε)∇2V − n(n− 1)W.

As we pointed out in (2) and (3), since nR = (n − 1)Λ and the func-
tion V is an eigenfunction of ∇2 associated with the eigenvalue −Λ, we
finally get the required expression for the scalar curvature nR∗ of the
compact Riemannian manifold with boundary (Ω, ng∗ab). q.e.d.

Our aim now is to prove that the conformal metric ng∗ab has non-
negative scalar curvature nR∗. The proof of this assertion will be a
reformulation of an identity due to Lindblom ([13]) showing that nR∗

satisfies a certain elliptic second order equation on Ω and a short anal-
ysis displaying the geometry of the event horizon Σ as a hypersurface
of Ω. Let us start by this last point. In fact, in the discussion after
equality (3), we noticed that along the event horizon Σ, which is the
zero set of the lapse function V , the gradient vector field ∇aV has no
zeroes and so, after normalization, it provides an inner normal vector
field Na for the hypersurface Σ in Ω. Then, it is well-known that the
extrinsic curvature (or second fundamental form) pij = −ngic∇jN

c of
any regular level set of V is given by the equation

∇i∇jV + (N c∇cV )pij = 0.

SinceN c∇cV has no zeroes on Σ (which is the regular level set V −1({0})),
by the first equality in (2), we have

(7) pij = 0 on Σ, that is, Σ is totally geodesic in Ω.

Then, the fact that pij = 0 and (2) give

∇i(N
b∇bV )|Σ = −ngbjpij∇bV +N b(∇i∇bV )|Σ = 0,

and so the normal derivative Na∇aV is constant on each connected
component of the event horizon Σ. Recall that Σα, α = 1, . . . , k, denote
its connected components. So, we dzfinz

(8) κα ≡ (Na∇aV )|Σα
> 0, α = 1, . . . , k.

Note that each κα is positive because, as we pointed out in the discus-
sion following equality (3), the gradient of V never vanishes on its zero
set. Physically, each κα is the surface gravity on the component Σα of
the event horizon of the n-dimensional spatial slice Ω.

Proposition 4. Let (Ω, ngab, V ) be an n-dimensional positive static
triple with cosmological constant Λ > 0 and let Σα, α = 1, . . . , k, be the
connected components of its event horizon. Then, taking
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ε =
√

n
Λ
κmax > 0, where κmax is the greatest surface gravity among all

the components Σα, yields

(n−1)h∗
ij =

(n−1)hij ,
nR∗ ≥ 0, (p∗)|Σα

= (n− 1)

√
Λ

n

(
κα

κmax

)
,

where nR∗ is the scalar curvature of the conformal metric ng∗ab defined
in Lemma 3, p∗ is the trace of the (inner) extrinsic curvature p∗ij of the

event horizon Σ = ∂Ω as a hypersurface of (Ω, ng∗ab).

Proof. The first equality is simply the last assertion in the statement
of Lemma 3. As for the second one, we define a function Φ on Ω by

Φ = ε2 − V 2 − n

Λ
W = ε2 − V 2 − n

Λ
ngab ∇aV∇bV,

that is, up to a positive constant, the righthand side of (6). Taking
into account the more or less explicit computations in [13, 2, 33] or
the classical Bochner formula for the Laplace operator of the squared
length of a gradient, we have

1

2
∇2Φ = −W − V∇2V − n

Λ
(∇a∇bV )(∇a∇bV )

− n

Λ
∇aV∇a(∇2V )− n

Λ
nRab ∇aV∇bV.

Using (2), we obtain

1

2
∇2Φ = −n

Λ

(
∇a∇bV +

Λ

n
V ngab

)(
∇a∇bV +

Λ

n
V ngab

)
(9)

− n

Λ

(∇a∇bV )(∇aV∇bV )

V
−W.

On the other hand, from the definition of Φ, we have

(10) ∇aΦ∇aV = −2VW − 2
n

Λ
∇a∇bV ∇aV∇bV.

Hence, by combining (9) and (10), we finally obtain

1

2
∇2Φ = −n

Λ

(
∇a∇bV +

Λ

n
V ngab

)(
∇a∇bV +

Λ

n
V ngab

)
(11)

+
1

2V
∇aΦ∇aV.

A standard application of min-max principle to this elliptic equation
(11) implies that Φ reaches its minimum value at Σ. Then, to control
the behaviour of the function Φ along the event horizon, it suffices to
recall that Σ = V −1({0}) and that

W|Σ = (∇aV∇aV )|Σ = (Na∇aV )2 ≤ Λ

n
ε2,
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according to (8) and the choice of ε. Therefore, we conclude that

Φ|Σ =
(
ε2 − V 2 − n

Λ
W

)

|Σ
≥ 0,

and that, if Φ is not constant, the equality holds only on the con-
nected components of Σ with maximum surface gravity. This proves
that Φ ≥ 0 on the whole of Ω and so, using (6) in Lemma 3, we obtain
the second assertion nR∗ ≥ 0.

To finish the proof, it remains to compute the mean curvature p∗

of the event horizon Σ as a hypersurface of the compact Riemannian
manifold (Ω, ng∗ab). Observe that, by definition in Lemma 3:

ng∗ab =

(
ε

V + ε

)2
ngab.

But, we know from (7) that the extrinsic curvature pab of the event
horizon Σ as a hypersurface of (Ω, ngab) vanishes (in fact, Σ is a totally
geodesic hypersurface). So, in order to compute p∗, it suffices to use the
well-known relation between the two mean curvatures of a hypersurface
corresponding to two metrics on the ambient space which are conformal
(see, for instance, [33]):

p∗ =
1

ρ

(
p− (n− 1)Na∇a log ρ

)
= −n− 1

ρ2
Na∇aρ,

where ρ = ε
V+ε

and Na is the inner unit normal along Σ with respect
to the metric ngab. Since we have

(∇aρ)|Σ = − ε∇aV(
V + ε

)2

∣∣∣∣∣
Σ

= −ρ2

ε
(∇aV )|Σ.

Thus, we obtain

p∗ =
n− 1

ε
(Na∇aV )|Σ.

Taking into account (8) and the choice of ε, for any α = 1, . . . , k, we
finally have

(p∗)|Σα
=

n− 1

ε
κα = (n− 1)

√
Λ

n

(
κα

κmax

)
.

q.e.d.

Remark 1. Note that equation (11) is equivalent to

1

2
div

1

V
∇Φ = −n

Λ

(
∇a∇bV +

Λ

n
V ngab

)(
∇a∇bV +

Λ

n
V ngab

)
,
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where it can easily checked that the vector field 1
V
∇Φ extends smoothly

to the boundary Σ. So, we have the inequality

div
1

V
∇Φ ≤ 0.

By integrating and using the divergence theorem, we obtain
∫

Σ

(
1

V
Na∇aΦ

)
dΣ ≥ 0,

where N = ∇V
|∇V | is the inner unit normal along Σ. Now, by using the

definitions of Φ and of the κα, α = 1, . . . , k, we have that
(
1

V
Na∇aΦ

)

|Σα

= κα

(n

Λ
nRabN

aN b − (n− 1)
)
.

Then, equations (4) and (5) are direct consequences from the discussion
above and the Gauß equation

(n−1)R = (n− 1)Λ− 2nRabN
aN b

on the totally geodesic hypersurface Σ.

3. Proofs of Theorems 1 and 2

Suppose now that the positive static triple (Ω, ngab, V ) is such that
the compact orientable n-dimensional manifold Ω with non empty bound-
ary is a spin manifold (this is always the case when the spatial slice M
of the spacetime is spin) and that we have fixed a spin structure on it.
Since the horizon Σ = ∂Ω is always an orientable hypersurface, it is
also a spin manifold and that an induced spin structure on the horizon
is inherited from the structure fixed on Ω. Moreover, for the Riemanian
metric ngab on Ω we have an associated spinor bundle (SΩ, γa,∇a, ∂),
where γa are the Pauli matrices, ∇a the covariant derivative and ∂ is
the corresponding Dirac operator (for generalities on spin structures
see any of [36, 37, 38, 39]). It is a well-known fact that the restriction
of the spinor bundle SΩ to the hypersurface Σ can be identified with
one or two copies of the spinor bundle corresponding to the induced
spin structure and the induced Riemannian metric (n−1)hij according
to the parity of the dimension n of Ω. More precisely, we have an
isomorphism

(
SΩ|Σ, γ

n∂ +Na∇a −
1

2
p

)
∼=





(SΣ, ∂/), if n is odd

(SΣ, ∂/)⊕ (SΣ,−∂/), if n is even,

where N is the inner unit normal field along the horizon Σ, p is the
trace of its extrinsic curvature and (SΣ, ∂/) are respectively the spinor



12 OUSSAMA HIJAZI, SEBASTIÁN MONTIEL, AND SIMON RAULOT

bundle and the Dirac operator corresponding to the spin structure and
to the Riemannian metric induced on Σ (for this relationship between
the spinor bundles on a hypersurface and on its ambient space, see,
for instance, [40, 37, 41, 42]). Due to this identification we can say
that each spinor field on Ω determines by restriction a spinor field on
the event horizon Σ and we can talk about possible extensions to Ω
of the spinor fields defined on Σ. Furthermore, from the identification
between the operators ∂/ and γn∂+Na∇a− 1

2
p, it is immediate that, if

p is constant, the restriction to Σ of a parallel spinor field on Ω gives
an eigenspinor on Σ associated to the eigenvalue −1

2
p of the operator

∂/. Taking into account the identifications above between bundles and
operators, X. Zhang and the first two authors showed in [41] (see also
[43, Theorem 3.7.1]) that, if the scalar curvature nR of the metric ngab
is non negative on Ω and the trace p of the extrinsic curvature of Σ in
Ω is also non negative, we have

(12) |λ1(∂/)| ≥
1

2
inf
Σ

p,

where λ1(∂/) stands for the eigenvalue of ∂/ with the lowest absolute
value, and, if the equality holds, then the eigenspace associated to
λ1(∂/) is built from parallel spinor fields on Ω (note that in [41, 43] the
inequality is given in terms of the normalized mean curvature of Σ).
It is straightforward to check that the approach in [41] can be applied
to each connected component Σα, α = 1, . . . , k, of Σ in the case where
Σ is not connected. From equations (3) and (7), one can see that the
estimate (12) can be applied to our situation. But, unfortunately, we
get on each component, the obvious inequality |λ1(∂/α)| ≥ 0. In fact, it
is clear that (12) is of interest only when infΣ p > 0. Nevertheless, we
can obtain some significant information by considering the conformal
metric ng∗ab on Ω (see Lemma 3 and Proposition 4). By combining the
information provided by Proposition 4 and estimate (12), we get

|λ1(∂/α)| ≥
n− 1

2

√
Λ

n

(
κα

κmax

)
,

for each α = 1, . . . , k, as required in Theorem 1. As we mentioned
before, according to [41], if the equality holds, then the eigenspace
associated with λ1(∂/) is built of parallel spinor fields on (Ω, ng∗ab). This
implies the existence of a non trivial parallel spinor field Ψ ∈ ΓSΩ with
respect to the metric ng∗ab. It was shown by Hitchin in [44] (see also [36,
Chapter 6]) that the existence of a non-trivial parallel spinor forces the
Ricci tensor to vanish everywhere. Then nR∗

ab = 0 on Ω and so nR∗ = 0
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as well. From (6) and (11), we conclude

(13) ∇a∇bV +
Λ

n
V ngab = 0.

Hence the compact Riemannian manifold with non empty boundary
(Ω, ngab) admits a non trivial solution V to the Obata equation which
is positive on Ω and vanishes on its boundary Σ. Now, we may apply
the non empty boundary version of the Obata theorem due to Reilly
(see [10]) and conclude that (Ω, ngab) is a round hemisphere with radius√

n
Λ
and V is the height function with maximum at its center. This

finishes the proof of Theorem 1.

As for Theorem 2, we suppose that there is a component Σ0 of the
event horizon Σ which is diffeomorphic to a sphere S

n−1. Then the
simple connectedness of this component implies that it supports only
one spin structure and so the spin structure induced from Ω on Σ0

is the standard one on the (n − 1)-dimensional sphere. On the other
hand, we assume that the metric (n−1)h0

ij induced on Σ, after applying
a diffeomorphism if necessary, satisfies

(n−1)h0
ij ≥ (n−1)δij , pointwise,

where (n−1)δij is the round metric of radius, say, r > 0. This hypothesis
allows us to apply [31, Theorem 1] and conclude that

|λ1(∂/0)| ≤
n− 1

2r
,

where the equality implies that (n−1)h0
ij is just the round metric. Com-

bining this upper bound for the eigenvalue of the Dirac operator ∂/0 of
the horizon with the least absolute value with the lower bound provided
by Theorem 1, we have

√
Λ

n

(
κ0

κmax

)
≤ 1

r
.

If the equality is attained, we know that (n−1)h0
ij =

(n−1)δij and, more-
over, we may also apply the equality case in Theorem 1. So Theorem
2 is proved.
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